Дисертації з теми "Differential equations"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-50 дисертацій для дослідження на тему "Differential equations".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.
Yantır, Ahmet Ufuktepe Ünal. "Oscillation theory for second order differential equations and dynamic equations on time scales/." [s.l.]: [s.n.], 2004. http://library.iyte.edu.tr/tezler/master/matematik/T000418.pdf.
Повний текст джерелаDareiotis, Anastasios Constantinos. "Stochastic partial differential and integro-differential equations." Thesis, University of Edinburgh, 2015. http://hdl.handle.net/1842/14186.
Повний текст джерелаZheng, Ligang. "Almost periodic differential equations." Thesis, University of Ottawa (Canada), 1990. http://hdl.handle.net/10393/5766.
Повний текст джерелаKopfová, Jana. "Differential equations involving hysteresis." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/tape15/PQDD_0007/NQ29055.pdf.
Повний текст джерелаMARINO, GISELA DORNELLES. "COMPLEX ORDINARY DIFFERENTIAL EQUATIONS." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2007. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=10175@1.
Повний текст джерелаNeste texto estudamos diversos aspectos de singularidades de campos vetoriais holomorfos em dimensão 2. Discutimos detalhadamente o caso particular de uma singularidade sela-nó e o papel desempenhado pelas normalizações setoriais. Isto nos conduz à classificação analítica de difeomorfismos tangentes à identidade. seguir abordamos o Teorema de Seidenberg, tratando da redução de singularidades degeneradas em singularidades simples, através do procedimento de blow-up. Por fim, estudamos a demonstração do Teorema de Mattei-Moussu, acerca da existência de integrais primeiras para folheações holomorfas.
In the present text, we study the different aspects of singularities of holomorphic vector fields in dimension 2. We discuss in detail the particular case of a saddle-node singularity and the role of the sectorial normalizations. This leads us to the analytic classiffication of diffeomorphisms which are tangent to the identity. Next, we approach the Seidenberg Theorem, dealing with the reduction of degenerated singularities into simple ones, by means of the blow-up procedure. Finally, we study the proof of the well-known Mattei-Moussu Theorem concerning the existence of first integrals to holomorphic foliations.
Berntson, B. K. "Integrable delay-differential equations." Thesis, University College London (University of London), 2017. http://discovery.ucl.ac.uk/1566618/.
Повний текст джерелаDodds, Niall. "Non-local differential equations." Thesis, University of Dundee, 2005. https://discovery.dundee.ac.uk/en/studentTheses/9eda08aa-ba49-455f-94b1-36870a1ad956.
Повний текст джерелаTrenn, Stephan. "Distributional differential algebraic equations." Ilmenau Univ.-Verl, 2009. http://d-nb.info/99693197X/04.
Повний текст джерелаBahar, Arifah. "Applications of stochastic differential equations and stochastic delay differential equations in population dynamics." Thesis, University of Strathclyde, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.415294.
Повний текст джерелаThompson, Jeremy R. (Jeremy Ray). "Physical Motivation and Methods of Solution of Classical Partial Differential Equations." Thesis, University of North Texas, 1995. https://digital.library.unt.edu/ark:/67531/metadc277898/.
Повний текст джерелаSaravi, Masoud. "Numerical solution of linear ordinary differential equations and differential-algebraic equations by spectral methods." Thesis, Open University, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.446280.
Повний текст джерелаHollingsworth, Blane Jackson Schmidt Paul G. "Stochastic differential equations a dynamical systems approach /." Auburn, Ala, 2008. http://repo.lib.auburn.edu/EtdRoot/2008/SPRING/Mathematics_and_Statistics/Dissertation/Hollingsworth_Blane_43.pdf.
Повний текст джерелаLuo, Hui. "Population modeling by differential equations." Huntington, WV : [Marshall University Libraries], 2007. http://www.marshall.edu/etd/descript.asp?ref=795.
Повний текст джерелаAllen, Brenda. "Non-smooth differential delay equations." Thesis, University of Oxford, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.390472.
Повний текст джерелаAbourashchi, Niloufar. "Stability of stochastic differential equations." Thesis, University of Leeds, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.509828.
Повний текст джерелаYilmaz, Halis. "Evolution equations for differential invariants." Thesis, University of Glasgow, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.274288.
Повний текст джерелаPiggott, Matthew David. "Geometric integration of differential equations." Thesis, University of Bath, 2002. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.760826.
Повний текст джерелаRanner, Thomas. "Computational surface partial differential equations." Thesis, University of Warwick, 2013. http://wrap.warwick.ac.uk/57647/.
Повний текст джерелаTempesta, Patricia. "Simmetries in binary differential equations." Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/55/55135/tde-11072017-170308/.
Повний текст джерелаO objetivo desta tese é introduzir o estudo sistemático de simetrias em equações diferenciais binárias (EDBs). Neste trabalho formalizamos o conceito de EDB simétrica sobre a ação de um grupo de Lie compacto. Um dos principais resultados é uma fórmula que relaciona o efeito geométrico e algébrico das simetrias presentes no problema. Utilizando ferramentas da teoria invariante e de representação para grupos compactos deduzimos as formas gerais para EDBs equivariantes. Um estudo sobre o comportamento das retas invariantes na configuração de EDBs com coeficientes homogêneos de grau n é feito com ênfase nos casos de grau 0 e 1, ainda no caso de grau 1 são apresentadas suas formas normais. Simetrias de 1-formas lineares são também estudadas e relacionadas com as simetrias dos seus campos tangente e ortogonal.
Fedrizzi, Ennio. "Partial differential equations and noise." Paris 7, 2012. http://www.theses.fr/2012PA077176.
Повний текст джерелаIn this work we present examples of the effects of noise on the solution of a partial differential equation in three different settings. We first consider random initial conditions for two nonlinear dispersive partial differential equations, the nonlinear Schrodinger equation and the Korteweg - de Vries equation, and analyze their effects on some special solutions, the soliton solutions. The second case considered is a linear PDE, the wave equation, with random initial conditions. We show that special random initial conditions allow to I substantially decrease the computational and data storage costs of an algorithm to solve the inverse problem based on the boundary measurements of the solution of this equation. Finally, the third example considered is that of the linear transport equation with a singular drift term, where we will show that the addition of a multiplicative noise term forbids the blow up of solutions, under very weak hypothesis for which we have finite-time blow up of solutions in the deterministic case
Howard, Tamani M. "Hyperbolic Monge-Ampère Equation." Thesis, University of North Texas, 2006. https://digital.library.unt.edu/ark:/67531/metadc5322/.
Повний текст джерелаZhang, Wenkui. "Numerical analysis of delay differential and integro-differential equations." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape11/PQDD_0011/NQ42489.pdf.
Повний текст джерелаWhitehead, Andrew John. "Differential equations and differential polynomials in the complex plane." Thesis, University of Nottingham, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.273112.
Повний текст джерелаZhang, Qi. "Stationary solutions of stochastic partial differential equations and infinite horizon backward doubly stochastic differential equations." Thesis, Loughborough University, 2008. https://dspace.lboro.ac.uk/2134/34040.
Повний текст джерелаMu, Tingshu. "Backward stochastic differential equations and applications : optimal switching, stochastic games, partial differential equations and mean-field." Thesis, Le Mans, 2020. http://www.theses.fr/2020LEMA1023.
Повний текст джерелаThis thesis is related to Doubly Reflected Backward Stochastic Differential Equations (DRBSDEs) with two obstacles and their applications in zero-sum stochastic switching games, systems of partial differential equations, mean-field problems.There are two parts in this thesis. The first part deals with optimal stochastic switching and is composed of two works. In the first work we prove the existence of the solution of a system of DRBSDEs with bilateral interconnected obstacles in a probabilistic framework. This problem is related to a zero-sum switching game. Then we tackle the problem of the uniqueness of the solution. Finally, we apply the obtained results and prove that, without the usual monotonicity condition, the associated PDE system has a unique solution in viscosity sense. In the second work, we also consider a system of DRBSDEs with bilateral interconnected obstacles in the markovian framework. The difference between this work and the first one lies in the fact that switching does not work in the same way. In this second framework, when switching is operated, the system is put in the following state regardless of which player decides to switch. This difference is fundamental and largely complicates the problem of the existence of the solution of the system. Nevertheless, in the Markovian framework we show this existence and give a uniqueness result by the Perron’s method. Later on, two particular switching games are analyzed.In the second part we study a one-dimensional Reflected BSDE with two obstacles of mean-field type. By the fixed point method, we show the existence and uniqueness of the solution in connection with the integrality of the data
Mohrenschildt, Martin von. "Symbolic solutions of discontinuous differential equations /." [S.l.] : [s.n.], 1994. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=10768.
Повний текст джерелаFontana, Gaia. "Traffic waves and delay differential equations." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/21211/.
Повний текст джерелаGehrs, Kai Frederik. "Algorithmic methods for ordinary differential equations." [S.l.] : [s.n.], 2006. http://ubdata.uni-paderborn.de/ediss/17/2007/gehrs.
Повний текст джерелаTarkhanov, Nikolai. "Unitary solutions of partial differential equations." Universität Potsdam, 2005. http://opus.kobv.de/ubp/volltexte/2009/2985/.
Повний текст джерелаNg, Chee Loong. "Parameter estimation in ordinary differential equations." Texas A&M University, 2004. http://hdl.handle.net/1969.1/388.
Повний текст джерелаEnstedt, Mattias. "Selected Topics in Partial Differential Equations." Doctoral thesis, Uppsala universitet, Matematiska institutionen, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-145763.
Повний текст джерелаI den tryckta boken har förlag felaktigt angivits som Acta Universitatis Upsaliensis.
Taylor, S. Richard. "Probabilistic Properties of Delay Differential Equations." Thesis, University of Waterloo, 2004. http://hdl.handle.net/10012/1183.
Повний текст джерелаHead, Gerald. "Uniqueness of Solutions of Differential Equations." TopSCHOLAR®, 1995. http://digitalcommons.wku.edu/theses/913.
Повний текст джерелаRassias, Stamatiki. "Stochastic functional differential equations and applications." Thesis, University of Strathclyde, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.486536.
Повний текст джерелаGuo, Yujin. "Partial differential equations of electrostatic MEMS." Thesis, University of British Columbia, 2007. http://hdl.handle.net/2429/31315.
Повний текст джерелаScience, Faculty of
Mathematics, Department of
Graduate
Keane, Therese Alison Mathematics & Statistics Faculty of Science UNSW. "Combat modelling with partial differential equations." Awarded By:University of New South Wales. Mathematics & Statistics, 2009. http://handle.unsw.edu.au/1959.4/43086.
Повний текст джерелаArslan, Sevgi. "Nonlinear Differential Equations with Biological Applications." Thesis, Linnéuniversitetet, Institutionen för matematik (MA), 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-28410.
Повний текст джерелаYung, Tamara. "Traffic Modelling Using Parabolic Differential Equations." Thesis, Linköpings universitet, Kommunikations- och transportsystem, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-102745.
Повний текст джерелаRon, Eyal [Verfasser]. "Hysteresis-Delay Differential Equations / Eyal Ron." Berlin : Freie Universität Berlin, 2016. http://d-nb.info/1121588026/34.
Повний текст джерелаHofmanová, Martina. "Degenerate parabolic stochastic partial differential equations." Phd thesis, École normale supérieure de Cachan - ENS Cachan, 2013. http://tel.archives-ouvertes.fr/tel-00916580.
Повний текст джерелаSeiß, Matthias [Verfasser]. "Root parametrized differential equations / Matthias Seiß." Kassel : Universitätsbibliothek Kassel, 2012. http://d-nb.info/1028081170/34.
Повний текст джерелаWilliams, David Robert Emlyn. "Differential equations driven by discontiuous paths." Thesis, Imperial College London, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.300842.
Повний текст джерелаStoleriu, Iulian. "Integro-differential equations in materials science." Thesis, University of Strathclyde, 2001. http://oleg.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=21413.
Повний текст джерелаWu, Chengfa, and 吳成發. "Meromorphic solutions of complex differential equations." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2014. http://hdl.handle.net/10722/206466.
Повний текст джерелаpublished_or_final_version
Mathematics
Doctoral
Doctor of Philosophy
Adamopoulou, Panagiota-Maria. "Differential equations and quantum integrable systems." Thesis, University of Kent, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.655223.
Повний текст джерелаKirby, P. J. "The theory of exponential differential equations." Thesis, University of Oxford, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.433471.
Повний текст джерелаLloyd, David J. B. "Localised solutions of partial differential equations." Thesis, University of Bristol, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.434765.
Повний текст джерелаZhu, Wei. "Fractional differential equations in risk theory." Thesis, University of Liverpool, 2018. http://livrepository.liverpool.ac.uk/3018514/.
Повний текст джерелаLin, Kevin K. (Kevin Kwei-yu) 1974. "Coordinate-independent computations on differential equations." Thesis, Massachusetts Institute of Technology, 1997. http://hdl.handle.net/1721.1/42798.
Повний текст джерелаIncludes bibliographical references (v. 2, p. 512-514).
by Kevin K. Lin.
M.Eng.
Désilles, Gaël 1971. "Differential Kolmogorov equations for transiting processes." Thesis, Massachusetts Institute of Technology, 1998. http://hdl.handle.net/1721.1/49643.
Повний текст джерела