Дисертації з теми "Differential equations, Parabolic"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-50 дисертацій для дослідження на тему "Differential equations, Parabolic".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.
Yung, Tamara. "Traffic Modelling Using Parabolic Differential Equations." Thesis, Linköpings universitet, Kommunikations- och transportsystem, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-102745.
Повний текст джерелаHofmanová, Martina. "Degenerate parabolic stochastic partial differential equations." Phd thesis, École normale supérieure de Cachan - ENS Cachan, 2013. http://tel.archives-ouvertes.fr/tel-00916580.
Повний текст джерелаBaysal, Arzu. "Inverse Problems For Parabolic Equations." Master's thesis, METU, 2004. http://etd.lib.metu.edu.tr/upload/12605623/index.pdf.
Повний текст джерелаKeras, Sigitas. "Numerical methods for parabolic partial differential equations." Thesis, University of Cambridge, 1997. https://www.repository.cam.ac.uk/handle/1810/251611.
Повний текст джерелаAscencio, Pedro. "Adaptive observer design for parabolic partial differential equations." Thesis, Imperial College London, 2017. http://hdl.handle.net/10044/1/49454.
Повний текст джерелаWilliams, J. F. "Scaling and singularities in higher-order nonlinear differential equations." Thesis, University of Bath, 2003. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.275878.
Повний текст джерелаTsang, Siu Chung. "Preconditioners for linear parabolic optimal control problems." HKBU Institutional Repository, 2017. https://repository.hkbu.edu.hk/etd_oa/464.
Повний текст джерелаRivera, Noriega Jorge. "Some remarks on certain parabolic differential operators over non-cylindrical domains /." free to MU campus, to others for purchase, 2001. http://wwwlib.umi.com/cr/mo/fullcit?p3025649.
Повний текст джерелаHammer, Patricia W. "Parameter identification in parabolic partial differential equations using quasilinearization." Diss., Virginia Tech, 1990. http://hdl.handle.net/10919/37226.
Повний текст джерелаPh. D.
Prinja, Gaurav Kant. "Adaptive solvers for elliptic and parabolic partial differential equations." Thesis, University of Manchester, 2010. https://www.research.manchester.ac.uk/portal/en/theses/adaptive-solvers-for-elliptic-and-parabolic-partial-differential-equations(f0894eb2-9e06-41ff-82fd-a7bde36c816c).html.
Повний текст джерелаMarlow, Robert. "Moving mesh methods for solving parabolic partial differential equations." Thesis, University of Leeds, 2010. http://etheses.whiterose.ac.uk/1528/.
Повний текст джерелаMavinga, Nsoki. "Nonlinear second order parabolic and elliptic equations with nonlinear boundary conditions." Birmingham, Ala. : University of Alabama at Birmingham, 2008. https://www.mhsl.uab.edu/dt/2009r/mavinga.pdf.
Повний текст джерелаTitle from PDF title page (viewed Sept. 23, 2009). Additional advisors: Inmaculada Aban, Alexander Frenkel, Wenzhang Huang, Yanni Zeng. Includes bibliographical references.
Sahimi, Mohd S. "Numerical methods for solving hyperbolic and parabolic partial differential equations." Thesis, Loughborough University, 1986. https://dspace.lboro.ac.uk/2134/12077.
Повний текст джерелаTaj, Malik Shahadat Ali. "Higher order parallel splitting methods for parabolic partial differential equations." Thesis, Brunel University, 1995. http://bura.brunel.ac.uk/handle/2438/5780.
Повний текст джерелаBlake, Kenneth William. "Moving mesh methods for non-linear parabolic partial differential equations." Thesis, University of Reading, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.369545.
Повний текст джерелаTeichman, Jeremy Alan 1975. "Bounding of linear output functionals of parabolic partial differential equations." Thesis, Massachusetts Institute of Technology, 1998. http://hdl.handle.net/1721.1/50440.
Повний текст джерелаZhang, Lan. "Parameter identification in linear and nonlinear parabolic partial differential equations." Diss., Virginia Tech, 1995. http://hdl.handle.net/10919/37762.
Повний текст джерелаLeahy, James-Michael. "On parabolic stochastic integro-differential equations : existence, regularity and numerics." Thesis, University of Edinburgh, 2015. http://hdl.handle.net/1842/10569.
Повний текст джерелаKnaub, Karl R. "On the asymptotic behavior of internal layer solutions of advection-diffusion-reaction equations /." Thesis, Connect to this title online; UW restricted, 2001. http://hdl.handle.net/1773/6772.
Повний текст джерелаAgueh, Martial Marie-Paul. "Existence of solutions to degenerate parabolic equations via the Monge-Kantorovich theory." Diss., Georgia Institute of Technology, 2002. http://hdl.handle.net/1853/29180.
Повний текст джерелаYolcu, Türkay. "Parabolic systems and an underlying Lagrangian." Atlanta, Ga. : Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/29760.
Повний текст джерелаCommittee Chair: Gangbo, Wilfrid; Committee Member: Chow, Shui-Nee; Committee Member: Harrell, Evans; Committee Member: Swiech, Andrzej; Committee Member: Yezzi, Anthony Joseph. Part of the SMARTech Electronic Thesis and Dissertation Collection.
Jürgens, Markus. "A semigroup approach to the numerical solution of parabolic differential equations." [S.l.] : [s.n.], 2005. http://deposit.ddb.de/cgi-bin/dokserv?idn=976761580.
Повний текст джерелаNgounda, Edgard. "Numerical Laplace transformation methods for integrating linear parabolic partial differential equations." Thesis, Stellenbosch : University of Stellenbosch, 2009. http://hdl.handle.net/10019.1/2735.
Повний текст джерелаENGLISH ABSTRACT: In recent years the Laplace inversion method has emerged as a viable alternative method for the numerical solution of PDEs. Effective methods for the numerical inversion are based on the approximation of the Bromwich integral. In this thesis, a numerical study is undertaken to compare the efficiency of the Laplace inversion method with more conventional time integrator methods. Particularly, we consider the method-of-lines based on MATLAB’s ODE15s and the Crank-Nicolson method. Our studies include an introductory chapter on the Laplace inversion method. Then we proceed with spectral methods for the space discretization where we introduce the interpolation polynomial and the concept of a differentiation matrix to approximate derivatives of a function. Next, formulas of the numerical differentiation formulas (NDFs) implemented in ODE15s, as well as the well-known second order Crank-Nicolson method, are derived. In the Laplace method, to compute the Bromwich integral, we use the trapezoidal rule over a hyperbolic contour. Enhancement to the computational efficiency of these methods include the LU as well as the Hessenberg decompositions. In order to compare the three methods, we consider two criteria: The number of linear system solves per unit of accuracy and the CPU time per unit of accuracy. The numerical results demonstrate that the new method, i.e., the Laplace inversion method, is accurate to an exponential order of convergence compared to the linear convergence rate of the ODE15s and the Crank-Nicolson methods. This exponential convergence leads to high accuracy with only a few linear system solves. Similarly, in terms of computational cost, the Laplace inversion method is more efficient than ODE15s and the Crank-Nicolson method as the results show. Finally, we apply with satisfactory results the inversion method to the axial dispersion model and the heat equation in two dimensions.
AFRIKAANSE OPSOMMING: In die afgelope paar jaar het die Laplace omkeringsmetode na vore getree as ’n lewensvatbare alternatiewe metode vir die numeriese oplossing van PDVs. Effektiewe metodes vir die numeriese omkering word gebasseer op die benadering van die Bromwich integraal. In hierdie tesis word ’n numeriese studie onderneem om die effektiwiteit van die Laplace omkeringsmetode te vergelyk met meer konvensionele tydintegrasie metodes. Ons ondersoek spesifiek die metode-van-lyne, gebasseer op MATLAB se ODE15s en die Crank-Nicolson metode. Ons studies sluit in ’n inleidende hoofstuk oor die Laplace omkeringsmetode. Dan gaan ons voort met spektraalmetodes vir die ruimtelike diskretisasie, waar ons die interpolasie polinoom invoer sowel as die konsep van ’n differensiasie-matriks waarmee afgeleides van ’n funksie benader kan word. Daarna word formules vir die numeriese differensiasie formules (NDFs) ingebou in ODE15s herlei, sowel as die welbekende tweede orde Crank-Nicolson metode. Om die Bromwich integraal te benader in die Laplace metode, gebruik ons die trapesiumreël oor ’n hiperboliese kontoer. Die berekeningskoste van al hierdie metodes word verbeter met die LU sowel as die Hessenberg ontbindings. Ten einde die drie metodes te vergelyk beskou ons twee kriteria: Die aantal lineêre stelsels wat moet opgelos word per eenheid van akkuraatheid, en die sentrale prosesseringstyd per eenheid van akkuraatheid. Die numeriese resultate demonstreer dat die nuwe metode, d.i. die Laplace omkeringsmetode, akkuraat is tot ’n eksponensiële orde van konvergensie in vergelyking tot die lineêre konvergensie van ODE15s en die Crank-Nicolson metodes. Die eksponensiële konvergensie lei na hoë akkuraatheid met slegs ’n klein aantal oplossings van die lineêre stelsel. Netso, in terme van berekeningskoste is die Laplace omkeringsmetode meer effektief as ODE15s en die Crank-Nicolson metode. Laastens pas ons die omkeringsmetode toe op die aksiale dispersiemodel sowel as die hittevergelyking in twee dimensies, met bevredigende resultate.
Zhao, Yaxi. "Numerical solutions of nonlinear parabolic problems using combined-block iterative methods /." Electronic version (PDF), 2003. http://dl.uncw.edu/etd/2003/zhaoy/yaxizhao.pdf.
Повний текст джерелаJakubowski, Volker G. "Nonlinear elliptic parabolic integro differential equations with L-data existence, uniqueness, asymptotic /." [S.l.] : [s.n.], 2002. http://deposit.ddb.de/cgi-bin/dokserv?idn=966250141.
Повний текст джерелаSmyshlyaev, Andrey S. "Explicit and parameter-adaptive boundary control laws for parabolic partial differential equations." Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2006. http://wwwlib.umi.com/cr/ucsd/fullcit?p3235014.
Повний текст джерелаTitle from first page of PDF file (viewed December 6, 2006). Available via ProQuest Digital Dissertations. Vita. Includes bibliographical references (p. 181-186).
Utz, Tilman [Verfasser]. "Control of Parabolic Partial Differential Equations Based on Semi-Discretizations / Tilman Utz." Aachen : Shaker, 2012. http://d-nb.info/1069046574/34.
Повний текст джерелаStanciulescu, Vasile Nicolae. "Selected topics in Dirichlet problems for linear parabolic stochastic partial differential equations." Thesis, University of Leicester, 2010. http://hdl.handle.net/2381/8271.
Повний текст джерелаGrepl, Martin A. (Martin Alexander) 1974. "Reduced-basis approximation a posteriori error estimation for parabolic partial differential equations." Thesis, Massachusetts Institute of Technology, 2005. http://hdl.handle.net/1721.1/32387.
Повний текст джерелаIncludes bibliographical references (p. 243-251).
Modern engineering problems often require accurate, reliable, and efficient evaluation of quantities of interest, evaluation of which demands the solution of a partial differential equation. We present in this thesis a technique for the prediction of outputs of interest of parabolic partial differential equations. The essential ingredients are: (i) rapidly convergent reduced-basis approximations - Galerkin projection onto a space WN spanned by solutions of the governing partial differential equation at N selected points in parameter-time space; (ii) a posteriori error estimation - relaxations of the error-residual equation that provide rigorous and sharp bounds for the error in specific outputs of interest: the error estimates serve a priori to construct our samples and a posteriori to confirm fidelity; and (iii) offline-online computional procedures - in the offline stage the reduced- basis approximation is generated; in the online stage, given a new parameter value, we calculate the reduced-basis output and associated error bound. The operation count for the online stage depends only on N (typically small) and the parametric complexity of the problem; the method is thus ideally suited for repeated, rapid, reliable evaluation of input-output relationships in the many-query or real-time contexts. We first consider parabolic problems with affine parameter dependence and subsequently extend these results to nonaffine and certain classes of nonlinear parabolic problems.
(cont.) To this end, we introduce a collateral reduced-basis expansion for the nonaffine and nonlinear terms and employ an inexpensive interpolation procedure to calculate the coefficients for the function approximation - the approach permits an efficient offline-online computational decomposition even in the presence of nonaffine and highly nonlinear terms. Under certain restrictions on the function approximation, we also introduce rigorous a posteriori error estimators for nonaffine and nonlinear problems. Finally, we apply our methods to the solution of inverse and optimal control problems. While the efficient evaluation of the input-output relationship is essential for the real-time solution of these problems, the a posteriori error bounds let us pursue a robust parameter estimation procedure which takes into account the uncertainty due to measurement and reduced-basis modeling errors explicitly (and rigorously). We consider several examples: the nondestructive evaluation of delamination in fiber-reinforced concrete, the dispersion of pollutants in a rectangular domain, the self-ignition of a coal stockpile, and the control of welding quality. Numerical results illustrate the applicability of our methods in the many-query contexts of optimization, characterization, and control.
by Martin A. Grepl.
Ph.D.
Kadhum, Nashat Ibrahim. "The spline approach to the numerical solution of parabolic partial differential equations." Thesis, Loughborough University, 1988. https://dspace.lboro.ac.uk/2134/6725.
Повний текст джерелаDüll, Wolf-Patrick. "Theorie einer pseudoparabolischen partiellen Differentialgleichung zur Modelliurung der Lösemittelaufnahme in Polymerfeststoffen." Bonn : Mathematisches Institut der Universität, 2004. http://catalog.hathitrust.org/api/volumes/oclc/62771307.html.
Повний текст джерелаChen, Mingxiang. "Structural stability of periodic systems." Diss., Georgia Institute of Technology, 1992. http://hdl.handle.net/1853/29341.
Повний текст джерелаKuhn, Zuzana. "Ranges of vector measures and valuations." Diss., Georgia Institute of Technology, 1997. http://hdl.handle.net/1853/30875.
Повний текст джерелаYolcu, Türkay. "Parabolic systems and an underlying Lagrangian." Diss., Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/29760.
Повний текст джерелаBACCOLI, ANTONELLO. "Boundary control and observation of coupled parabolic PDEs." Doctoral thesis, Università degli Studi di Cagliari, 2016. http://hdl.handle.net/11584/266880.
Повний текст джерелаHall, Eric Joseph. "Accelerated numerical schemes for deterministic and stochastic partial differential equations of parabolic type." Thesis, University of Edinburgh, 2013. http://hdl.handle.net/1842/8038.
Повний текст джерелаJohnsen, Pernilla. "Homogenization of Partial Differential Equations using Multiscale Convergence Methods." Licentiate thesis, Mittuniversitetet, Institutionen för matematik och ämnesdidaktik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-42036.
Повний текст джерелаZhang, Chun Yang. "A second order ADI method for 2D parabolic equations with mixed derivative." Thesis, University of Macau, 2012. http://umaclib3.umac.mo/record=b2592940.
Повний текст джерелаPortal, Pierre. "Harmonic analysis of banach space valued functions in the study of parabolic evolution equations /." free to MU campus, to others for purchase, 2004. http://wwwlib.umi.com/cr/mo/fullcit?p3137737.
Повний текст джерелаWang, Xince. "Quasilinear PDEs and forward-backward stochastic differential equations." Thesis, Loughborough University, 2015. https://dspace.lboro.ac.uk/2134/17383.
Повний текст джерелаFetter, Nathansky Alfredo. "Fehlerabschätzungen für Finite-Elemente Approximationen von parabolischen Variationsungleichungen." Bonn : [s.n.], 1986. http://catalog.hathitrust.org/api/volumes/oclc/17488340.html.
Повний текст джерелаWilderotter, Olga. "Adaptive finite elemente Methode für singuläre parabolische Probleme." Bonn : [s.n.], 2001. http://catalog.hathitrust.org/api/volumes/oclc/48077903.html.
Повний текст джерелаFlaig, Thomas G. [Verfasser]. "Discretization strategies for optimal control problems with parabolic partial differential equations / Thomas G. Flaig." München : Verlag Dr. Hut, 2013. http://d-nb.info/103729176X/34.
Повний текст джерелаTang, Shaowu [Verfasser]. "Multiscale and geometric methods for linear elliptic and parabolic partial differential equations / Shaowu Tang." Bremen : IRC-Library, Information Resource Center der Jacobs University Bremen, 2008. http://d-nb.info/1034787411/34.
Повний текст джерелаVieira, Nelson Felipe Loureiro. "Theory of the parabolic Dirac operators and its applications to non-linear differential equations." Doctoral thesis, Universidade de Aveiro, 2009. http://hdl.handle.net/10773/2924.
Повний текст джерелаLiu, Weian, Yin Yang, and Gang Lu. "Viscosity solutions of fully nonlinear parabolic systems." Universität Potsdam, 2002. http://opus.kobv.de/ubp/volltexte/2008/2621/.
Повний текст джерелаBal, Kaushik. "Some Contribution to the study of Quasilinear Singular Parabolic and Elliptic Equations." Thesis, Pau, 2011. http://www.theses.fr/2011PAUU3032/document.
Повний текст джерелаIn this thesis I have studied the Evolution p-laplacian equation with singular nonlinearity. We start by studying the corresponding elliptic problem and then by defining a proper cone in a suitable Sobolev space find the uniqueness of the solution. Taking that into account and using the semi discretization in time we arrive at the uniqueness and existence result. Next we prove some regularity theorem using tools from Nonlinear Semigroup theory and Interpolation spaces. We also establish some related result for the laplacian case where we improve our result on the existence and regularity, due to the non degeneracy of the laplacian. In another related work we work with a semilinear equation with singular nonlinearity and using the moving plane method prove the symmetry properties of any classical solution. We also give some related apriori estimates which together with the symmetry provide us the existence of solution using the bifurcation result
Meyer, John Christopher. "Theoretical aspects of the Cauchy problem for non-Lipschitz semi-linear parabolic partial differential equations." Thesis, University of Birmingham, 2013. http://etheses.bham.ac.uk//id/eprint/4222/.
Повний текст джерелаCao, Yanzhao. "Analysis and numerical approximations of exact controllability problems for systems governed by parabolic differential equations." Diss., Virginia Tech, 1996. http://hdl.handle.net/10919/37771.
Повний текст джерелаPh. D.
Moreno, Claudia. "Control of partial differential equations systems of dispersive type." Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPASV031.
Повний текст джерелаThere are few results in the literature about the controllability of partial differential equations system. In this thesis, we consider the study of control properties for three coupled systems of partial differential equations of dispersive type and an inverse problem of recovering a coefficient. The first system is formed by N Korteweg-de Vries equations on a star-shaped network. For this system we will study the exact controllability using N controls placed in the external nodes of the network. The second system couples three Korteweg-de Vries equations. This system is called in the literature the generalized Hirota-Satsuma system. We study the exact controllability with three boundary controls.On the other hand, we will study a fourth-order parabolic system formed by two Kuramoto-Sivashinsky equations. We prove the well-posedness of the system with some regularity results. Then we study the null controllability of the system with two controls, to remove a control, we need a Carleman inequality which is not proven yet. Finally, we present for the fourth-order parabolic system the inverse problem of retrieving the anti-diffusion coefficient from the measurements of the solution