Зміст
Добірка наукової літератури з теми "Diaphragme (anatomie) – Muscles – Métabolisme"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Diaphragme (anatomie) – Muscles – Métabolisme".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Дисертації з теми "Diaphragme (anatomie) – Muscles – Métabolisme"
Ribera, Florence. "Evaluation de la fonction mitochondriale des muscles respiratoires du patient BPCO sévère par mise en œuvre de la technique de respiration sur fibres perméabilisées." Université Louis Pasteur (Strasbourg) (1971-2008), 2002. http://www.theses.fr/2002STR13118.
Повний текст джерелаChronic Obstructive Pulmonary Disease (COPD) is a pathology that affects respiratory and peripheral muscles. Given the crucial role of energy metabolism in muscle performance, we hypothesized that alterations in the energy metabolism would participate in the respiratory muscles of COPD patients. We thus investigated the mitochondrial function and its regulation, the contractile function (myofibrils) and the compartmentation of energy transfer systems from costal diaphragm and external intercostal muscles in COPD patients and costal diaphragm and two limb muscles in emphysematous hamsters. The originality of these studies was to use the in situ method of skinned fibers. We showed that costal diaphragm and external intercostal muscles in severe COPD patients exhibited adaptations in energy transfer systems and increase of their oxidative capacity. These adaptations were correlated in the diaphragm with indexes of obstruction and hyperinflation. We did not find any modification of diaphragm or peripheral muscles in emphysematous hamsters. Altogether, the results demonstrate in severe COPD patients, adaptations in respiratory muscles similar to the effects of long endurance training muscles. These modifications would play an important role in muscular fatigue prevention. The lack of results in emphysematous hamsters indicates that this model is not entirely superposable to the human emphysematous disease
Sousa, Elvira de. "Le métabolisme énergétique musculaire : un acteur dans l'insuffisance cardiaque ? : étude expérimentale chez le rat." Paris 7, 2001. http://www.theses.fr/2001PA077148.
Повний текст джерелаTonini, Julia. "Exploration métabolique et fonctionnelle dans un modèle de syndrome d’apnées du sommeil : conséquences de l’exposition à l’hypoxie intermittente chez l’homme et le rongeur." Grenoble 1, 2009. http://www.theses.fr/2009GRE10326.
Повний текст джерелаThe development of intermittent hypoxia (IH) exposure models enables to isolate one feature of obstructive sleep apnea syndrome (OSAS) and to study its consequences. IH is responsible for sympathetic hyperactivation, activation of hypoxia inducible factor-1 and oxidative stress. Physical deconditioning presented by OSAS patients could be induced by inactivity resulting from excessive daytime sleepiness and IH consequences on muscles. The purposes of these studies were to identify IH induced modifications on dynamic exercise response in healthy Humans and on different muscles in rats. A 14 nights exposure to IH increases ventilatory response as well as diastolic arterial blood pressure with concomitant diminished maximal heart rate. Those responses are compatible with sympathetic hyperactivation and correspond to the ones observed in OSAS patients. On the other hand, metabolic response is positive illustrated by increased lipid utilization. A 35 days exposure to IH induces cardiac hypertrophy compensated by increased contractility and maintained mitochondria density. However, it is associated with a reduction of maximal oxidative capacity of in situ mitochondria and a higher glutathione peroxidase activity. Acute exposure leads to an increase of diaphragm oxidative capacity. On their side, skeletal muscles maintain their oxidative capacity. Physical deconditioning in OSAS should therefore be of cardiac origin. Mitochondria seems implicated in this hypertrophy as well as reactive oxygen species which source remains to be elicited
Antoine-Jonville, Sophie. "Fatigue des muscles inspiratoires induite par l'exercice chez l'homme normal : évaluation par la stimulation magnétique." Poitiers, 2002. http://www.theses.fr/2002POIT2314.
Повний текст джерелаExercise-induced ventilatory muscle fatigue is presented as well as indices used to assess that phenomenon. We have shown that the measurement of twitch mouth pressure in response to magnetic stimulation of the phrenic nerves assesses inspiratory muscle fatigue induced by exercise or by specific inspiratory muscle loading. In a second study, acidosis is shown to be involved in exercise-induced inspiratory muscle fatigue. Then, the central component of diaphragmatic fatigue has been studied with motor evoked potentials (MEP) in response to cortical stimulation. The decrease of the MEP amplitude observed following exercise did not occur when the inspiratory work was increased. It is suggested that ventilatory muscle fatigue is an integrative process that would allow to optimize the use of physiological ressources
Jutand, Luce. "Fatigue et contrôle des muscles inspiratoires à l'exercice." Poitiers, 2009. http://www.theses.fr/2009POIT2276.
Повний текст джерелаThis work aimed firstly to determine the duration and intensity of the exercice inducing diaphragmatic central fatigue. We tested the presence of the diaphragmatic central fatigue for three exercice durations (5,15 and 40 minutes) keeping the same intensity of exercice (55% of V̇O2max). The diaphragmatic central fatigue was present for a duration of 40 minutes. This fatigue would settle in progressively with time. On a second time, we checked if the exercice intensity influenced this fatigue. We checked the presence of diaphragmatic central fatigue for different intensities of exercice (40%, 55%, 75% of V̇O2max) keeping the same duration (15 minutes). The central diaphragmatic fatigue was absent, whatever the intensity of exercice. In a third work, we studied the ventilatory control during exercice. We checked if premotor potentials, which are evidences of the premotor cortex activation, were present during exercices of different intensities (40% et 70% of V̇O2max) and during a moderate exercice with resistive inspiratory load (40% de V̇O2max with a load of 5cmH2O). We did not observe any premotor preinspiratory activity, suggestive of an absence of cortical contribution of human ventilation during exercise
Berdah, Stéphane Victor. "Contribution à l'étude du contrôle réflexe des muscles respiratoires chez l'homme et l'animal." Aix-Marseille 2, 2002. http://www.theses.fr/2002AIX20668.
Повний текст джерелаHomsy, Charles. "Diffusion des immunoglobulines G dans le diaphragme du rat : étude ultrastructurale." Paris 6, 1986. http://www.theses.fr/1986PA066227.
Повний текст джерелаHayot, Maurice. "Muscles inspiratoires et seuils de fatigue : études au repos et au cours de l'exercice musculaire dans les pathologies cardio-respiratoires." Montpellier 1, 1997. http://www.theses.fr/1997MON1T039.
Повний текст джерелаBacou, Francis. "Innervation motrice et différenciation des muscles squelettiques rapides et lents chez les Vertébrés supérieurs : métabolisme intermédiaire, polymorphisme de l'acétylcholinestérase, caractéristiques de la matrice extracellulaire." Montpellier 2, 1986. http://www.theses.fr/1986MON20080.
Повний текст джерелаBoczkowski, Jorge. "Effets du sepsis sur le muscle diaphragmatique." Paris 5, 1992. http://www.theses.fr/1992PA05CD04.
Повний текст джерела