Добірка наукової літератури з теми "Diagonal hyperbolic systems"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Diagonal hyperbolic systems".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Diagonal hyperbolic systems"
EL HAJJ, AHMAD, and RÉGIS MONNEAU. "GLOBAL CONTINUOUS SOLUTIONS FOR DIAGONAL HYPERBOLIC SYSTEMS WITH LARGE AND MONOTONE DATA." Journal of Hyperbolic Differential Equations 07, no. 01 (March 2010): 139–64. http://dx.doi.org/10.1142/s0219891610002050.
Повний текст джерелаEL HAJJ, AHMAD, and RÉGIS MONNEAU. "UNIQUENESS RESULTS FOR DIAGONAL HYPERBOLIC SYSTEMS WITH LARGE AND MONOTONE DATA." Journal of Hyperbolic Differential Equations 10, no. 03 (September 2013): 461–94. http://dx.doi.org/10.1142/s0219891613500161.
Повний текст джерелаColombini, Ferruccio, and Daniele Del Santo. "Blow-up for hyperbolic systems in diagonal form." Nonlinear Differential Equations and Applications 8, no. 4 (November 2001): 465–72. http://dx.doi.org/10.1007/pl00001458.
Повний текст джерелаSpehner, D. "Spectral form factor of hyperbolic systems: leading off-diagonal approximation." Journal of Physics A: Mathematical and General 36, no. 26 (June 17, 2003): 7269–90. http://dx.doi.org/10.1088/0305-4470/36/26/304.
Повний текст джерелаJourdain, Benjamin, and Julien Reygner. "A multitype sticky particle construction of Wasserstein stable semigroups solving one-dimensional diagonal hyperbolic systems with large monotonic data." Journal of Hyperbolic Differential Equations 13, no. 03 (September 2016): 441–602. http://dx.doi.org/10.1142/s0219891616500144.
Повний текст джерелаLi, Ta-Tsien, and Yue-Jun Peng. "Cauchy problem for weakly linearly degenerate hyperbolic systems in diagonal form." Nonlinear Analysis: Theory, Methods & Applications 55, no. 7-8 (December 2003): 937–49. http://dx.doi.org/10.1016/j.na.2003.08.010.
Повний текст джерелаDus, Mathias, Francesco Ferrante, and Christophe Prieur. "On L∞ stabilization of diagonal semilinear hyperbolic systems by saturated boundary control." ESAIM: Control, Optimisation and Calculus of Variations 26 (2020): 23. http://dx.doi.org/10.1051/cocv/2019069.
Повний текст джерелаOHWA, HIROKI. "THE SHOCK CURVE APPROACH TO THE RIEMANN PROBLEM FOR 2 × 2 HYPERBOLIC SYSTEMS OF CONSERVATION LAWS." Journal of Hyperbolic Differential Equations 07, no. 02 (June 2010): 339–64. http://dx.doi.org/10.1142/s0219891610002128.
Повний текст джерелаLi, Tatsien, and Zhiqiang Wang. "Global exact boundary controllability for first order quasilinear hyperbolic systems of diagonal form." International Journal of Dynamical Systems and Differential Equations 1, no. 1 (2007): 12. http://dx.doi.org/10.1504/ijdsde.2007.013741.
Повний текст джерелаYu, Lixin. "Global exact boundary observability for first-order quasilinear hyperbolic systems of diagonal form." Mathematical Methods in the Applied Sciences 35, no. 13 (June 22, 2012): 1505–17. http://dx.doi.org/10.1002/mma.2520.
Повний текст джерелаДисертації з теми "Diagonal hyperbolic systems"
Al, Zohbi Maryam. "Contributions to the existence, uniqueness, and contraction of the solutions to some evolutionary partial differential equations." Thesis, Compiègne, 2021. http://www.theses.fr/2021COMP2646.
Повний текст джерелаIn this thesis, we are mainly interested in the theoretical and numerical study of certain equations that describe the dynamics of dislocation densities. Dislocations are microscopic defects in materials, which move under the effect of an external stress. As a first work, we prove a global in time existence result of a discontinuous solution to a diagonal hyperbolic system, which is not necessarily strictly hyperbolic, in one space dimension. Then in another work, we broaden our scope by proving a similar result to a non-linear eikonal system, which is in fact a generalization of the hyperbolic system studied first. We also prove the existence and uniqueness of a continuous solution to the eikonal system. After that, we study this system numerically in a third work through proposing a finite difference scheme approximating it, of which we prove the convergence to the continuous problem, strengthening our outcomes with some numerical simulations. On a different direction, we were enthused by the theory of differential contraction to evolutionary equations. By introducing a new distance, we create a new family of contracting positive solutions to the evolutionary p-Laplacian equation
Тези доповідей конференцій з теми "Diagonal hyperbolic systems"
Thompson, Lonny L., and Prapot Kunthong. "Stabilized Time-Discontinuous Galerkin Methods With Applications to Structural Acoustics." In ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-15753.
Повний текст джерелаThompson, Lonny L., and Dantong He. "Adaptive Time-Discontinuous Galerkin Methods for Acoustic Scattering in Unbounded Domains." In ASME 2002 International Mechanical Engineering Congress and Exposition. ASMEDC, 2002. http://dx.doi.org/10.1115/imece2002-32737.
Повний текст джерела