Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Differential equations.

Статті в журналах з теми "Differential equations"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Differential equations".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Tabor, Jacek. "Differential equations in metric spaces." Mathematica Bohemica 127, no. 2 (2002): 353–60. http://dx.doi.org/10.21136/mb.2002.134163.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Andres, Jan, and Pavel Ludvík. "Topological entropy and differential equations." Archivum Mathematicum, no. 1 (2023): 3–10. http://dx.doi.org/10.5817/am2023-1-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Laksmikantham, V. "Set differential equations versus fuzzy differential equations." Applied Mathematics and Computation 164, no. 2 (May 2005): 277–94. http://dx.doi.org/10.1016/j.amc.2004.06.068.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Parasidis, I. N. "EXTENSION AND DECOMPOSITION METHOD FOR DIFFERENTIAL AND INTEGRO-DIFFERENTIAL EQUATIONS." Eurasian Mathematical Journal 10, no. 3 (2019): 48–67. http://dx.doi.org/10.32523/2077-9879-2019-10-3-48-67.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Chrastinová, Veronika, and Václav Tryhuk. "Parallelisms between differential and difference equations." Mathematica Bohemica 137, no. 2 (2012): 175–85. http://dx.doi.org/10.21136/mb.2012.142863.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Tumajer, František. "Controllable systems of partial differential equations." Applications of Mathematics 31, no. 1 (1986): 41–53. http://dx.doi.org/10.21136/am.1986.104183.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Kurzweil, Jaroslav, and Alena Vencovská. "Linear differential equations with quasiperiodic coefficients." Czechoslovak Mathematical Journal 37, no. 3 (1987): 424–70. http://dx.doi.org/10.21136/cmj.1987.102170.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Sergey, Piskarev, and Siegmund Stefan. "UNSTABLE MANIFOLDS FOR FRACTIONAL DIFFERENTIAL EQUATIONS." Eurasian Journal of Mathematical and Computer Applications 10, no. 3 (September 27, 2022): 58–72. http://dx.doi.org/10.32523/2306-6172-2022-10-3-58-72.

Повний текст джерела
Анотація:
We prove the existence of unstable manifolds for an abstract semilinear fractional differential equation Dαu(t) = Au(t) + f(u(t)), u(0) = u 0 , on a Banach space. We then develop a general approach to establish a semidiscrete approximation of unstable manifolds. The main assumption of our results are naturally satisfied. In particular, this is true for operators with compact resolvents and can be verified for finite elements as well as finite differences methods.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Džurina, Jozef. "Comparison theorems for functional differential equations." Mathematica Bohemica 119, no. 2 (1994): 203–11. http://dx.doi.org/10.21136/mb.1994.126077.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Saltas, Vassilios, Vassilios Tsiantos, and Dimitrios Varveris. "Solving Differential Equations and Systems of Differential Equations with Inverse Laplace Transform." European Journal of Mathematics and Statistics 4, no. 3 (June 14, 2023): 1–8. http://dx.doi.org/10.24018/ejmath.2023.4.3.192.

Повний текст джерела
Анотація:
The inverse Laplace transform enables the solution of ordinary linear differential equations as well as systems of ordinary linear differentials with applications in the physical and engineering sciences. The Laplace transform is essentially an integral transform which is introduced with the help of a suitable generalized integral. The ultimate goal of this work is to introduce the reader to some of the basic ideas and applications for solving initially ordinary differential equations and then systems of ordinary linear differential equations.
Стилі APA, Harvard, Vancouver, ISO та ін.
11

N O, Onuoha. "Transformation of Parabolic Partial Differential Equations into Heat Equation Using Hopf Cole Transform." International Journal of Science and Research (IJSR) 12, no. 6 (June 5, 2023): 1741–43. http://dx.doi.org/10.21275/sr23612082710.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Loud, Warren S., A. N. Tikhonov, A. B. Vasil'eva, and A. G. Sveshnikov. "Differential Equations." American Mathematical Monthly 94, no. 3 (March 1987): 308. http://dx.doi.org/10.2307/2323408.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Croft, Tony, D. A. Sanchez, R. C. Allen Jr., and W. T. Kyner. "Differential Equations." Mathematical Gazette 73, no. 465 (October 1989): 249. http://dx.doi.org/10.2307/3618470.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Brindley, Graham, D. Lomen, and J. Mark. "Differential Equations." Mathematical Gazette 73, no. 466 (December 1989): 353. http://dx.doi.org/10.2307/3619335.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Abbott, Steve, and SMP. "Differential Equations." Mathematical Gazette 79, no. 484 (March 1995): 186. http://dx.doi.org/10.2307/3620064.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Berkshire, Frank, A. N. Tikhonov, A. B. Vasil'eva, and A. G. Sveshnikov. "Differential Equations." Mathematical Gazette 70, no. 452 (June 1986): 168. http://dx.doi.org/10.2307/3615804.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Lee, Tzong-Yow. "Differential Equations." Annals of Probability 29, no. 3 (July 2001): 1047–60. http://dx.doi.org/10.1214/aop/1015345595.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Barrett, K. E. "Differential equations." Applied Mathematical Modelling 11, no. 3 (June 1987): 233–34. http://dx.doi.org/10.1016/0307-904x(87)90010-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

He, Ji-Huan, and Zheng-Biao Li. "Converting fractional differential equations into partial differential equations." Thermal Science 16, no. 2 (2012): 331–34. http://dx.doi.org/10.2298/tsci110503068h.

Повний текст джерела
Анотація:
A transform is suggested in this paper to convert fractional differential equations with the modified Riemann-Liouville derivative into partial differential equations, and it is concluded that the fractional order in fractional differential equations is equivalent to the fractal dimension.
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Knorrenschild, Michael. "Differential/Algebraic Equations As Stiff Ordinary Differential Equations." SIAM Journal on Numerical Analysis 29, no. 6 (December 1992): 1694–715. http://dx.doi.org/10.1137/0729096.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

MANOFF, S. "GEODESIC AND AUTOPARALLEL EQUATIONS OVER DIFFERENTIABLE MANIFOLDS." International Journal of Modern Physics A 11, no. 21 (August 20, 1996): 3849–74. http://dx.doi.org/10.1142/s0217751x96001814.

Повний текст джерела
Анотація:
The notions of ordinary, covariant and Lie differentials are considered as operators over differentiable manifolds with different (not only by sign) contravariant and covariant affine connections and metric. The difference between the interpretations of the ordinary differential as a covariant basic vector field and as a component of a contravariant vector field is discussed. By means of the covariant metric and the ordinary differential the notion of the line element is introduced and the geodesic equation is obtained and compared with the autoparallel equation.
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Lazopoulos, Konstantinos A. "On Λ-Fractional Differential Equations". Foundations 2, № 3 (5 вересня 2022): 726–45. http://dx.doi.org/10.3390/foundations2030050.

Повний текст джерела
Анотація:
Λ-fractional differential equations are discussed since they exhibit non-locality and accuracy. Fractional derivatives form fractional differential equations, considered as describing better various physical phenomena. Nevertheless, fractional derivatives fail to satisfy the prerequisites of differential topology for generating differentials. Hence, all the sources of generating fractional differential equations, such as fractional differential geometry, the fractional calculus of variations, and the fractional field theory, are not mathematically accurate. Nevertheless, the Λ-fractional derivative conforms to all prerequisites demanded by differential topology. Hence, the various mathematical forms, including those derivatives, do not lack the mathematical accuracy or defects of the well-known fractional derivatives. A summary of the Λ-fractional analysis is presented with its influence on the sources of differential equations, such as fractional differential geometry, field theorems, and calculus of variations. Λ-fractional ordinary and partial differential equations will be discussed.
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Elishakoff, Isaac. "Differential Equations of Love and Love of Differential Equations." Journal of Humanistic Mathematics 9, no. 2 (July 2019): 226–46. http://dx.doi.org/10.5642/jhummath.201902.15.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Barles, Guy, Rainer Buckdahn, and Etienne Pardoux. "Backward stochastic differential equations and integral-partial differential equations." Stochastics and Stochastic Reports 60, no. 1-2 (February 1997): 57–83. http://dx.doi.org/10.1080/17442509708834099.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Hino, Yoshiyuki, and Taro Yoshizawa. "Total stability property in limiting equations for a functional-differential equation with infinite delay." Časopis pro pěstování matematiky 111, no. 1 (1986): 62–69. http://dx.doi.org/10.21136/cpm.1986.118265.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Frittelli, Simonetta, Carlos Kozameh, and Ezra T. Newman. "Differential Geometry from Differential Equations." Communications in Mathematical Physics 223, no. 2 (October 1, 2001): 383–408. http://dx.doi.org/10.1007/s002200100548.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Marjona, Kosimova. "APPLICATION OF DIFFERENTIAL EQUATIONS IN VARIOUS FIELDS OF SCIENCE." American Journal of Applied Science and Technology 4, no. 6 (June 1, 2024): 76–81. http://dx.doi.org/10.37547/ajast/volume04issue06-15.

Повний текст джерела
Анотація:
The article, "Application of Differential Equations in Various Fields of Science," explores the use of differential equations for modeling economic and natural phenomena. It examines two main models of economic dynamics: the Evans model for the market of a single product, and the Solow model for economic growth.The author emphasizes the importance of proving the existence of solutions to differential equations in order to verify the accuracy of mathematical models. They also discuss the role of electronic computers in developing the theory of differential equations and its connection with other branches of mathematics such as functional analysis, algebra, and probability theory.Furthermore, the article highlights the significance of various solution methods for differential equations, including the Fourier method, Ritz method, Galerkin method, and perturbation theory.Special attention is paid to the theory of partial differential equations, the theory of differential operators, and problems arising in physics, mechanics, and technology. Differential equations are the theoretical foundation of almost all scientific and technological models and a key tool for understanding various processes in science, such as in physics, chemistry, and biology.Examples of processes described by differential equations include normalreproduction, explosive growth, and the logistic curve. Cases of using differential equations to model deterministic, finite-dimensional, and differentiable phenomena, as well as the impact of catch quotas on population dynamics, are discussed.In conclusion, the significance of differential equations for research and their role in stimulating the development of new mathematical areas is emphasized.
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Chrastina, Jan. "On formal theory of differential equations. I." Časopis pro pěstování matematiky 111, no. 4 (1986): 353–83. http://dx.doi.org/10.21136/cpm.1986.118285.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Chrastina, Jan. "On formal theory of differential equations. II." Časopis pro pěstování matematiky 114, no. 1 (1989): 60–105. http://dx.doi.org/10.21136/cpm.1989.118369.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Li, Tongxing, Yuriy V. Rogovchenko, and Chenghui Zhang. "Oscillation of fourth-order quasilinear differential equations." Mathematica Bohemica 140, no. 4 (2015): 405–18. http://dx.doi.org/10.21136/mb.2015.144459.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Kwapisz, Marian. "On solving systems of differential algebraic equations." Applications of Mathematics 37, no. 4 (1992): 257–64. http://dx.doi.org/10.21136/am.1992.104508.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Franců, Jan. "Weakly continuous operators. Applications to differential equations." Applications of Mathematics 39, no. 1 (1994): 45–56. http://dx.doi.org/10.21136/am.1994.134242.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Grace, S. R., and Bikkar S. Lalli. "Oscillation theorems for certain neutral differential equations." Czechoslovak Mathematical Journal 38, no. 4 (1988): 745–53. http://dx.doi.org/10.21136/cmj.1988.102270.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Ohriska, Ján. "Oscillation of differential equations and $v$-derivatives." Czechoslovak Mathematical Journal 39, no. 1 (1989): 24–44. http://dx.doi.org/10.21136/cmj.1989.102276.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Gopalsamy, K., B. S. Lalli, and B. G. Zhang. "Oscillation of odd order neutral differential equations." Czechoslovak Mathematical Journal 42, no. 2 (1992): 313–23. http://dx.doi.org/10.21136/cmj.1992.128330.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Džurina, Jozef. "Comparison theorem for third-order differential equations." Czechoslovak Mathematical Journal 44, no. 2 (1994): 357–66. http://dx.doi.org/10.21136/cmj.1994.128464.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Grace, S. R., and B. S. Lalli. "Oscillation criteria for forced neutral differential equations." Czechoslovak Mathematical Journal 44, no. 4 (1994): 713–24. http://dx.doi.org/10.21136/cmj.1994.128489.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Fraňková, Dana. "Substitution method for generalized linear differential equations." Mathematica Bohemica 116, no. 4 (1991): 337–59. http://dx.doi.org/10.21136/mb.1991.126028.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Chrastina, Jan. "On formal theory of differential equations. III." Mathematica Bohemica 116, no. 1 (1991): 60–90. http://dx.doi.org/10.21136/mb.1991.126196.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Tiwari, Chinta Mani, and Richa Yadav. "Distributional Solutions to Nonlinear Partial Differential Equations." International Journal of Research Publication and Reviews 5, no. 4 (April 11, 2024): 6441–47. http://dx.doi.org/10.55248/gengpi.5.0424.1085.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Freeman, J. S., and S. A. Velinsky. "Comparison of the Dynamics of Conventional and Worm-Gear Differentials." Journal of Mechanisms, Transmissions, and Automation in Design 111, no. 4 (December 1, 1989): 605–10. http://dx.doi.org/10.1115/1.3259043.

Повний текст джерела
Анотація:
The differential mechanism has been used for many years and a variety of unique designs have been developed for particular applications. This paper investigates the performance of both the conventional bevel-gear differential and the worm-gear differential as used in vehicles. The worm-gear differential is a design in which the bevel gears of the conventional differential are replaced by worm gear/worm wheel pairs. The resultant differential exhibits some interesting behavior which has made this differential desirable for use in high performance and off-road vehicles. In this work, an Euler-Lagrange formulation of the equations of motion of the conventional and worm-gear differentials allows comparison of their respective behavior. Additionally, each differential is incorporated into a full vehicle model to observe their effects on gross vehicle response. The worm-gear differential is shown to exhibit the desirable characteristics of a limited-slip differential while maintaining the conventional differential’s ability to differentiate output shaft speeds at all power levels.
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Balamuralitharan, S., and . "MATLAB Programming of Nonlinear Equations of Ordinary Differential Equations and Partial Differential Equations." International Journal of Engineering & Technology 7, no. 4.10 (October 2, 2018): 773. http://dx.doi.org/10.14419/ijet.v7i4.10.26114.

Повний текст джерела
Анотація:
My idea of this paper is to discuss the MATLAB program for various mathematical modeling in ordinary differential equations (ODEs) and partial differential equations (PDEs). Idea of this paper is very useful to research scholars, faculty members and all other fields like engineering and biology. Also we get easily to find the numerical solutions from this program.
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Harir, Atimad, Said Melliani, and Lalla Saadia Chadli. "Fuzzy Conformable Fractional Differential Equations." International Journal of Differential Equations 2021 (February 4, 2021): 1–6. http://dx.doi.org/10.1155/2021/6655450.

Повний текст джерела
Анотація:
In this study, fuzzy conformable fractional differential equations are investigated. We study conformable fractional differentiability, and we define fractional integrability properties of such functions and give an existence and uniqueness theorem for a solution to a fuzzy fractional differential equation by using the concept of conformable differentiability. This concept is based on the enlargement of the class of differentiable fuzzy mappings; for this, we consider the lateral Hukuhara derivatives of order q ∈ 0,1 .
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Devaney, Robert L., Beverly West, Steven Strogatz, Jean Marie McDill, and John Cantwell. "Interactive Differential Equations." American Mathematical Monthly 105, no. 7 (August 1998): 687. http://dx.doi.org/10.2307/2589275.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Brauer, Fred, Vladimir I. Arnol'd, and Roger Cook. "Ordinary Differential Equations." American Mathematical Monthly 100, no. 8 (October 1993): 810. http://dx.doi.org/10.2307/2324802.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Hibberd, S., Richard Bellman, and George Adomian. "Partial Differential Equations." Mathematical Gazette 71, no. 458 (December 1987): 341. http://dx.doi.org/10.2307/3617100.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Abbott, Steve, and Lawrence C. Evans. "Partial Differential Equations." Mathematical Gazette 83, no. 496 (March 1999): 185. http://dx.doi.org/10.2307/3618751.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Abram, J., W. E. Boyce, and R. C. DiPrima. "Elementary Differential Equations." Mathematical Gazette 78, no. 481 (March 1994): 83. http://dx.doi.org/10.2307/3619457.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Norris, J. R., and B. Oksendal. "Stochastic Differential Equations." Mathematical Gazette 77, no. 480 (November 1993): 393. http://dx.doi.org/10.2307/3619809.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Rawlins, A. D., and M. Sever. "Ordinary Differential Equations." Mathematical Gazette 72, no. 462 (December 1988): 334. http://dx.doi.org/10.2307/3619967.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії