Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Diagram correlation.

Книги з теми "Diagram correlation"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-18 книг для дослідження на тему "Diagram correlation".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте книги для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

O'Sullivan, Robert Brett. Correlation of Jurassic San Rafael group, Junction Creek Sandstone, and related rocks from McElmo Canyon to Salter Canyon in Southwestern Colorado. Reston, VA: U.S. Geological Survey, 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

O'Sullivan, Robert Brett. Correlation of Middle Jurassic and related rocks from Slick Rock to Salter Canyon in southwestern Colorato. Reston, VA: U.S. Geological Survey, 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Barthel, Josef. Electrolyte data collection: Tables, diagrams, correlations, and literature survey. Frankfurt am Main, Germany: DECHEMA, 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Barthel, Josef. Electrolyte data collection.: Tables, diagrams, correlations and literature survey. Frankfurt/Main: DECHEMA, 1993.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

United Nations. Economic and Social Commission for Asia and the Pacific. Stratigraphic correlation between sedimentary basins of the ESCAP region, volume XII: ESCAP atlas of stratigraphy VI : Socialist Republic of Viet Nam. New York: United Nations, 1986.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

United Nations. Economic and Social Commission for Asia and the Pacific. Stratigraphic correlation between sedimentary basins of the ESCAP region, volume X ; ESCAP atlas of stratigraphy IV: People's Republic of China. New York: United Nations, 1985.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

United Nations. Economic and Social Commission for Asia and the Pacific. Stratigraphic correlation between sedimentary basins of the ESCAP region, volume XI: ESCAP atlas of stratigraphy V : Republic of Korea. New York: United Nations, 1985.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Pacific, United Nations Economic and Social Commission for Asia and the. Stratigraphic correlation between sedimentary basins of the ESCAP region, volume XIII: ESCAP atlas of stratigraphy VII : Triassic of Asia, Australia, and the Pacific. New York: United Nations, 1988.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Pacific, United Nations Economic and Social Commission for Asia and the. Stratigraphic correlation between sedimentary basins of the ESCAP region, volume XIV: ESCAP atlas of stratigraphy VIII : Afghanistan, Australia. New York: United Nations, 1990.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Gmehling, Jürgen. Vapor-liquid equilibrium data collection: Tables and diagrams of data for binary and multicomponent mixtures up to moderate pressures. Constants of correlation equations for computer use. Frankfurt am Main: DECHEMA, 1991.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Bertel, E., and A. Menzel. Nanostructured surfaces: Dimensionally constrained electrons and correlation. Edited by A. V. Narlikar and Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533046.013.11.

Повний текст джерела
Анотація:
This article examines dimensionally constrained electrons and electronic correlation in nanostructured surfaces. Correlation effects play an important role in spatial confinement of electrons by nanostructures. The effect of correlation will become increasingly dominant as the dimensionality of the electron wavefunction is reduced. This article focuses on quasi-one-dimensional (quasi-1D) confinement, i.e. more or less strongly coupled one-dimensional nanostructures, with occasional reference to 2D and 0D systems. It first explains how correlated systems exhibit a variety of electronically driven phase transitions, and especially the phases occurring in the generic phase diagram of correlated materials. It then describes electron–electron and electron–phonon interactions in low-dimensional systems and the phase diagram of real quasi-1D systems. Two case studies are considered: metal chains on silicon surfaces and quasi-1D structures on metallic surfaces. The article shows that spontaneous symmetry breaking occurs for many quasi-1D systems on both semiconductor and metal surfaces at low temperature.
Стилі APA, Harvard, Vancouver, ISO та ін.
12

1937-, Klomínský Josef, and Český geologický ústav Praha, eds. Geologický atlas České Republiky.: Geological atlas of the Czech Republic. Kutná Hora: Český geologický ústav, 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Vu, Khuc, Xuan Bao Nguyen, and Van Cu Le. Stratigraphic Correlation Between Sedimentary Basins of the Escap Region (ESCAP Atlas of Stratigraphy IV). United Nations, 1986.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Horing, Norman J. Morgenstern. Random Phase Approximation Plasma Phenomenology, Semiclassical and Hydrodynamic Models; Electrodynamics. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198791942.003.0010.

Повний текст джерела
Анотація:
Chapter 10 reviews both homogeneous and inhomogeneous quantum plasma dielectric response phenomenology starting with the RPA polarizability ring diagram in terms of thermal Green’s functions, also energy eigenfunctions. The homogeneous dynamic, non-local inverse dielectric screening functions (K) are exhibited for 3D, 2D, and 1D, encompassing the non-local plasmon spectra and static shielding (e.g. Friedel oscillations and Debye-Thomas-Fermi shielding). The role of a quantizing magnetic field in K is reviewed. Analytically simpler models are described: the semiclassical and classical limits and the hydrodynamic model, including surface plasmons. Exchange and correlation energies are discussed. The van der Waals interaction of two neutral polarizable systems (e.g. physisorption) is described by their individual two-particle Green’s functions: It devolves upon the role of the dynamic, non-local plasma image potential due to screening. The inverse dielectric screening function K also plays a central role in energy loss spectroscopy. Chapter 10 introduces electromagnetic dyadic Green’s functions and the inverse dielectric tensor; also the RPA dynamic, non-local conductivity tensor with application to a planar quantum well. Kramers–Krönig relations are discussed. Determination of electromagnetic response of a compound nanostructure system having several nanostructured parts is discussed, with applications to a quantum well in bulk plasma and also to a superlattice, resulting in coupled plasmon spectra and polaritons.
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Morawetz, Klaus. Approximations for the Selfenergy. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198797241.003.0010.

Повний текст джерела
Анотація:
The systematic expansion of the selfenergy is presented with the help of the closure relation of chapter 7. Besides Hartree–Fock leading to meanfield kinetic equations, the random phase approximation (RPA) is shown to result into the Lennard–Balescu kinetic equation, and the ladder approximation into the Beth–Uehling–Uhlenbeck kinetic equation. The deficiencies of the ladder approximation are explored compared to the exact T-matrix by missing maximally crossed diagrams. The T-matrix provides the Bethe–Salpeter equation for the two-particle correlation functions. Vertex corrections to the RPA are presented. For a two-dimensional example, the selfenergy and effective mass are calculated. The structure factor and the pair-correlation function are introduced and calculated for various approximations.
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Bianconi, Ginestra. Classical Percolation, Generalized Percolation and Cascades. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198753919.003.0012.

Повний текст джерела
Анотація:
This chapter characterizes the robustness of multiplex and multilayer networks using classical percolation, directed percolation and antagonistic percolation. Classical percolation determines whether a finite fraction of nodes of the multilayer networks are connected by any type of connection. Classical percolation can be affected by multiplexity since the degree correlations among different layers can modulate the robustness of the entire multilayer network. Directed percolation describes the propagation of a disease requiring cooperative infection from different layers of the multiplex network. It displays a rich phase diagram including both continuous and discontinuous phase transitions. Antagonist percolation on a duplex network describes the competition between two layers and can give rise to hysteresis loops corresponding to phases that either one layer or the other can percolate Avalanches generated by the generalized Sandpile Model and Watts–Strogatz Model are also discussed, emphasizing their relevance for studying the stability of power grids and financial systems.
Стилі APA, Harvard, Vancouver, ISO та ін.
17

(Editor), Jurgen Gmehling, and U. Onken (Editor), eds. Vapor-Liquid Equilibrium Data Collection: Ethers (Supplement 2) : Tables and Diagrams of Data for Binary and Multicomponent Mixtures Up to Moderate Pressures. Constants of Correlation equatio. Dechema, 1999.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Horing, Norman J. Morgenstern. Equations of Motion with Particle–Particle Interactions and Approximations. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198791942.003.0008.

Повний текст джерела
Анотація:
Starting with the equation of motion for the field operator ψ(x,t) of an interacting many-particle system, the n-particle Green’s function (Gn) equation of motion is developed, with interparticle interactions generating an infinite chain of equations coupling it to (n+1)- and (n−1)-particle Green’s functions (Gn+1 and Gn−1, respectively). Particularly important are the one-particle Green’s function equation with its coupling to the two-particle Green’s function and the two-particle Green’s function equation with its coupling to the three-particle Green’s function. To develop solutions, it is necessary to introduce non-correlation decoupling procedures involving the Hartree and Hartree-Fock approximations for G2 in the G1 equation; and a similar factorization “ansatz” for G3 in the G2 equation, resulting in the Sum of Ladder Diagrams integral equation for G2, with multiple Born iterates and finite collisional lifetimes. Similar treatment of the G11-equation for the joint propagation of one-electron and one-hole subject to mutual Coulomb attraction leads to bound electron-hole exciton states having a discrete hydrogen like spectrum of energy eigenstates. Its role in single-particle propagation is also discussed in terms of one-electron self-energy Σ‎ and the T-matrix
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії