Добірка наукової літератури з теми "DFNB16"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "DFNB16".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "DFNB16"
Aldè, Mirko, Giovanna Cantarella, Diego Zanetti, Lorenzo Pignataro, Ignazio La Mantia, Luigi Maiolino, Salvatore Ferlito, et al. "Autosomal Dominant Non-Syndromic Hearing Loss (DFNA): A Comprehensive Narrative Review." Biomedicines 11, no. 6 (June 1, 2023): 1616. http://dx.doi.org/10.3390/biomedicines11061616.
Повний текст джерелаDomínguez-Ruiz, María, Laura Ruiz-Palmero, Paula I. Buonfiglio, Irene García-Vaquero, Elena Gómez-Rosas, Marina Goñi, Manuela Villamar, et al. "Novel Pathogenic Variants in the Gene Encoding Stereocilin (STRC) Causing Non-Syndromic Moderate Hearing Loss in Spanish and Argentinean Subjects." Biomedicines 11, no. 11 (October 31, 2023): 2943. http://dx.doi.org/10.3390/biomedicines11112943.
Повний текст джерелаBack, Daniela, Wafaa Shehata-Dieler, Barbara Vona, Michaela A. H. Hofrichter, Joerg Schroeder, Thomas Haaf, Torsten Rahne, Rudolf Hagen, and Sebastian P. Schraven. "Phenotypic Characterization of DFNB16-associated Hearing Loss." Otology & Neurotology 40, no. 1 (January 2019): e48-e55. http://dx.doi.org/10.1097/mao.0000000000002059.
Повний текст джерелаFaridi, Rabia, Rizwan Yousaf, Sayaka Inagaki, Rafal Olszewski, Shoujun Gu, Robert J. Morell, Elizabeth Wilson, et al. "Deafness DFNB128 Associated with a Recessive Variant of Human MAP3K1 Recapitulates Hearing Loss of Map3k1-Deficient Mice." Genes 15, no. 7 (June 27, 2024): 845. http://dx.doi.org/10.3390/genes15070845.
Повний текст джерелаFrykholm, Carina, Joakim Klar, Tatjana Tomanovic, Adam Ameur, and Niklas Dahl. "Stereocilin gene variants associated with episodic vertigo: expansion of the DFNB16 phenotype." European Journal of Human Genetics 26, no. 12 (September 24, 2018): 1871–74. http://dx.doi.org/10.1038/s41431-018-0256-6.
Повний текст джерелаAvan, Paul, Sébastien Le Gal, Vincent Michel, Typhaine Dupont, Jean-Pierre Hardelin, Christine Petit, and Elisabeth Verpy. "Otogelin, otogelin-like, and stereocilin form links connecting outer hair cell stereocilia to each other and the tectorial membrane." Proceedings of the National Academy of Sciences 116, no. 51 (November 27, 2019): 25948–57. http://dx.doi.org/10.1073/pnas.1902781116.
Повний текст джерелаDrury, Stacy S., and Bronya J. B. Keats. "Mouse Tales from Kresge: The Deafness Mouse." Journal of the American Academy of Audiology 14, no. 06 (June 2003): 296–301. http://dx.doi.org/10.1055/s-0040-1715745.
Повний текст джерелаAchard, S., F. Simon, F. Denoyelle, and S. Marlin. "Vertiges positionnels paroxystiques bénins récidivants chez deux enfants DFNB16 d’une même fratrie : cas clinique CARE." Annales françaises d'Oto-rhino-laryngologie et de Pathologie Cervico-faciale 140, no. 3 (June 2023): 129–32. http://dx.doi.org/10.1016/j.aforl.2022.10.008.
Повний текст джерелаCosetti, Maura, David Culang, Sumankrishna Kotla, Peter O'Brien, Daniel F. Eberl, and Frances Hannan. "Unique Transgenic Animal Model for Hereditary Hearing Loss." Annals of Otology, Rhinology & Laryngology 117, no. 11 (November 2008): 827–33. http://dx.doi.org/10.1177/000348940811701106.
Повний текст джерелаVona, B., M. A. H. Hofrichter, C. Neuner, J. Schröder, A. Gehrig, J. B. Hennermann, F. Kraus, et al. "DFNB16 is a frequent cause of congenital hearing impairment: implementation of STRC mutation analysis in routine diagnostics." Clinical Genetics 87, no. 1 (January 21, 2014): 49–55. http://dx.doi.org/10.1111/cge.12332.
Повний текст джерелаДисертації з теми "DFNB16"
Iranfar, Sepideh. "AAV-mediated gene therapy restores hearing and central auditory processing in a mouse model of human DFNB16 Deafness." Electronic Thesis or Diss., Sorbonne université, 2024. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2024SORUS127.pdf.
Повний текст джерелаHearing impairment stands as a significant contributor to disability, affecting over half a billion individuals throughout their lifespans. Despite its pervasive prevalence, no curative treatment currently exists. My Ph.D. project is translational, aiming to establish the proof of concept that viral gene therapy can restore hearing in a preclinical model for DFNB16 deafness. DFNB16, considered the second most common cause of hearing impairment, is caused by mutations in the stereocilin (STRC) gene and is characterized by mild-to-moderate deafness. The stereocilin (STRC) protein is predominantly expressed in outer hair cells (OHCs), one of the two types of cochlear sensory hair cells, responsible for sound amplification. STRC protein is crucial for the cohesion and maintenance of OHC bundles. Mutations in STRC result in defective OHCs, leading to abolished cochlear amplification and subsequent reduction in hearing sensitivity. As of now, there exists no cure for DFNB16.My main objective was to develop an adeno-associated virus (AAV)-based gene therapy to replace the mutant gene with its correct copy in a DFNB16 mouse model. Given the large size of the Strc coding sequence, exceeding AAV packaging capacity, I employed a hybrid dual-vector strategy to load Strc cDNA into AAV capsids. Since OHCs are inherently difficult to transduce with AAV vectors, we firstly conducted a comparative analysis of AAV cellular tropism within the inner ear to identify the most efficient AAV serotype for targeting OHCs. Secondly, I used the best performing AAV serotype to construct the therapeutic vector, which was administered into the cochleas of DFNB16 mice.Following the gene therapy, we found a robust restoration of STRC protein expression and its appropriate targeting at the tips of OHC stereocilia in treated mice. This process results in the restoration of the normal morphostructure of OHC bundles and cochlear amplification, ensuring stable and long-lasting restoration of hearing in the treated mice, similar to those of the wild-type mice. Notably, psychometric measurements of frequency perception using a Go/NoGo task demonstrated that frequency discrimination exhibited by the treated Strc-/- mice was comparable to those of wild-type mice, underscoring the efficacy of gene therapy in recovering essential features of natural sound perception associated with DFNB16. This finding lays the foundation for effective translational gene therapy for DFNB16 patients and facilitates the development of preclinical gene therapy studies for mouse models of human deafness
Delmaghani, Sedigheh. "Neuropathie auditive : identification du gène DFNB59 et physiopathologie." Paris 6, 2006. http://www.theses.fr/2006PA066164.
Повний текст джерелаBy a genetic linkage analysis in the large consanguineous Iranian families with autosomal recessive, non-syndromic, prelingual sensorineural hearing impairment, I defined two novel non-syndromic deafness loci: DFNB40, on chromosome 22 (22q11. 21-12. 1) and DFNB59, on chromosome 2 (2q31. 1-31. 3). I then identified the gene DFNB59. It codes for a new protein of 352 amino acids, which was named pejvakin. In order to validate the implication of this gene in DFNB59 deafness, I generated a knock-in mouse model for one of the two mutations identified in human subjects. These mice present with auditory neuropathy, indicative of neuronal dysfunction along the afferent auditory pathway. DFNB59 is the first human gene implicated in nonsyndromic deafness due to a neuronal defect. Generation of Dfnb59 knockout mice is in progress. It should help us understand better the role of pejvakin, as well as the pathogenic process associated to this genetic form of deafness
Ceriani, Federico. "Quantitative estimate of biochemical and electrical intercellular coupling in the developing cochlea of wild type and DFNB1 mouse models." Doctoral thesis, Università degli studi di Padova, 2014. http://hdl.handle.net/11577/3423720.
Повний текст джерелаLa perdita dell’udito è la forma più comune di disabilità sensoriale: circa un bambino su 1000, infatti, è affetto alla nascita da sordità congenita profonda. La sordità non sindromica (DFNB1) è una malattia ereditaria con un fenotipo di sordità che va da lieve a grave, causata da mutazioni nei geni GJB2 (che codifica la proteina connessina26) e GJB6 (che codifica la connessina30). Canali giunzionali formati prevalentemente da queste due proteine accoppiano le cellule non sensoriali (cellule di sostegno e cellule epiteliali) della coclea dei mammiferi, le quali formano vasti sincizi funzionali. Studi precedenti hanno dimostrato che l’accoppiamento elettrico e metabolico mediato da canali giunzionali è fondamentale per lo sviluppo e il mantenimento dell’udito. Tuttavia, nonostante il gran numero di studi condotti in sistemi di espressione, mancano stime precise del grado di accoppiamento e delle sue alterazioni in condizioni DFNB1. In questo lavoro di tesi, sono state combinate registrazioni ottiche su larga scala , registrazioni elettrofisiologiche su singola cellula e simulazioni al computer per chiarire i meccanismi che sono alla base della comunicazione intercellulare nelle cellule cocleari non sensoriali in topi giovani (prima settimana post-natale) . In primo luogo, abbiamo sviluppato una nuova tecnica basata sull’imaging del potenziale di membrana cellulare per mappare l’estensione e il grado di accoppiamento elettrico nelle reti cellulari non sensoriali della coclea in via di sviluppo . Abbiamo anche quantificato con precisione la riduzione dell’accoppiamento elettrico in colture organotipiche cocleari da topi transgenici con difetti uditivi causati dall’assenza o da mutazioni della connessina30 rispetto ad animali wild type. Confrontando i nostri risultati sperimentali con simulazioni numeriche , abbiamo stimato che le cellule non sensoriali della coclea nel topo sono già ben accoppiate nella prima settimana post-natale da ben ∼ 1500 canali per ogni coppia di cellule. Nelle colture di pari età provenienti da topi connexin30(T5M/T5M) e connexin30(−/−), la conduttanza giunzionale è ridotta rispettivamente del 14% e del 91% , e questi dati sono in accordo con l’aumento delle soglie uditive mostrato da questi animali nella fase adulta . Oltre a fornire l’accoppiamento elettrico , é stato dimostrato che i canali giunzionali dell’orecchio interno partecipano alla segnalazione Ca2+ intracellulare dipendente dall’ATP e dall’IP3, e l’alterazione di questi meccanismi di segnalazione nella coclea postnatale é stata collegata alla compromissione dell’acquisizione dell’udito. Abbiamo quindi eseguito esperimenti di imaging dello ione Ca2+ volti a chiarire i meccanismi alla base della generazione e propagazione intercellulare dei segnali Ca2+ mediati da ATP nelle cellule non sensoriali della coclea. Abbiamo determinato che le oscillazioni Ca2+ dipendenti dall’ATP e dall’IP3 nelle cellule non sensoriali cocleari possono verificarsi in presenza di una concentrazione intracellulare di IP3 costante. Abbiamo poi combinato le informazioni raccolte attraverso i due diversi approcci sperimentali in un modello matematico che (i) riproduce correttamente la velocità e il range di propagazione delle onde Ca2+ intercellulari e (ii) indica che l’inizio e il culmine delle oscillazioni Ca2+ sono contrassegnati da biforcazioni di Hopf supercritiche a concentrazioni di ATP di ∼ 100 nM e ∼ 1 μM, rispettivamente . Infine , abbiamo studiato la relazione tra transienti Ca2+ spontanei delle cellule non sensoriali e i potenziali d’azione spontanei delle cellule ciliate interne. I nostri risultati preliminari suggeriscono che i transienti Ca2+ delle cellule non sensoriali potrebbero avere un effetto modulatorio sull’attività elettrica spontanea , che è intrinsecamente generata nelle cellule ciliate interne.
BERTO, Anna. "ACQUEDOTTO VESTIBOLARE ALLARGATO: S. DI PENDRED, DFNB4, SINDROME DELL’ACQUEDOTTO VESTIBOLARE ALLARGATO." Doctoral thesis, Università degli studi di Ferrara, 2010. http://hdl.handle.net/11392/2389300.
Повний текст джерелаRoux, Isabelle. "Physiopathologie de la surdité DFNB9 : identification de l'otoferline comme composant essentiel de l'exocytose des synapses à ruban des cellules sensorielles auditives." Paris 7, 2006. http://www.theses.fr/2006PA077153.
Повний текст джерелаMutations in the OTOF gene have been identified as responsible for the DFNB9 autosomal recessive form of human deafness. This gene encodes otoferlin, a transmembrane C2 domain protein; C2 domains are known to bind calcium and to interact with phopholipids. In the adult cochlea, otoferlin is specifically expressed in the inner hair cells, which are the genuine sensory cells as they transmit sound information to the central nervous System. In these cells, otoferlin is associated with synaptic vesicles surrounding the ribbon and with the presynaptic plasma membrane. In vitro binding assays indicate that otoferlin binds, in a calcium dependent manner, syntaxinl and SNAP25, two proteins of the SNARE complex. In order to study otoferlin function in vivo and to characterize DFNB9 pathophysiology, I have generated knock-out mice for the Otof gene using homologous recombination. Otof7' mice reproduce DFNB9 patients phenotype. Besides, exocytosis of Otof7' inner hair cells, as monitored by membrane capacitance measurements, was nearly completely abolished, despite normal ribbon synapse morphogenesis and normal calcium current. Furthermore, these cells lacked the fast secretory component of the exocytic burst in calcium-uncaging experiments. Therefore, otoferlin is essential for a late step of synaptic vesicle exocytosis, probably by acting as the major calcium sensor triggering fusion at the auditory hair cell ribbon synapse
GRATI, M'HAMED. "Identification du gene otof, responsable de la surdite isolee recessive dfnb9 chez l'homme, et caracterisation de la proteine correspondante, l'otoferline, durant le developpement cochleaire chez la souris." Paris 7, 2001. http://www.theses.fr/2001PA077028.
Повний текст джерелаFasquelle, Lydie. "TMPRSS3 dont les mutations sont responsables des surdités humaines DFNB8/10, joue un rôle crucial dans la survie des cellules sensorielles lors de l'entrée en fonction cochléaire : caractérisation du modèle animal et identification des voies de signalisation impliquées." Thesis, Montpellier 1, 2011. http://www.theses.fr/2011MON1T026.
Повний текст джерелаTMPRSS3 is a type II serine protease mutated in human DFNB8/10 deafness. In order to determine the role of this protein in the cochlear physiology, we generated a mutant mice and phenotyped it. We found that homozygous mutant mice are profoundly deaf, due to a rapid and drastic degeneration of cochlear sensory cells at the onset of hearing. In order to decipher the molecular mechanism leading to sensory cells degeneration, we compared the cochlear proteome of wild type and homozygous mice using 2-dimensions gels. Then, we analyzed variant spots using mass spectrometry. Using bioinformatics, we clustered the protein in signaling pathways. We focused on the network centered on BK potassium channel because this channel appears at the onset of hearing, the time when sensory cells degenerate. Using immunohistochemistry and patch-clamp techniques, we were able to show that in the absence of a functional Tmprss3, membranous expression and activity of BK channel are altered in cochlear sensory cells. The original finding of our work is that a serine protease is able to modulate BK potassium channel
Correia, Bárbara Isabel de Carvalho. "Analysis of DFNB1 locus in presbycusis." Master's thesis, 2017. http://hdl.handle.net/10451/30529.
Повний текст джерелаIntrodução: O ouvido é um órgão sensorial que tem como função a transmissão e a tradução de sons para o cérebro assegurando assim a audição essencial a uma comunicação oral eficaz. A surdez é considerada a deficiência sensorial mais comum na população humana, comprometendo a integração social do indivíduo afetado e envolve a perda total ou parcial da capacidade de um indivíduo detetar sons. Aproximadamente 1/1000 recém-nascidos apresentam surdez, bem como cerca de 1/3 dos indivíduos com idade superior a 65 anos. A surdez está descrita como sendo a terceira doença sensorial crónica do mundo, prevendo-se um aumento de 25% dos casos até ao ano de 2020. A surdez associada à idade ou presbiacusia é uma doença multifatorial, representando a sequela final de diversos fatores intrínsecos e extrínsecos, que atuam no ouvido interno ao longo da vida. Esta forma de surdez caracteriza-se por uma perda auditiva progressiva, que começa nas altas frequências e está descrita como afetando mais homens do que mulheres. Esta forma de perda auditiva é também referida como surdez social por estar na origem do isolamento social e mesmo depressão, observados em alguns idosos onde a perda auditiva é maior. As causas de surdez podem ser genéticas ou ambientais como a associada a situações de anoxia, a doenças infeciosas ou infeções crónicas no ouvido, ao uso de medicamentos ototóxicos, exposição ao ruído e envelhecimento, como já referido. O locus DFNB1 foi o primeiro a ser identificado na surdez autossómica recessiva, contendo dois genes vizinhos no cromossoma 13, GJB2 e GJB6, que pertencem por isso ao mesmo cluster e que codificam individualmente duas proteínas transmembranares, a conexina 26 e a conexina 30, respetivamente. As conexinas são as subunidades dos conexões, estruturas que constituem as “gap-junctions” que funcionam como canais intercelulares. Ambas as conexinas, 26 e 30, são expressas na cóclea, entre as células ciliadas, pelo que possuem um papel fundamental no processo auditivo. Atualmente encontram-se descritas mais de 100 mutações e polimorfismos no gene GJB2. O espectro destas mutações varia entre populações, existindo mutações típicas das populações caucasianas, das asiáticas, etc, pelo que a identificação de mutações neste gene são muito relevantes em cada população. Duas grandes deleções no gene GJB6 são também responsáveis por casos de surdez. Dada a relevância dos genes GJB2 e GJB6 na etiologia da surdez em várias populações, o diagnóstico molecular de casos de surdez neurosensorial começa pelo seu estudo. Assim, faz sentido que na presbiacusia se estudem também estes genes procurando conhecer o seu efeito na causa deste tipo de surdez. Existem ainda mutações no gene GJB2 cuja patogenicidade é controversa, pelo que a realização de estudos funcionais que ajudem a clarificar o efeito destas mutações, identificadas de novo ou já conhecidas, é uma forma de prever a sua patogenicidade dessas mutações e assim estudar a sua associação com a surdez. A investigação com base em estudos genéticos e moleculares tem permitido grandes avanços na área da surdez, sugerindo que esta condição pode ser evitável e também pode ser tratada mais precocemente. Objetivo: O presente estudo teve como objetivo geral aumentar o conhecimento da surdez associada à idade em idosos da população portuguesa. Como objetivos específicos podem definir-se: 1) o papel dos genes GJB2/GJB6 na surdez associada à idade; 2) o estudo de novas mutações identificadas de novo na população Portuguesa com vista a clarificar a sua patogenicidade. Materiais e métodos: Foram analisadas 200 amostras de DNA, obtidas a partir de sangue colhido em idosos da população portuguesa, provenientes de diferentes regiões de Portugal. Todos os indivíduos assinaram um consentimento informado, responderam a um inquérito sobre o seu estado geral de saúde e antecedentes familiares, realizaram um audiograma com vista a identificar a presença de presbiacusia e aceitaram voluntariamente participar neste estudo pelo que também forneceram uma amostra de sangue colhida em cartão FTA. A pesquisa de mutações no gene GJB2 realizou-se em 80 amostras de DNA e em 120 amostras de DNA para o gene GJB6. Para isso foi amplificado por PCR e sequenciado em ambas as direções a região codificante (exão 2) do gene GJB2. As grandes deleções descritas no gene GJB6, foram estudadas por PCR multiplex, onde os primers usados permitem distinguir pelo padrão de amplificação a presença e a ausência das deleções. Foram estudadas três mutações p.Leu213X, p.Gly160Ser, p.Gly160Cys previamente identificadas de novo na população Portuguesa. Assim, realizaram-se culturas “in vitro” de células HeLa para efetuar estudos de expressão e de imunolocalização. Usaram-se também programas de modelação tridimensional de proteínas (CHIMERA, PYMOL e PDB) para tentar esboçar a conformação da proteína mutada comparativamente com a conexina selvagem (wild type) ou não mutada. Esta última abordagem foi também aplicada no estudo da mutação p.Ala40Gly identificada na amostra em estudo. Resultados e Discussão: Os 200 indivíduos considerados no presente estudo incluem 68.5% de mulheres (n=137) e 31.5% de homens (n=63), com idades compreendidas entre os 50 e os 90 anos de idade no geral. O estudo dos audiogramas mostrou que 4.5% (n=9) dos indivíduos apresenta uma audição normal (até 20dB de perda auditiva no melhor ouvido) e 16.5% (n=32) não possuem informação, pelo que os restantes 79% (n=159) apresentam presbiacusia. Destes, 1% dos indivíduos (n=2) apresentam surdez profunda (acima dos >81dB) sendo um homem com 70 anos de idade e uma mulher de 90 anos de idade. A pesquisa de mutações no gene GJB2 encontrou 5% dos indivíduos (n=4/80) com mutações em heterozigotia. Assim, nenhum deles apresentava surdez associada a GJB2 e todos estes indivíduos foram ouvintes durante toda a sua vida enquanto jovens e adultos. Observaram-se as mutações p.Arg143Gln (n=1) p.Met93Ile (n=1) e p.Ala40Gly (n=2) identificadas pela primeira vez na população Portuguesa. No gene GJB6 não foi observada nenhuma das grandes deleções já descritas. Os estudos realizados “in vitro”, em células HeLa que passaram a expressar a proteína conexina 26 (Cx26) selvagem (wt) e mutada com p.Leu213X, p.Gly160Ser ou com p.Gly160Cys, permitiam pela técnica Western Blot, verificar a expressão apenas da conexina 26 wt não tendo sido possível quantificar os níveis de expressão da conexina mutada com nenhuma das três mutações dado que não se observaram as bandas correspondentes. A repetição destes resultados sugere a não expressão das Cx26. Os resultados de imunofluorescência na presença da mutação p.Leu213X, evidenciam uma marcação perinuclear, enquanto que tanto com a mutação p.Gly160Ser como com a mutação p.Gly160Cys se observa uma marcação mais forte no núcleo, estes dados de alguma forma apoiam os dados obtidos com o Western Blot, mas, nos controlos não foi possível observar a imunomarcação da Cx26. Da análise comparativa da hipotética sequência tridimensional da Cx26 wt com cada uma das sequências referentes às quatro mutações em estudo (p.Leu213X, p.Gly160Ser, p.Gly160Cys e p.Ala40Gly), observaram-se diferenças entre os modelos obtidos para as 4 mutações. Estes resultados parecem sugerir a patogenicidade das mutações estudadas, já que as diferenças observadas poderão levar a alterações na função da proteína expressa o que justificaria os resultados obtidos nos estudos funcionais. Conclusões: Em termos epidemiológicos, as principais conclusões deste estudo permitem indicar que na sua maioria: 1) os idosos portugueses apresentam presbiacusia (79% dos casos da amostra), Quanto aos resultados genéticos resultantes do estudo do locus DFNB1 permitem concluir que: 1) apenas 5% dos indivíduos possuem mutações em GJB2 e nenhum em GJB6, pelo que o locus DFNB1 não parece estar associado à origem da presbiacusia ainda que esta amostra apresente uma incidência de portadores maior do que a população em geral; 2) As mutações p.Leu213X, p.Gly160Ser e p.Gly160Cys parecem ser patogénicas dado que não parecem expressar-se ao contrário da proteína wt, o que é suportado por não se ter conseguido as proteínas nas células HeLa e também porque se observam diferenças nas conformações da proteína normal e das proteínas mutadas nos modelos preliminares desenvolvidos; 3) a proteína p.Ala40Gly identificada em dois indivíduos desta amostra e de patogenicidade controversa segundo a bibliografia, poderá ser patogénica considerando as diferenças observadas nas hipotéticas conformações, mas não se realizaram estudos funcionais que apoiem este dado.
Introduction: The ear is a sensory organ which function is the transmission and translation of sounds to the brain. Hearing loss is a condition where a person loses part or all of their ability to hear sound. Age-related hearing loss or presbycusis is a multifactorial illness resulting from years of intrinsic and extrinsic factors affecting the inner ear during a life time. Locus DFNB1 was the first to be identified in autosomal recessive hearing loss and contains two neighbouring genes in chromosome 13, GJB2 and GJB6, which belong to the same cluster and codify two transmembrane proteins, connexin 26 and connexin 30, respectively. Research based on genetic and molecular studies has allowed us to make huge advances in understanding hearing loss, suggesting that this condition could be avoided and treated early on. Objectives: Our specific objectives are to: 1) understand the role played by genes GJB2/GJB6 in age-related hearing loss; 2) study the new mutations that have been identified in the Portuguese population, to better understand their pathogenicity. Material and methods: Analysis of 200 DNA samples taken from the blood of elderly Portuguese volunteers. Research into the mutations was carried out on 80 samples of gene GJB2 and 120 samples of gene GJB6, amplified by PCR. Four mutations were studied: p.Leu213X, p.Gly160Ser p.Gly160Cys and p.Ala40Gly, identified in the Portuguese population. In vitro cultures of HeLa cells were performed for expression and immunolocalization studies and functional studies using 3-D protein modelling programmes. This latter approach was also applied in the study of the identified p.Ala40Gly mutation in the study sample. Results and discussion: The group of 200 people has 68.5% women (n=137) and 31.5% men (n=63) between 50 and 90 years of age. The research into the mutations in gene GJB2 found that 5% of people had a heterozygote mutation. Three mutations, p.Arg143Gln, p.Ala40Gly and p.Met93Ile, were identified for the first time in Portuguese people. Using Western Blot it was not possible to quantify the levels of expression in the mutated connexin with the three mutations. Using the immunofluorescence technique, the location of connexin 26 on the cellular membrane was not observed. In the comparative analysis of the structure of the wild Cx26 and the protein containing one of the four mutations under study, differences were seen in all four cases. The results suggest these mutations are pathogenic as the differences observed may explain alterations in the function of the protein expressed and so they may affect hearing loss. Conclusions: The main conclusions of this study, epidemiologically speaking show: 1) Portuguese elderly present presbycusis (79% dos cases).The genetic results of the studies of the DFNB1 locus allow to conclude that: 1) only 5% of individuals have GJB2 mutations and none present GJB6 mutations, so the locus DFNB1 does not seem to be an important factor in presbycusis, although a high level was found in a prevalent number of carriers of the mutations in GJB2, above that found in the population at large; 2) Mutations p.Leu213X, p.Gly160Ser and p.Gly160Cys seem to be pathogenic as they do not appear to be expressed in the cellular membranes of the cells nor is it possible to quantify their low level of expression in those cells. The differences observed in the conformations created point to this conclusion, when compared to a normal protein; 3) The Ala40Gly protein was identified in two individuals from a controversial pathogenicity sample.
Jorge, Catarina de Jesus dos Santos. "DFNB1 : surdez hereditária neurosensorial associada a mutações nos genes das conexinas." Master's thesis, 2019. http://hdl.handle.net/10451/42888.
Повний текст джерелаA surdez é a deficiência sensorial mais comum e afecta cerca de 466 milhões de pessoas em todo o mundo, das quais 34 milhões são crianças. Apesar de a surdez hereditária poder estar associada a causas adquiridas, estima-se que, de todos os casos de surdez, mais de 50% tenha uma causa genética, tendo já sido identificados mais de 100 genes em humanos associados a esta patologia. A surdez não sindrómica, corresponde a cerca de 70% dos casos congénitos e destes, cerca de 80% está associado a um padrão de hereditariedade autossómico recessivo. Neste contexto, o locus DFNB1, que inclui os genes GJB2 e GJB6, que codificam as conexinas 26 e 30, associa-se a mais de 50% dos casos. De forma a diagnosticar o mais precocemente possível estes doentes, está implementado, na maioria dos países desenvolvidos, um rastreio neonatal auditivo. Adicionalmente, recorre-se cada vez mais ao diagnóstico molecular que, para além de outras vantagens, permite identificar a etiologia nos casos de surdez genética. Actualmente, os implantes cocleares constituem uma opção segura e eficaz de reabilitação dos doentes com surdez severa a profunda neuro-sensorial. No entanto, uma maior compreensão dos mecanismos genéticos moleculares subjacentes a esta patologia possibilita o desenvolvimento de novas terapias, nomeadamente a génica coclear.
Deafness is the most common sensory impairment and affects about 466 million people worldwide, of which 34 million are children. Although hereditary deafness may be associated with acquired causes, it is estimated that, of all cases of deafness, more than 50% have a genetic cause, having already been identified more than 100 genes in humans associated with this pathology. Non-syndromic deafness accounts for about 70% of congenital cases and of which about 80% are associated with an autosomal recessive inheritance pattern. In this context, the DFNB1 locus, which includes the GJB2 and GJB6 genes, that encode the 26 and 30 connexins, is associated with more than 50% of the cases. In order to diagnose these patients as early as possible, a neonatal auditory screening test is implemented in most developed countries. In addition, molecular diagnosis is increasingly used, which, in addition to other advantages, makes it possible to identify the etiology in cases of genetic deafness. Currently, cochlear implants are a safe and effective option for the rehabilitation of patients ranging from severe to profound sensorineural deafness. However, a better understanding of the molecular genetic mechanisms underlying this pathology is enabling the development of new therapies such as cochlear genetics.
Banghová, Karolína. "Pendrin v patogenezi vrozené nedostatečnosti štítné žlázy." Doctoral thesis, 2009. http://www.nusl.cz/ntk/nusl-273887.
Повний текст джерелаЧастини книг з теми "DFNB16"
Yasunaga, S., M. Grati, and C. Petit. "DFNB9 and DFNB12." In Advances in Oto-Rhino-Laryngology, 164–67. Basel: KARGER, 2000. http://dx.doi.org/10.1159/000059097.
Повний текст джерелаScott, D. A., and V. C. Sheffield. "DFNB11." In Advances in Oto-Rhino-Laryngology, 168–70. Basel: KARGER, 2000. http://dx.doi.org/10.1159/000059095.
Повний текст джерелаDenoyelle, F., M. Mustapha, and C. Petit. "DFNB21." In Advances in Oto-Rhino-Laryngology, 153–55. Basel: KARGER, 2002. http://dx.doi.org/10.1159/000066827.
Повний текст джерелаAvraham, K. B. "DFNA15." In Advances in Oto-Rhino-Laryngology, 107–15. Basel: KARGER, 2000. http://dx.doi.org/10.1159/000059091.
Повний текст джерелаMcGuirt, W. T., S. D. Prasad, R. A. Cucci, G. F. Green, and R. J. H. Smith. "Clinical Presentation of DFNB1." In Advances in Oto-Rhino-Laryngology, 113–19. Basel: KARGER, 2002. http://dx.doi.org/10.1159/000066821.
Повний текст джерелаDenoyelle, F., and C. Petit. "DFNB9." In Advances in Oto-Rhino-Laryngology, 142–44. Basel: KARGER, 2002. http://dx.doi.org/10.1159/000066822.
Повний текст джерелаMueller, R. F., and N. J. Lench. "Mapping of the DFNB1 Locus." In Advances in Oto-Rhino-Laryngology, 116–23. Basel: KARGER, 2000. http://dx.doi.org/10.1159/000059090.
Повний текст джерелаLalwani, A. K., J. A. Goldstein, and A. N. Mhatre. "Auditory Phenotype of DFNA17." In Advances in Oto-Rhino-Laryngology, 107–12. Basel: KARGER, 2002. http://dx.doi.org/10.1159/000066818.
Повний текст джерелаGovaerts, P. J., G. De Ceulaer, K. Daemers, K. Verhoeven, G. Van Camp, I. Schatteman, M. Verstreken, P. J. Willems, T. Somers, and F. E. Offeciers. "Clinical Presentation of DFNA8-DFNA12." In Advances in Oto-Rhino-Laryngology, 60–65. Basel: KARGER, 2002. http://dx.doi.org/10.1159/000066805.
Повний текст джерелаTamagawa, Y., K. Ishikawa, K. Ishikawa, T. Ishida, K. Kitamura, S. Makino, T. Tsuru, and K. Ichimura. "Clinical Presentation of DFNA11 (MYO7A)." In Advances in Oto-Rhino-Laryngology, 79–84. Basel: KARGER, 2002. http://dx.doi.org/10.1159/000066808.
Повний текст джерелаТези доповідей конференцій з теми "DFNB16"
Back, D., S. Schraven, B. Vona, M. Hofrichter, T. Haaf, T. Rahne, R. Hagen, and W. Shehata-Dieler. "Phänotyp-Charakterisierung von 9 Patienten mit DFNB16-Gendefekt." In Abstract- und Posterband – 89. Jahresversammlung der Deutschen Gesellschaft für HNO-Heilkunde, Kopf- und Hals-Chirurgie e.V., Bonn – Forschung heute – Zukunft morgen. Georg Thieme Verlag KG, 2018. http://dx.doi.org/10.1055/s-0038-1640738.
Повний текст джерелаBack, D., S. Schraven, B. Vona, M. Hofrichter, T. Haaf, T. Rahne, R. Hagen, and W. Shehata-Dieler. "Phenotype characterization of 9 patients with mutations in DFNB16-gene." In Abstract- und Posterband – 89. Jahresversammlung der Deutschen Gesellschaft für HNO-Heilkunde, Kopf- und Hals-Chirurgie e.V., Bonn – Forschung heute – Zukunft morgen. Georg Thieme Verlag KG, 2018. http://dx.doi.org/10.1055/s-0038-1640739.
Повний текст джерелаPangrsic, T., MM Picher, V. Rankovic, and T. Moser. "Towards future gene therapy for DFNB93-associated hearing loss." In Abstract- und Posterband – 90. Jahresversammlung der Deutschen Gesellschaft für HNO-Heilkunde, Kopf- und Hals-Chirurgie e.V., Bonn – Digitalisierung in der HNO-Heilkunde. Georg Thieme Verlag KG, 2019. http://dx.doi.org/10.1055/s-0039-1686470.
Повний текст джерелаStrenzke, N., M. Pelgrim, M. Jeschke, and E. Reisinger. "Mechanisms and consequences of auditory fatigue in auditory synaptopathy DFNB9." In Abstract- und Posterband – 90. Jahresversammlung der Deutschen Gesellschaft für HNO-Heilkunde, Kopf- und Hals-Chirurgie e.V., Bonn – Digitalisierung in der HNO-Heilkunde. Georg Thieme Verlag KG, 2019. http://dx.doi.org/10.1055/s-0039-1686516.
Повний текст джерелаStrenzke, N., M. Pelgrim, M. Jeschke, and E. Reisinger. "Mechanismen und Konsequenzen der pathologischen Hörermüdung bei der auditorischen Synaptopathie DFNB9." In Abstract- und Posterband – 90. Jahresversammlung der Deutschen Gesellschaft für HNO-Heilkunde, Kopf- und Hals-Chirurgie e.V., Bonn – Digitalisierung in der HNO-Heilkunde. Georg Thieme Verlag KG, 2019. http://dx.doi.org/10.1055/s-0039-1686287.
Повний текст джерелаOestreicher, David, Shashank Chepurwar, Vladan Rankovic, Dirk Beutner, Nicola Strenzke, and Tina Pangrsic. "Ein Mausmodell für DFNB93 bestätigt eine nutzungsabhängige Verschlechterung der synaptischen übertragung und der Hörnervenfaseraktivität als zugrunde liegenden Krankheitsmechanismus." In 94. Jahresversammlung Deutsche Gesellschaft für Hals-Nasen-Ohren-Heilkunde, Kopf- und Hals-Chirurgie e.V., Bonn. Georg Thieme Verlag, 2023. http://dx.doi.org/10.1055/s-0043-1766813.
Повний текст джерелаReisinger, E., H. Al-Moyed, A. Cepeda, S. Kügler, S. Jung, and T. Moser. "Gentherapie gegen Taubheit: eine Machbarkeitsstudie zeigt die teilweise Wiederherstellung des Hörvermögens in einem Mausmodell für DFNB9." In Abstract- und Posterband – 90. Jahresversammlung der Deutschen Gesellschaft für HNO-Heilkunde, Kopf- und Hals-Chirurgie e.V., Bonn – Digitalisierung in der HNO-Heilkunde. Georg Thieme Verlag KG, 2019. http://dx.doi.org/10.1055/s-0039-1686252.
Повний текст джерелаOestreicher, David, Shashank Chepurwar, Vladan Rankovic, Dirk Beutner, Nicola Strenzke, and Tina Pangrsic. "A mouse model for DFNB93 corroborates use-dependent deterioration of Synaptic Transmission and Auditory Nerve Fiber Spiking as the underlying disease mechanism." In 94th Annual Meeting German Society of Oto-Rhino-Laryngology, Head and Neck Surgery e.V., Bonn. Georg Thieme Verlag, 2023. http://dx.doi.org/10.1055/s-0043-1767446.
Повний текст джерелаReisinger, E., H. Al-Moyed, A. Cepeda, S. Kügler, S. Jung, and T. Moser. "Gene therapy against deafness: a proof of concept study demonstrates partial rescue of hearing in a mouse model for deafness DFNB9." In Abstract- und Posterband – 90. Jahresversammlung der Deutschen Gesellschaft für HNO-Heilkunde, Kopf- und Hals-Chirurgie e.V., Bonn – Digitalisierung in der HNO-Heilkunde. Georg Thieme Verlag KG, 2019. http://dx.doi.org/10.1055/s-0039-1686481.
Повний текст джерела