Статті в журналах з теми "Dideoxy sugars"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Dideoxy sugars.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Dideoxy sugars".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Driguez, H., JC Mcauliffe, RV Stick, DMG Tilbrook, and SJ Williams. "A New Approach to Some 1,6-Dideoxy 1,6-Epithio Sugars." Australian Journal of Chemistry 49, no. 3 (1996): 343. http://dx.doi.org/10.1071/ch9960343.

Повний текст джерела
Анотація:
The treatment of hexopyranosyl bromides, also activated at C6 (Br, OTs, OMs), with H2S/HCONMe2 under basic conditions gives rise to 1,6-dideoxy 1,6-epithio sugars. One such sugar has been further transformed into the synthetically useful 3,4-anhydro-1,6-dideoxy-1,6-epithio-β-D-galactose. The treatment of this epoxide with sodium azide and with cyclohexylamine is described. An analogous treatment of one doubly activated hexopyranosyl bromide with sodium hydrogen selenide has led to a novel 1,6-dideoxy 1,6-episeleno sugar which displayed interesting n.m.r. spectra. Finally, in an attempt to prepare 1,6-dideoxy 1,6-epidithio sugars, a tetraalkylammonium tetrathiomolybdate reagent was found to be the reagent of choice for converting doubly activated hexopyranosyl bromides into 1,6-dideoxy 1,6-epithio sugars.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Fatima, Ayjaz, Abdul Malik, and Wolfgang Voelter. "A Novel Entry into Cyclopropanated Sugar Amino Acids." Zeitschrift für Naturforschung B 49, no. 10 (October 1, 1994): 1434–38. http://dx.doi.org/10.1515/znb-1994-1021.

Повний текст джерела
Анотація:
Abstract Reaction of sugar triflates (1) and (2) with tert-butyl cyanoacetate in presence of sodium hydride affords the cyclopropanated sugars (3) and (4), followed by selective hydrolysis of the ester group to free acids (5) and (6), respectively. Couplings of (5) and (6) with protected glycine and L-alanine lead to cyclopropanated sugar amino acids (7-10). The coupling of 6 with benzyl 3,4-(“exo”-aminomethyl)methano-3,4-dideoxy-β-L-arabinopyranoside (11) fur­ nished benzyl 3,4-[(C-cyano-amido)methano-(benzyl 3,4-(“exo”-methylene)methano-3,4-di-deoxy-β-L-arabinopyranosido)]-3,4-dideoxy-β-L-arbinopyranoside (12), suggesting an “exo” orientation of the ester group in 3 and 4.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Conway, RJ, JP Nagel, RV Stick, and DMG Tilbrook. "Further Aspects of the Reduction of Dithiocarbonates with Tributyltin Hydride and Deuteride." Australian Journal of Chemistry 38, no. 6 (1985): 939. http://dx.doi.org/10.1071/ch9850939.

Повний текст джерела
Анотація:
The reduction of 1,2:5,6-di-O-isopropylidene-3-O-(methylthio) thiocarbonyl-β-D-idose ,- talose, and -(3-2H) talose with tributyltin hydride and deuteride leads to the deoxy sugar and some deuterium-containing deoxy sugars. A modification of the normal procedure allows for reduction with tributyltin hydride generated in situ. As well, the reduction of some dithiocarbonates derived from glycosides of N-acetyl-D- glucosamine allows access to a variety of dideoxy and trideoxy sugars.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Shishmarev, Dmitry, Lucas Quiquempoix, Clément Q. Fontenelle, Bruno Linclau, and Philip W. Kuchel. "Anomerisation of Fluorinated Sugars by Mutarotase Studied Using 19F NMR Two-Dimensional Exchange Spectroscopy." Australian Journal of Chemistry 73, no. 3 (2020): 117. http://dx.doi.org/10.1071/ch19562.

Повний текст джерела
Анотація:
Five 19F-substituted glucose analogues were used to probe the activity and mechanism of the enzyme mutarotase by using magnetisation-exchange NMR spectroscopy. The sugars (2-fluoro-2-deoxy-d-glucose, FDG2; 3-fluoro-3-deoxy-d-glucose, FDG3; 4-fluoro-4-deoxy-d-glucose, FDG4; 2,3-difluoro-2,3-dideoxy-d-glucose, FDG23; and 2,2,3,3-tetrafluoro-2,3-dideoxy-d-glucose (2,3-dideoxy-2,2,3,3-tetrafluoro-d-erythro-hexopyranose), FDG2233) showed separate 19F NMR spectroscopic resonances from their respective α- and β-anomers, thus allowing two-dimensional exchange spectroscopy measurements of the anomeric interconversion at equilibrium, on the time scale of a few seconds. Mutarotase catalysed the rapid exchange between the anomers of FDG4, but not the other four sugars. This finding, combined with previous work identifying the mechanism of the anomerisation by mutarotase, suggests that the rotation around the C1–C2 bond of the pyranose ring is the rate-limiting reaction step. In addition to d-glucose itself, it was shown that all other fluorinated sugars inhibited the FDG4 anomerisation, with the tetrafluorinated FDG2233 being the most potent inhibitor. Inhibition of mutarotase by F-sugars paves the way for the development of novel fluorinated compounds that are able to affect the activity of this enzyme invitro and invivo.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Binkley, Roger W., and Mahmoud A. Abdulaziz. "Synthesis of dideoxy sugars by triflate rearrangement." Journal of Organic Chemistry 52, no. 21 (October 1987): 4713–17. http://dx.doi.org/10.1021/jo00230a011.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Zhang, Guisheng, Lei Shi, Qingfeng Liu, Jingmei Wang, Lu Li, and Xiaobing Liu. "A divergent strategy for constructing a sugar library containing 2,6-dideoxy sugars and uncommon sugars with 4-substitution." Tetrahedron 63, no. 39 (September 2007): 9705–11. http://dx.doi.org/10.1016/j.tet.2007.07.019.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Siu, Sarah, Anna Robotham, Susan M. Logan, John F. Kelly, Kaoru Uchida, Shin-Ichi Aizawa, and Ken F. Jarrell. "Evidence that Biosynthesis of the Second and Third Sugars of the Archaellin Tetrasaccharide in the Archaeon Methanococcus maripaludis Occurs by the Same Pathway Used by Pseudomonas aeruginosa To Make a Di-N-Acetylated Sugar." Journal of Bacteriology 197, no. 9 (March 2, 2015): 1668–80. http://dx.doi.org/10.1128/jb.00040-15.

Повний текст джерела
Анотація:
ABSTRACTMethanococcus maripaludishas two surface appendages, archaella and type IV pili, which are composed of glycoprotein subunits. Archaellins are modified with an N-linked tetrasaccharide with the structure Sug-1,4-β-ManNAc3NAmA6Thr-1,4-β-GlcNAc3NAcA-1,3-β-GalNAc, where Sug is (5S)-2-acetamido-2,4-dideoxy-5-O-methyl-α-l-erythro-hexos-5-ulo-1,5-pyranose. The pilin glycan has an additional hexose attached to GalNAc. In this study, genes located in two adjacent, divergently transcribed operons (mmp0350-mmp0354andmmp0359-mmp0355) were targeted for study based on annotations suggesting their involvement in biosynthesis of N-glycan sugars. Mutants carrying deletions inmmp0350,mmp0351,mmp0352, ormmp0353were nonarchaellated and synthesized archaellins modified with a 1-sugar glycan, as estimated from Western blots. Mass spectroscopy analysis of pili purified from the Δmmp0352strain confirmed a glycan with only GalNAc, suggestingmmp0350tommp0353were all involved in biosynthesis of the second sugar (GlcNAc3NAcA). The Δmmp0357mutant was archaellated and had archaellins with a 2-sugar glycan, as confirmed by mass spectroscopy of purified archaella, indicating a role for MMP0357 in biosynthesis of the third sugar (ManNAc3NAmA6Thr).M. maripaludismmp0350,mmp0351,mmp0352,mmp0353, andmmp0357are proposed to be functionally equivalent toPseudomonas aeruginosawbpABEDI, involved in converting UDP-N-acetylglucosamine to UDP-2,3-diacetamido-2,3-dideoxy-d-mannuronic acid, an O5-specific antigen sugar. Cross-domain complementation of the final step of theP. aeruginosapathway withmmp0357supports this hypothesis.IMPORTANCEThis work identifies a series of genes in adjacent operons that are shown to encode the enzymes that complete the entire pathway for generation of the second and third sugars of the N-linked tetrasaccharide that modifies archaellins ofMethanococcus maripaludis. This posttranslational modification of archaellins is important, as it is necessary for archaellum assembly. Pilins are modified with a different N-glycan consisting of the archaellin tetrasaccharide but with an additional hexose attached to the linking sugar. Mass spectrometry analysis of the pili of one mutant strain provided insight into how this different glycan might ultimately be assembled. This study includes a rare example of an archaeal gene functionally replacing a bacterial gene in a complex sugar biosynthesis pathway.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Wang, Ying, Yanli Xu, Andrei V. Perepelov, Yuanyuan Qi, Yuriy A. Knirel, Lei Wang, and Lu Feng. "Biochemical Characterization of dTDP-d-Qui4N and dTDP-d-Qui4NAc Biosynthetic Pathways in Shigella dysenteriae Type 7 and Escherichia coli O7." Journal of Bacteriology 189, no. 23 (September 28, 2007): 8626–35. http://dx.doi.org/10.1128/jb.00777-07.

Повний текст джерела
Анотація:
ABSTRACT O-antigen variation due to the presence of different types of sugars and sugar linkages is important for the survival of bacteria threatened by host immune systems. The O antigens of Shigella dysenteriae type 7 and Escherichia coli O7 contain 4-(N-acetylglycyl)amino-4,6-dideoxy-d-glucose (d-Qui4NGlyAc) and 4-acetamido-4,6-dideoxy-d-glucose (d-Qui4NAc), respectively, which are sugars not often found in studied polysaccharides. In this study, we characterized the biosynthetic pathways for dTDP-d-Qui4N and dTDP-d-Qui4NAc (the nucleotide-activated precursors of d-Qui4NGlyAc and d-Qui4NAc in O antigens). Predicted genes involved in the synthesis of the two sugars were cloned, and the gene products were overexpressed and purified as His-tagged fusion proteins. In vitro enzymatic reactions were carried out using the purified proteins, and the reaction products were analyzed by capillary electrophoresis, electrospray ionization-mass spectrometry, and nuclear magnetic resonance spectroscopy. It is shown that in S. dysenteriae type 7 and E. coli O7, dTDP-d-Qui4N is synthesized from α-d-glucose-1-phosphate in three reaction steps catalyzed by glucose-1-phosphate thymidyltransferase (RmlA), dTDP-d-glucose 4,6-dehydratase (RmlB), and dTDP-4-keto-6-deoxy-d-glucose aminotransferase (VioA). An additional acetyltransferase (VioB) catalyzes the conversion of dTDP-d-Qui4N into dTDP-d-Qui4NAc in E. coli O7. Kinetic parameters and some other properties of VioA and VioB are described and differences between VioA proteins from S. dysenteriae type 7 (VioAD7) and E. coli O7 (VioAO7) discussed. To our knowledge, this is the first time that functions of VioA and VioB have been biochemically characterized. This study provides valuable enzyme sources for the production of dTDP-d-Qui4N and dTDP-d-Qui4NAc, which are potentially useful in the pharmaceutical industry for drug development.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Liu, Song Yu, and John P. N. Rosazza. "Enzymatic Conversion of Glucose to UDP-4-Keto-6-Deoxyglucose in Streptomyces spp." Applied and Environmental Microbiology 64, no. 10 (October 1, 1998): 3972–76. http://dx.doi.org/10.1128/aem.64.10.3972-3976.1998.

Повний текст джерела
Анотація:
ABSTRACT All of the 2,6-dideoxy sugars contained within the structure of chromomycin A3 are derived from d-glucose. Enzyme assays were used to confirm the presence of hexokinase, phosphoglucomutase, UDPG pyrophosphorylase (UDPGP), and UDPG oxidoreductase (UDPGO), all of which are involved in the pathway of glucose activation and conversion into 2,6-dideoxyhexoses during chromomycin biosynthesis. Levels of the four enzymes inStreptomyces spp. cell extracts were correlated with the production of chromomycins. The pathway of sugar activation inStreptomyces spp. involves glucose 6-phosphorylation by hexokinase, isomerization to G-1-P catalyzed by phosphoglucomutase, synthesis of UDPG catalyzed by UDPGP, and formation of UDP-4-keto-6-deoxyglucose by UDPGO.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Toshima, Kazunobu, Takehito Yoshida, Satsuki Mukaiyama, and Kuniaki Tatsuta. "De novo highly stereocontrolled synthesis of 2,6-dideoxy sugars by use of 2,6-anhydro-2-thio sugars." Carbohydrate Research 222 (December 1991): 173–88. http://dx.doi.org/10.1016/0008-6215(91)89016-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Miljkovic, Momcilo, and Margaret Habash-Marino. "Synthesis of higher sugars as precursors for the synthesis of chiral polyhydroxylated macrocyclic lactones." Journal of the Serbian Chemical Society 65, no. 7 (2000): 497–505. http://dx.doi.org/10.2298/jsc0007497m.

Повний текст джерела
Анотація:
A general method for the synthesis of higher sugars that can be used as precursors for the synthesis of polyhydroxylated macrocyclic lactones (macrolides) was described. The extension of the carbohydrate chain of a hexopyranose was effected at its C(6) hydroxymethyl carbon by coupling of two carbohydrate precursors via Wittig reaction. In this way 6,7-dideoxy-2,3,4,5,8,9,10-hepta-O-methyl-11-O-triphenylmethyl-D-arabino-D-glucoundecanose diethyl dithioacetal (1) was synthesized as a model compound.
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Hung, Ming-Ni, Erumbi Rangarajan, Christine Munger, Guy Nadeau, Traian Sulea, and Allan Matte. "Crystal Structure of TDP-Fucosamine Acetyltransferase (WecD) from Escherichia coli, an Enzyme Required for Enterobacterial Common Antigen Synthesis." Journal of Bacteriology 188, no. 15 (August 1, 2006): 5606–17. http://dx.doi.org/10.1128/jb.00306-06.

Повний текст джерела
Анотація:
ABSTRACT Enterobacterial common antigen (ECA) is a polysaccharide found on the outer membrane of virtually all gram-negative enteric bacteria and consists of three sugars, N-acetyl-d-glucosamine, N-acetyl-d-mannosaminuronic acid, and 4-acetamido-4,6-dideoxy-d-galactose, organized into trisaccharide repeating units having the sequence →3)-α-d-Fuc4NAc-(1→4)-β-d-ManNAcA-(1→4)-α-d-GlcNAc-(1→. While the precise function of ECA is unknown, it has been linked to the resistance of Shiga-toxin-producing Escherichia coli (STEC) O157:H7 to organic acids and the resistance of Salmonella enterica to bile salts. The final step in the synthesis of 4-acetamido-4,6-dideoxy-d-galactose, the acetyl-coenzyme A (CoA)-dependent acetylation of the 4-amino group, is carried out by TDP-fucosamine acetyltransferase (WecD). We have determined the crystal structure of WecD in apo form at a 1.95-Å resolution and bound to acetyl-CoA at a 1.66-Å resolution. WecD is a dimeric enzyme, with each monomer adopting the GNAT N-acetyltransferase fold, common to a number of enzymes involved in acetylation of histones, aminoglycoside antibiotics, serotonin, and sugars. The crystal structure of WecD, however, represents the first structure of a GNAT family member that acts on nucleotide sugars. Based on this cocrystal structure, we have used flexible docking to generate a WecD-bound model of the acetyl-CoA-TDP-fucosamine tetrahedral intermediate, representing the structure during acetyl transfer. Our structural data show that WecD does not possess a residue that directly functions as a catalytic base, although Tyr208 is well positioned to function as a general acid by protonating the thiolate anion of coenzyme A.
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Demendi, Melinda, and Carole Creuzenet. "Cj1123c (PglD), a multifaceted acetyltransferase from Campylobacter jejuni." Biochemistry and Cell Biology 87, no. 3 (June 2009): 469–83. http://dx.doi.org/10.1139/o09-002.

Повний текст джерела
Анотація:
Campylobacter jejuni produces both N- and O-glycosylated proteins. Because protein glycosylation contributes to bacterial virulence, a thorough characterization of the enzymes involved in protein glycosylation is warranted to assess their potential use as therapeutic targets and as glyco-engineering tools. We performed a detailed biochemical analysis of the molecular determinants of the substrate and acyl-donor specificities of Cj1123c (also known as PglD), an acetyltransferase of the HexAT superfamily involved in N-glycosylation of proteins. We show that Cj1123c has acetyl-CoA-dependent N-acetyltransferase activity not only on the UDP-4-amino-4,6-dideoxy-GlcNAc intermediate of the N-glycosylation pathway but also on the UDP-4-amino-4,6-dideoxy-AltNAc intermediate of the O-glycosylation pathway, implying functional redundancy between both pathways. We further demonstrate that, despite its somewhat relaxed substrate specificity for N-acetylation, Cj1123c cannot acetylate aminoglycosides, indicating a preference for sugar-nucleotide substrates. In addition, we show that Cj1123c can O-acetylate UDP-GlcNAc and that Cj1123c is very versatile in terms of acyl-CoA donors as it can use propionyl- and butyryl-CoA instead of acetyl-CoA. Finally, using structural information available for Cj1123c and related enzymes, we identify three residues (H125, G143, and G173) involved in catalysis and (or) acyl-donor specificity, opening up possibilities of tailoring the specificity of Cj1123c for the synthesis of novel sugars.
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Coleman, Robert S., and Janet R. Fraser. "Acylketene [4+2] cycloadditions: divergent de novo synthesis of 2,6-dideoxy sugars." Journal of Organic Chemistry 58, no. 2 (January 1993): 385–92. http://dx.doi.org/10.1021/jo00054a022.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

DRIGUEZ, H., J. C. MCAULIFFE, R. V. STICK, D. M. G. TILBROOK, and S. J. WILLIAMS. "ChemInform Abstract: A New Approach to Some 1,6-Dideoxy 1,6-Epithio Sugars." ChemInform 27, no. 35 (August 5, 2010): no. http://dx.doi.org/10.1002/chin.199635212.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

al Daher, S., G. Fleet, S. K. Namgoong, and B. Winchester. "Change in specificity of glycosidase inhibition by N-alkylation of amino sugars." Biochemical Journal 258, no. 2 (March 1, 1989): 613–15. http://dx.doi.org/10.1042/bj2580613.

Повний текст джерела
Анотація:
The synthetic amino sugar 1,4-dideoxy-1,4-imino-L-allitol (DIA) is a moderately good inhibitor of human liver alpha-D-mannosidases and a weak inhibitor of alpha-L-fucosidase, N-acetyl-beta-D-hexosaminidase and beta-D-mannosidase. Methylation of the ring nitrogen of DIA markedly decreases the inhibition of all the glycosidases except N-acetyl-beta-D-hexosaminidase. N-Benzylation of DIA essentially abolishes all inhibitory activity, except towards alpha-L-fucosidase, which is more strongly inhibited than by either DIA or N-methyl-DIA. This is the first report of a change of specificity of inhibition of a glycosidase inhibitor by substitution of the ring nitrogen.
Стилі APA, Harvard, Vancouver, ISO та ін.
17

King, Jerry D., Erin F. Mulrooney, Evgeny Vinogradov, Bernd Kneidinger, Kristen Mead, and Joseph S. Lam. "lfnA from Pseudomonas aeruginosa O12 and wbuX from Escherichia coli O145 Encode Membrane-Associated Proteins and Are Required for Expression of 2,6-Dideoxy-2-Acetamidino-l-Galactose in Lipopolysaccharide O Antigen." Journal of Bacteriology 190, no. 5 (December 21, 2007): 1671–79. http://dx.doi.org/10.1128/jb.01708-07.

Повний текст джерела
Анотація:
ABSTRACT The rare sugar 2,6-dideoxy-2-acetamidino-l-galactose (l-FucNAm) is found only in bacteria and is a component of cell surface glycans in a number of pathogenic species, including the O antigens of Pseudomonas aeruginosa serotype O12 and Escherichia coli O145. P. aeruginosa is an important opportunistic pathogen, and the O12 serotype is associated with multidrug-resistant epidemic outbreaks. O145 is one of the classic non-O157 serotypes associated with Shiga toxin-producing, enterohemorrhagic E. coli. The acetamidino (NAm) moiety of l-FucNAm is of interest, because at neutral pH it contributes a positive charge to the cell surface, and we aimed to characterize the biosynthesis of this functional group. The pathway is not known, but expression of NAm-modified sugars coincides with the presence of a pseA homologue in the relevant biosynthetic locus. PseA is a putative amidotransferase required for synthesis of a NAm-modified sugar in Campylobacter jejuni. In P. aeruginosa O12 and E. coli O145, the pseA homologues are lfnA and wbuX, respectively, and we hypothesized that these genes function in l-FucNAm biosynthesis. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis, Western blotting, and nuclear magnetic resonance analysis of the lfnA mutant O-antigen structure indicated that the mutant expresses 2,6-dideoxy-2-acetamido-l-galactose (l-FucNAc) in place of l-FucNAm. The mutation could be complemented by expression of either His6-tagged lfnA or wbuX in trans, confirming that these genes are functional homologues and that they are required for NAm moiety synthesis. Both proteins retained their activity when fused to a His6 tag and localized to the membrane fraction. These data will assist future biochemical investigation of this pathway.
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Nogueira, Jason M., Marissa Bylsma, Danielle K. Bright та Clay S. Bennett. "Reagent-Controlled α-Selective Dehydrative Glycosylation of 2,6-Dideoxy- and 2,3,6-Trideoxy Sugars". Angewandte Chemie International Edition 55, № 34 (19 липня 2016): 10088–92. http://dx.doi.org/10.1002/anie.201605091.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Nogueira, Jason M., Marissa Bylsma, Danielle K. Bright та Clay S. Bennett. "Reagent-Controlled α-Selective Dehydrative Glycosylation of 2,6-Dideoxy- and 2,3,6-Trideoxy Sugars". Angewandte Chemie 128, № 34 (19 липня 2016): 10242–46. http://dx.doi.org/10.1002/ange.201605091.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Shekhani, Mohammed Saleh, Farzane Latif, Ayjaz Fatima, Abdul Malik, and Wolfgang Voelter. "Synthesis of 3,4-dideoxy-3,4-C-cyanomethylene pyranosides: a new class of cyclopropanated sugars." Journal of the Chemical Society, Chemical Communications, no. 21 (1988): 1419. http://dx.doi.org/10.1039/c39880001419.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Ding, Feiqing, Shuting Cai, Ronny William, and Xue-Wei Liu. "Pathways leading to 3-amino- and 3-nitro-2,3-dideoxy sugars: strategies and synthesis." RSC Advances 3, no. 33 (2013): 13594. http://dx.doi.org/10.1039/c3ra40595h.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Schmidt, Richard R., and Martin Maier. "Diastereospecific synthesis of 2.6-dideoxy- and 2.4.6-trideoxy-sugars via hetero-diels-alder-reaction." Tetrahedron Letters 26, no. 17 (1985): 2065–68. http://dx.doi.org/10.1016/s0040-4039(00)94780-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Binkley, Roger W. "Inversion of configuration in 2,6-dideoxy sugars. Triflate displacement by benzoate and nitrite anions." Journal of Organic Chemistry 56, no. 12 (June 1991): 3892–96. http://dx.doi.org/10.1021/jo00012a020.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

COLEMAN, R. S., and J. R. FRASER. "ChemInform Abstract: Acylketene (4 + 2)Cycloadditions: Divergent de Novo Synthesis of 2,6- Dideoxy Sugars." ChemInform 24, no. 21 (August 20, 2010): no. http://dx.doi.org/10.1002/chin.199321227.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

TOSHIMA, Kazunobu, and Kuniaki TATSUTA. "Highly Stereocontrolled Synthesis of 2,6-Dideoxy Sugars and Its Application to Synthesis of Natural Products." Journal of Synthetic Organic Chemistry, Japan 50, no. 4 (1992): 303–15. http://dx.doi.org/10.5059/yukigoseikyokaishi.50.303.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Ishii, Nozomi. "α-Selective Dehydrative Glycosylation of 2-Deoxy- and 2,6-Dideoxy Sugars Using Cyclic Geminal Dihalides". Trends in Glycoscience and Glycotechnology 34, № 199 (27 травня 2022): E61. http://dx.doi.org/10.4052/tigg.2205.6e.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Ishii, Nozomi. "α-Selective Dehydrative Glycosylation of 2-Deoxy- and 2,6-Dideoxy Sugars Using Cyclic Geminal Dihalides". Trends in Glycoscience and Glycotechnology 34, № 199 (27 травня 2022): J61. http://dx.doi.org/10.4052/tigg.2205.6j.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Pieper, Patricia A., Zhihong Guo, and Hung-wen Liu. "Mechanistic Studies of the Biosynthesis of 3,6-Dideoxy Sugars: Stereochemical Analysis of C-3 Deoxygenation." Journal of the American Chemical Society 117, no. 18 (May 1995): 5158–59. http://dx.doi.org/10.1021/ja00123a021.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Dancy, Isabelle, Lothar Laupichler, Patrick Rollin, and Joachim Thiem. "Efficient Synthesis of Deoxy and Dideoxy Sugars by a Thio-Mitsunobu Reaction on Unprotected Glycosides." Synlett 1992, no. 04 (1992): 283–84. http://dx.doi.org/10.1055/s-1992-21340.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Romeo, Joseph R., Luca McDermott та Clay S. Bennett. "Reagent-Controlled α-Selective Dehydrative Glycosylation of 2,6-Dideoxy Sugars: Construction of the Arugomycin Tetrasaccharide". Organic Letters 22, № 9 (13 квітня 2020): 3649–54. http://dx.doi.org/10.1021/acs.orglett.0c01153.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Berrocal, M. V., M. V. Gil, E. Román, J. A. Serrano, M. B. Hursthouse, and M. E. Light. "Tandem Michael addition and intramolecular aldol cyclization of 1,2-dideoxy-1-nitroheptitols derived from sugars." Tetrahedron Letters 46, no. 21 (May 2005): 3673–76. http://dx.doi.org/10.1016/j.tetlet.2005.03.162.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Winchester, B., C. Barker, S. Baines, G. S. Jacob, S. K. Namgoong та G. Fleet. "Inhibition of α-l-fucosidase by derivatives of deoxyfuconojirimycin and deoxymannojirimycin". Biochemical Journal 265, № 1 (1 січня 1990): 277–82. http://dx.doi.org/10.1042/bj2650277.

Повний текст джерела
Анотація:
Deoxyfuconojirimycin (1,5-dideoxy-1,5-imino-L-fucitol) is a potent, specific and competitive inhibitor (Ki 1 x 10(-8) M) of human liver alpha-L-fucosidase (EC 3.2.1.51). Six structural analogues of this compound were synthesized and tested for their ability to inhibit alpha-L-fucosidase and other human liver glycosidases. It is concluded that the minimum structural requirement for inhibition of alpha-L-fucosidase is the correct configuration of the hydroxy groups at the piperidine ring carbon atoms 2, 3 and 4. Different substituents in either configuration at carbon atom 1 (i.e. 1 alpha- and beta-homofuconojirimycins) and at carbon atom 5 may alter the potency but do not destroy the inhibition of alpha-L-fucosidase. The pH-dependency of the inhibition by these amino sugars suggests very strongly that inhibition results from the formation of an ion-pair between the protonated inhibitor and a carboxylate group in the active site of the enzyme. Deoxymannojirimycin (1,5-dideoxy-1,5-imino-D-mannitol) is also a more potent inhibitor of alpha-L-fucosidase than of alpha-D-mannosidase. This can be explained by viewing deoxymannojirimycin as beta-L-homofuconojirimycin lacking the 5-methyl group. Conversely, beta-L-homo analogues of fuconojirimycin can also be regarded as derivatives of deoxymannojirimycin. This has permitted deductions to be made about the structural requirements of inhibitors of alpha- and beta-D-mannosidases.
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Javed, Ashwani Tiwari, Zanjila Azeem та Pintu Kumar Mandal. "4,5-Dioxo-imidazolinium Cation-Promoted α-Selective Dehydrative Glycosylation of 2-Deoxy- and 2,6-Dideoxy Sugars". Journal of Organic Chemistry 87, № 5 (21 січня 2022): 3718–29. http://dx.doi.org/10.1021/acs.joc.1c02650.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Binkley, Roger W., Edith R. Binkley, Shaoming Duan, Michael J. S. Tevesz, and Witold Winnik. "Negative-Ion Mass Spectrometry of Carbohydrates. A Mechanistic Study of the Fragmentation Reactions of Dideoxy Sugars." Journal of Carbohydrate Chemistry 15, no. 7 (September 1996): 879–95. http://dx.doi.org/10.1080/07328309608005697.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

BINKLEY, R. W. "ChemInform Abstract: Inversion of Configuration in 2,6-Dideoxy Sugars. Triflate Displacement by Benzoate and Nitrite Anions." ChemInform 22, no. 44 (August 22, 2010): no. http://dx.doi.org/10.1002/chin.199144279.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Ding, Feiqing, Shuting Cai, Ronny William, and Xue-Wei Liu. "ChemInform Abstract: Pathways Leading to 3-Amino- and 3-Nitro-2,3-dideoxy Sugars: Strategies and Synthesis." ChemInform 44, no. 41 (September 19, 2013): no. http://dx.doi.org/10.1002/chin.201341241.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Herak, Janko N., та Günter Behrens. "Formation and Structure of Radicals from ᴅ-Ribose and 2-Deoxy- ᴅ-ribose by Reactions with SO4·̅ Radicals in Aqueous Solution. An in-situ Electron Spin Resonance Study". Zeitschrift für Naturforschung C 41, № 11-12 (1 грудня 1986): 1062–68. http://dx.doi.org/10.1515/znc-1986-11-1219.

Повний текст джерела
Анотація:
Abstract ESR spectroscopy has been used to analyse the conformation of the radicals produced by the reaction of SO4·̅ with ᴅ-ribose (1), and 2-deoxy-ᴅ-ribose (6), at pH 1.3-5. From ribose three different types of radicals formed by H abstraction at C-1, C-2 and C-3 followed by a regio-selective α,β-water elimination have been identified: the 2-deoxy-ribonolacton-2-yl (3), the 1-deoxy-pentopyranos-2-ulos-1-yl (4). and the 4-deoxy-pentopyranos-3-ulos-4-yl (2). Using deoxyribose two radicals of similar type, formed by H abstraction at C-3 and C-4 followed by water elimination, have been observed: the 2,4-dideoxy-3-ulos-4-yl (7) and the 2,3-dideoxy-4-ulos-3-yl (8). In addition, from both sugars an a-hydroxyalkyl radical has been identified based in part on the timing of their conformational motions: the ribos-3-yl (5) (the precursor of 2) and the 2-deoxy-ribos-1-yl (9), respectively. For radical 5 the rate constant k(e) for the water elimination and hence transformation into radical 2 was estimated. From the analysis of selective line broadening the frequencies of conformational changes of radicals 2 and 7 have been estimated. For 7 the frequencies of exchange of the two methylene groups were found to differ by more than 3 orders of magnitude.
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Turek, Dominika, Andreas Sundgren, Martina Lahmann, and Stefan Oscarson. "Synthesis of oligosaccharides corresponding to Vibrio cholerae O139 polysaccharide structures containing dideoxy sugars and a cyclic phosphate." Organic & Biomolecular Chemistry 4, no. 7 (2006): 1236. http://dx.doi.org/10.1039/b518125a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Yamazaki, Takashi, Kenji Mizutani, and Tomoya Kitazume. "Modified Preparation Method of Trifluoromethylated Propargylic Alcohols and Its Application to Chiral 2,6-Dideoxy-6,6,6-trifluoro sugars." Journal of Organic Chemistry 60, no. 19 (September 1995): 6046–56. http://dx.doi.org/10.1021/jo00124a013.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Tronchet, Jean M. J., Nicoletta Bizzozero, Martina Zsély, Françoise Barbalat-Rey, Naz Dolatshahi, Gerald Bernardinelli та Michel Geoffroy. "Deoxyhydroxyamino analogs of sugars: derivatives of methyl 2,3-dideoxy-2-hydroxyamino-α-d-arabino- and -lyxo-hexopyranosides". Carbohydrate Research 212 (червень 1991): 65–76. http://dx.doi.org/10.1016/0008-6215(91)84046-h.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Mizutani, Kenji, Takashi Yamazaki, and Tomoya Kitazume. "Novel stereoselective syntheses of chiral 2,6-dideoxy-6,6,6-trifluoro sugars via enzymatic resolution of trifluoromethylated propynylic alcohol." Journal of the Chemical Society, Chemical Communications, no. 1 (1995): 51. http://dx.doi.org/10.1039/c39950000051.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

DANCY, I., L. LAUPICHLER, P. ROLLIN, and J. THIEM. "ChemInform Abstract: Efficient Synthesis of Deoxy and Dideoxy Sugars by a Thio-Mitsunobu Reaction on Unprotected Glycosides." ChemInform 23, no. 39 (August 21, 2010): no. http://dx.doi.org/10.1002/chin.199239285.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

TOSHIMA, K., and K. TATSUTA. "ChemInform Abstract: Highly Stereocontrolled Synthesis of 2,6-Dideoxy Sugars and Its Application to Synthesis of Natural Products." ChemInform 23, no. 47 (August 21, 2010): no. http://dx.doi.org/10.1002/chin.199247309.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Haque, Md Ekuramul, Tohoru Kikuchi, Kimihiro Kanemitsu, and Yoshisuke Tsuda. "Synthesis of some deoxy, unsaturated, and dideoxy sugars via regioselective thioacylation of glycopyranosides by the dibutyltin oxide method." CHEMICAL & PHARMACEUTICAL BULLETIN 34, no. 1 (1986): 430–33. http://dx.doi.org/10.1248/cpb.34.430.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Cao, Ji, Masazumi Tamura, Ryu Hosaka, Akira Nakayama, Jun-ya Hasegawa, Yoshinao Nakagawa, and Keiichi Tomishige. "Mechanistic Study on Deoxydehydration and Hydrogenation of Methyl Glycosides to Dideoxy Sugars over a ReOx–Pd/CeO2 Catalyst." ACS Catalysis 10, no. 20 (September 16, 2020): 12040–51. http://dx.doi.org/10.1021/acscatal.0c02309.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Toshima, Kazunobu, Satsuki Mukaiyama, Yuko Nozaki, Hatsuki Inokuchi, Masaya Nakata, and Kuniaki Tatsuta. "Novel Glycosidation Method Using 2,6-Anhydro-2-thio Sugars for Stereocontrolled Synthesis of 2,6-Dideoxy-.alpha.- and -.beta.-glycosides." Journal of the American Chemical Society 116, no. 20 (October 1994): 9042–51. http://dx.doi.org/10.1021/ja00099a022.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

MIZUTANI, K., T. YAMAZAKI, and T. KITAZUME. "ChemInform Abstract: Novel Stereoselective Syntheses of Chiral 2,6-Dideoxy-6,6,6-trifluoro Sugars via Enzymatic Resolution of Trifluoromethylated Propynylic Alcohol." ChemInform 26, no. 23 (August 17, 2010): no. http://dx.doi.org/10.1002/chin.199523210.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Kajimura, Junko, Arifur Rahman, James Hsu, Matthew R. Evans, Kevin H. Gardner, and Paul D. Rick. "O Acetylation of the Enterobacterial Common Antigen Polysaccharide Is Catalyzed by the Product of the yiaH Gene of Escherichia coli K-12." Journal of Bacteriology 188, no. 21 (August 25, 2006): 7542–50. http://dx.doi.org/10.1128/jb.00783-06.

Повний текст джерела
Анотація:
ABSTRACT The carbohydrate component of the enterobacterial common antigen (ECA) of Escherichia coli K-12 occurs primarily as a water-soluble cyclic polysaccharide located in the periplasm (ECACYC) and as a phosphoglyceride-linked linear polysaccharide located on the cell surface (ECAPG). The polysaccharides of both forms are comprised of the amino sugars N-acetyl-d-glucosamine (GlcNAc), N-acetyl-d-mannosaminuronic acid (ManNAcA), and 4-acetamido-4,6-dideoxy-d-galactose (Fuc4NAc). These amino sugars are linked to one another to form trisaccharide repeat units with the structure →3-α-d-Fuc4NAc-(1→4)-β-d-ManNAcA-(1→4)-α-d-GlcNAc-(1→. The hydroxyl group in the 6 position of the GlcNAc residues of both ECACYC and ECAPG are nonstoichiometrically esterified with acetyl groups. Random transposon insertion mutagenesis of E. coli K-12 resulted in the generation of a mutant defective in the incorporation of O-acetyl groups into both ECACYC and ECAPG. This defect was found to be due to an insertion of the transposon into the yiaH locus, a putative gene of unknown function located at 80.26 min on the E. coli chromosomal map. Bioinformatic analyses of the predicted yiaH gene product indicate that it is an integral inner membrane protein that is a member of an acyltransferase family of enzymes found in a wide variety of organisms. The results of biochemical and genetic experiments presented here strongly support the conclusion that yiaH encodes the O-acetyltransferase responsible for the incorporation of O-acetyl groups into both ECACYC and ECAPG. Accordingly, we propose that this gene be designated wecH.
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Kolar, Cenek, Konrad Dehmel та Hans Moldenhauer. "Synthesis of 4-O-methyl-β-rhodomycins using derivatives of 4-amino-4-deoxy- and 3,4-diamino-3,4-dideoxy sugars". Carbohydrate Research 208 (грудень 1990): 67–81. http://dx.doi.org/10.1016/0008-6215(90)80086-i.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Gelas-Mialhe, Yvonne, та Jacques Gelas. "New branched-chain and aminodeoxy sugars from 1,6-anhydro-3,4-dideoxy-β-d-glycero-hex-3-enopyranos-2-ulose (levoglucosenone)". Carbohydrate Research 199, № 2 (червень 1990): 243–47. http://dx.doi.org/10.1016/0008-6215(90)84267-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії