Статті в журналах з теми "Detrital Provenance"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Detrital Provenance.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Detrital Provenance".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Dong, Zhicheng, Lina Zhang, and Bingfu Jin. "Detrital Mica Composition Quantitatively Indicates the Sediment Provenance along the Subei Coast to the Yangtze Estuary." Applied Sciences 12, no. 24 (December 9, 2022): 12653. http://dx.doi.org/10.3390/app122412653.

Повний текст джерела
Анотація:
The influence of large rivers on the Subei littoral plain area requires more research than the results that have been available up to now. Thus, specific diagnostic indices of detrital mica are successfully applied for the first time to identify the detritus of the Yangtze River and the ancient Yellow River and to analyze their influence on the coast in the Subei littoral plain area. Based on field investigation and sample collection, detrital mica minerals within the 0.063–0.125 mm grain size fraction were selected and identified. Their content/ratio differentiations and possible origins were analyzed. Moreover, specific diagnostic indices were evaluated for detritus identification considering these two large rivers in addition to their provenance influences on the Subei littoral plain area. The results indicate that the detrital mica contents in the Yangtze River Estuary differed from those in the ancient Yellow River Estuary. The mass percentage in the former (average value of 32.2%) was much higher than that in the latter (average value of 13.1%). The former contained abundant weathered mica, with a particle percentage of approximately 50.6%, while the latter contained abundant biotite (with a particle percentage of approximately 40.9%). Differences, including but not limited to those above, could be attributed to basic geological, climatic and hydrodynamic conditions. In particular, the mica indices were clearly distinguished between these two river estuaries. These indices constitute specific diagnostic indices for differentiating river detritus and quantitative contribution analysis of detritus provenance in the Subei littoral plain area. Finally, the changes and quantitative contributions of four diagnostic indices demonstrated that in the Subei littoral plain area, northward from the Yangtze River Estuary to sample site SBY11 located in Yangkou town, Rudong County, detrital micas were mainly affected by the Yangtze River, and southward from the ancient Yellow River Estuary to sample site SBY12 located in Bengcha town, Rudong County, detrital micas were largely affected by the ancient Yellow River. The main mixing area should be located between these two towns. This study provides both a good example and an efficient approach to the application of detrital mica in detritus identification, mixed zone determination, sediment provenance analysis and transport tracing.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Cantine, Marjorie D., Jacob B. Setera, Jill A. Vantongeren, Chiza Mwinde, and Kristin D. Bergmann. "Grain size and transport biases in an Ediacaran detrital zircon record." Journal of Sedimentary Research 91, no. 9 (September 17, 2021): 913–28. http://dx.doi.org/10.2110/jsr.2020.153.

Повний текст джерела
Анотація:
ABSTRACT Detrital-zircon records of provenance are used to reconstruct paleogeography, sediment sources, and tectonic configuration. Recognition of biases in detrital-zircon records that result from grain-size-dependent processes adds new complexity and caution to the interpretation of these records. We begin by investigating possible size-dependent biases that may affect interpretation of detrital-zircon provenance records in an idealized sedimentary system. Our modeling results show that settling and selective entrainment can differentially affect detrital-zircon spectra if an initial size variation between source zircon populations exists. We then consider a case study: a detrital-zircon record from Ediacaran to Terreneuvian strata of Death Valley, USA, with a focus on the Rainstorm Member of the Johnnie Formation. The detrital-zircon record of the Rainstorm Member shows that despite its unusual, heavy-mineral-rich character, the provenance of the unit is like other units in the succession. Size and density measurements of the grains of the deposit suggest that its enriched heavy-mineral suite is best explained through concentration by selective entrainment and winnowing. The relationship between detrital-zircon grain size and age for samples from the Johnnie Formation are consistent with grain-size influence on the interpretation of provenance, especially for large Grenville-age (1.0–1.2 Ga) zircons. Grain size can exert significant bias on a provenance interpretation and must be accounted for in provenance studies.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Martini, Michelangelo, Luigi Solari, Mariana Peña-Guerrero, Mildred Zepeda-MartÍnez, and Chiara Montomoli. "Guidelines for assessing the provenance of Mesozoic and Cenozoic clastic successions sourced by pre-Jurassic basement complexes in southernmost North America." Journal of Sedimentary Research 90, no. 5 (May 7, 2020): 513–32. http://dx.doi.org/10.2110/jsr.2020.30.

Повний текст джерела
Анотація:
ABSTRACT Mexico is an attractive place for provenance studies focused on reconstructing the tectonic evolution of North America. This is because Mexico hosts a well-preserved clastic record associated with some of the major Mesozoic and Cenozoic tectonic processes that shaped the face of this continent. However, the available information on Mexican pre-Mesozoic source terranes is presently insufficient for provenance analysis. With the aim of drawing the guidelines for provenance determination, we present here detrital modes, geochemical data, and zircon U-Pb ages for detritus derived from pre-Jurassic basement complexes of Mexico. Our data show that the various basement complexes produce distinctive detrital modes and supply diagnostic and compositionally different detrital heavy minerals that represent powerful provenance tracers. The Oaxacan Complex, Ayú Complex, and East Mexico Arc are the main sources of quartzo-feldspathic and feldspatho-quartzose detritus. Quartz with rutile needles, mesoperthitic K-feldspar, orthopyroxene, augitic to diopsidic clinopyroxene, and Mg- to Ca-rich almandine (Alm71–52Grs7–3Prp43–23Sps3–1Alm74–56Grs21–19Prp23–2Sps5–2) are common minerals in detritus from the Oaxacan Complex. The Ayú Complex supplies detritus marked by the occurrence of sagenitic biotite and white mica, as well as Mn-rich almandine (Alm69–66Grs4–3Prp18–11Sps19–10). Detritus from the East Mexico Arc contains any of these mineral phases ubiquitous in the Oaxacan and Ayú complexes. The Acatlán Complex is the main source of detritus dominated by metamorphic lithic grains and quartz, with minor amounts of feldspar. Lithic grains are rank 2–4 metabasitic, metapelitic, and metapsammitic–metafelsitic fragments. Diagnostic mineral phases are schorl–dravitic tourmaline, Na-amphibole, and helycitic garnet varying from a Ca- to Mn-rich almandine (Alm74–55Grs34–15Prp16–3Sps12–1-Alm70–46Grs20–15Prp3–1Sps32–12). Zircon U-Pb geochronology proves to have some virtues but also major limitations because: 1) the zircon U-Pb age signature of many different sources in Mexico is similar and 2) zircon documents a limited number of sources because of variations in zircon fertility.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

LIU, YU, KUNGUANG YANG, ALI POLAT, and XIAO MA. "Reconstruction of the Cryogenian palaeogeography in the Yangtze Domain: constraints from detrital age patterns." Geological Magazine 156, no. 07 (August 20, 2018): 1247–64. http://dx.doi.org/10.1017/s0016756818000535.

Повний текст джерела
Анотація:
AbstractDetrital zircons are often used to constrain the maximum sedimentary age of strata and sedimentary provenance. This study aimed at reconstructing the Cryogenian palaeogeography of the Yangtze Domain based on U–Pb ages and Lu–Hf isotopic signatures of detrital zircons from sandstones in the southeastern part of the Yangtze Domain. U–Pb ages of the youngest detrital zircon grains from the Niuguping, Gucheng and Datangpo formations yielded average ages of 712±24 Ma, 679.2±6.2 Ma and 665.1±7.4 Ma, respectively, which are close to the depositional ages of their respective formations. An integrated study of detrital zircon Lu–Hf isotopes and U–Pb ages from three samples revealed six main peak ages in the samples from the Anhua section atc. 680 Ma,c. 780 Ma,c. 820 Ma,c. 940 Ma,c. 2000 Ma andc. 2500 Ma. The characteristics of the U–Pb ages and Hf isotopes indicate a link between the north and southeast margins of the Yangtze Domain as early asc. 680 Ma, and the provenance of the coeval sedimentary sequences in the SE Yangtze Domain was the South Qinling Block on the northern margin of the Yangtze Domain. The provenance analysis on thec. 680 Ma detritus composing upper Neoproterozoic strata in the Yangtze Domain revealed that the detritus was transported southward from South Qinling to the southeast margin of the Yangtze Domain through the Exi Strait, but was hindered by the Jiangnan Orogenic Belt.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Anfinson, Owen A., Daniel F. Stockli, Joseph C. Miller, Andreas Möller, and Fritz Schlunegger. "Tectonic exhumation of the Central Alps recorded by detrital zircon in the Molasse Basin, Switzerland." Solid Earth 11, no. 6 (November 23, 2020): 2197–220. http://dx.doi.org/10.5194/se-11-2197-2020.

Повний текст джерела
Анотація:
Abstract. Eocene to Miocene sedimentary strata of the Northern Alpine Molasse Basin in Switzerland are well studied, yet they lack robust geochronologic and geochemical analysis of detrital zircon for provenance tracing purposes. Here, we present detrital zircon U–Pb ages coupled with rare-earth and trace element geochemistry to provide insights into the sedimentary provenance and to elucidate the tectonic activity of the central Alpine Orogen from the late Eocene to mid Miocene. Between 35 and 22.5 ± 1 Ma, the detrital zircon U–Pb age signatures are dominated by age groups of 300–370, 380–490, and 500–710 Ma, with minor Proterozoic age contributions. In contrast, from 21 Ma to ∼ 13.5 Ma (youngest preserved sediments), the detrital zircon U–Pb age signatures were dominated by a 252–300 Ma age group, with a secondary abundance of the 380–490 Ma age group and only minor contributions of the 500–710 Ma age group. The Eo-Oligocene provenance signatures are consistent with interpretations that initial basin deposition primarily recorded unroofing of the Austroalpine orogenic lid and lesser contributions from underlying Penninic units (including the Lepontine dome), containing reworked detritus from Variscan, Caledonian–Sardic, Cadomian, and Pan-African orogenic cycles. In contrast, the dominant 252–300 Ma age group from early Miocene foreland deposits is indicative of the exhumation of Variscan-aged crystalline rocks from the Lepontine dome basement units. Noticeable is the lack of Alpine-aged detrital zircon in all samples with the exception of one late Eocene sample, which reflects Alpine volcanism linked to incipient continent–continent collision. In addition, detrital zircon rare-earth and trace element data, coupled with zircon morphology and U∕Th ratios, point to primarily igneous and rare metamorphic sources. The observed switch from Austroalpine to Penninic detrital provenance in the Molasse Basin at ∼ 21 Ma appears to mark the onset of synorogenic extension of the Central Alps. Synorogenic extension accommodated by the Simplon fault zone promoted updoming and exhumation the Penninic crystalline core of the Alpine Orogen. The lack of Alpine detrital zircon U–Pb ages in all Oligo-Miocene strata corroborate the interpretations that between ∼ 25 and 15 Ma, the exposed bedrock in the Lepontine dome comprised greenschist-facies rocks only, where temperatures were too low for allowing zircon rims to grow, and that the Molasse Basin drainage network did not access the prominent Alpine-age Periadriatic intrusions located in the area surrounding the Periadriatic Line.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Wang, Ce, Letian Zeng, Yaping Lei, Ming Su, and Xinquan Liang. "Tracking the Detrital Zircon Provenance of Early Miocene Sediments in the Continental Shelf of the Northwestern South China Sea." Minerals 10, no. 9 (August 25, 2020): 752. http://dx.doi.org/10.3390/min10090752.

Повний текст джерела
Анотація:
Sediment provenance studies have become a major theme for source-to-sink systems and provide an important tool for assessing paleogeographic reconstruction, characterizing the depositional system, and predicting reservoir quality. The lower Miocene is an important stratigraphic unit for deciphering sediment evolution in the continental shelf of the northwestern South China Sea, but the provenance characteristics of this strata remain unclear. In this study, detrital zircon U-Pb geochronology and Lu-Hf isotopes from the lower Miocene Sanya Formation in the Yinggehai-Song Hong Basin were examined to study the provenance and its variation in the early Miocene. U-Pb dating of detrital zircons yielded ages ranging from Archean to Cenozoic (3313 to 39 Ma) and displayed age distributions with multiple peaks and a wide range of εHf(t) values (from −27.2 to +8.5). Multi-proxy sediment provenance analysis indicates that the Red River system was the major source for the sediments in the northern basin, with additional contribution from central Vietnam, and the Hainan played the most important role in contributing detritus to the eastern margin of the basin in the middle Miocene. This paper highlights the provenance of early Miocene sediments and contributes to paleogeographic reconstruction and reservoir evaluation.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

MA, XIAO, KUNGUANG YANG, and ALI POLAT. "U–Pb ages and Hf isotopes of detrital zircons from pre-Devonian sequences along the southeast Yangtze: a link to the final assembly of East Gondwana." Geological Magazine 156, no. 06 (August 22, 2018): 950–68. http://dx.doi.org/10.1017/s0016756818000511.

Повний текст джерела
Анотація:
AbstractThe Early Palaeozoic geology of the South China Craton (SCC) is characterized by an Early Palaeozoic intracontinental orogen with folded pre-Devonian strata and migmatites, MP/MT metamorphic rocks and Silurian post-orogenic peraluminous magmatic rocks in both the Yangtze and the Cathaysia blocks. In this contribution, we present new zircon U–Pb ages and Hf isotope data for detrital zircons from the Neoproterozoic to Silurian sedimentary sequences in the southeastern Yangtze Block. Samples from Neoproterozoic rocks generally display a major peak at 900–560 Ma, whereas samples from Lower Palaeozoic rocks are characterized by several broader peaks within the age ranges 600–410 Ma, 1100–780 Ma, 1.6–1.2 Ga and 2.8–2.5 Ga. Provenance analysis indicates that the 900–630 Ma detritus in Cryogenian to Ediacaran samples was derived from the Late Neoproterozoic igneous rocks in South China that acted as an internal source. The occurrence of 620–560 Ma detritus indicates the SE Yangtze was associated with Late Neoproterozoic arc volcanism along the north margin of East Gondwana. The change of provenance resulted in the deposition of 550–520 Ma and 1.1–0.9 Ga detrital zircons in the Cambrian–Ordovician sedimentary rocks. The εHf(t) values of these detrital zircons are similar to those of zircons from NW Australia–Antarctica and South India. This change of provenance in the Cambrian can be attributed to the intracontinental subduction between South China and South Qiangtang, and the convergence of India and Australia when East Gondwana finally amalgamated.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Thomas, William A., George E. Gehrels, Kurt E. Sundell, and Mariah C. Romero. "Detrital-zircon analyses, provenance, and late Paleozoic sediment dispersal in the context of tectonic evolution of the Ouachita orogen." Geosphere 17, no. 4 (May 14, 2020): 1214–47. http://dx.doi.org/10.1130/ges02288.1.

Повний текст джерела
Анотація:
Abstract New analyses for U-Pb ages and εHft values, along with previously published U-Pb ages, from Mississippian–Permian sandstones in synorogenic clastic wedges of the Ouachita foreland and nearby intracratonic basins support new interpretations of provenance and sediment dispersal along the southern Midcontinent of North America. Recently published U-Pb and Hf data from the Marathon foreland confirm a provenance in the accreted Coahuila terrane, which has distinctive Amazonia/Gondwana characteristics. Data from Pennsylvanian–Permian sandstones in the Fort Worth basin, along the southern arm of the Ouachita thrust belt, are nearly identical to those from the Marathon foreland, strongly indicating the same or a similar provenance. The accreted Sabine terrane, which is documented by geophysical data, is in close proximity to the Coahuila terrane, suggesting the two are parts of an originally larger Gondwanan terrane. The available data suggest that the Sabine terrane is a Gondwanan terrane that was the provenance of the detritus in the Fort Worth basin. Detrital-zircon data from Permian sandstones in the intracratonic Anadarko basin are very similar to those from the Fort Worth basin and Marathon foreland, indicating sediment dispersal from the Coahuila and/or Sabine terranes within the Ouachita orogen cratonward from the immediate forelands onto the southern craton. Similar, previously published data from the Permian basin suggest widespread distribution from the Ouachita orogen. In contrast to the other basins along the Ouachita-Marathon foreland, the Mississippian–Pennsylvanian sandstones in the Arkoma basin contain a more diverse distribution of detrital-zircon ages, indicating mixed dispersal pathways of sediment from multiple provenances. Some of the Arkoma sandstones have U-Pb age distributions like those of the Fort Worth and Marathon forelands. In contrast, other sandstones, especially those with paleocurrent and paleogeographic indicators of southward progradation of depositional systems onto the northern distal shelf of the Arkoma basin, have U-Pb age distributions and εHft values like those of the “Appalachian signature.” The combined data suggest a mixture of detritus from the proximal Sabine terrane/Ouachita orogenic belt with detritus routed through the Appalachian basin via the southern Illinois basin to the distal Arkoma basin. The Arkoma basin evidently marks the southwestern extent of Appalachian-derived detritus along the Ouachita-Marathon foreland and the transition southwestward to overfilled basins that spread detritus onto the southern craton from the Ouachita-Marathon orogen, including accreted Gondwanan terranes.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Thomas, William A., George E. Gehrels, Timothy F. Lawton, Joseph I. Satterfield, Mariah C. Romero, and Kurt E. Sundell. "Detrital zircons and sediment dispersal from the Coahuila terrane of northern Mexico into the Marathon foreland of the southern Midcontinent." Geosphere 15, no. 4 (June 26, 2019): 1102–27. http://dx.doi.org/10.1130/ges02033.1.

Повний текст джерела
Анотація:
AbstractNew analyses of U-Pb ages along with previously published analyses of detrital zircons from sandstones in the foreland of the Marathon orogen in west Texas have significant implications regarding provenance. The most prominent concentrations of U-Pb ages are at 1200–1000, 700–500, and 500–290 Ma. The accreted Coahuila terrane in the Marathon hinterland and nearby terranes with Gondwanan (Amazonia) affinity include Paleozoic volcanic and plutonic rocks, as well as Precambrian basement rocks. Late Paleozoic Las Delicias arc rocks have ages of 331–270 Ma. Detrital zircons from Upper Jurassic and Lower Cretaceous sandstones, which were deposited in local basins around the Coahuila terrane, provide a record of detritus available from proximal sources within Coahuila, including important peaks at 1040, 562, 422, 414, 373, and 282 Ma. Components of the detrital-zircon populations in the Marathon foreland have unique matches with primary and/or detrital sources in the Coahuila terrane. Although some components of the Marathon populations also have age matches in Laurentia (Appalachians), others do not; however, all components of the Marathon populations have potential sources in Coahuila. Analyses of εHft show generally more negative values in Amazonia than in Laurentia, and εHft values for Marathon sandstones have distributions similar to those in Amazonia. Therefore, the Coahuila terrane provides a provenance for all of the detrital-zircon ages in the Marathon foreland, requiring no mixing from other sources.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Sun, Xilin, Klaudia F. Kuiper, Yuntao Tian, Chang’an Li, Zengjie Zhang, and Jan R. Wijbrans. "Comparison of Detrital Zircon U-Pb and Muscovite 40Ar/39Ar Ages in the Yangtze Sediment: Implications for Provenance Studies." Minerals 10, no. 7 (July 20, 2020): 643. http://dx.doi.org/10.3390/min10070643.

Повний текст джерела
Анотація:
Detrital zircon U-Pb and muscovite 40Ar/39Ar dating are useful tools for investigating sediment provenance and regional tectonic histories. However, the two types of data from same sample do not necessarily give consistent results. Here, we compare published detrital muscovite 40Ar/39Ar and zircon U-Pb ages of modern sands from the Yangtze River to reveal potential factors controlling differences in their provenance age signals. Detrital muscovite 40Ar/39Ar ages of the major tributaries and main trunk suggest that the Dadu River is a dominant sediment contributor to the lower Yangtze. However, detrital zircon data suggest that the Yalong, Dadu, and Min rivers are the most important sediment suppliers. This difference could be caused by combined effects of lower reaches dilution, laser spot location on zircons and difference in closure temperature and durability between muscovite and zircon. The bias caused by sediment laser spot targeting a core or rim of zircon and zircon reworking should be considered in provenance studies.
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Thomas, William A. "Detrital-zircon geochronology and sedimentary provenance." Lithosphere 3, no. 4 (August 2011): 304–8. http://dx.doi.org/10.1130/rf.l001.1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Gutiérrez-Alonso, G., J. Fernández-Suárez, Alan S. Collins, I. Abad, and F. Nieto. "Amazonian Mesoproterozoic basement in the core of the Ibero-Armorican Arc: 40Ar/39Ar detrital mica ages complement the zircon's tale." Geology 33, no. 8 (August 1, 2005): 637–40. http://dx.doi.org/10.1130/g21485ar.1.

Повний текст джерела
Анотація:
Abstract The 40Ar/39Ar age data on single detrital muscovite grains complement U-Pb zircon ages in provenance studies, as micas are mostly derived from proximal sources and record low-temperature processes. Ediacaran and Cambrian sedimentary rocks from northwest Iberia contain unmetamorphosed detrital micas whose 40Ar/39Ar age spectra suggest an Amazonian–Middle American provenance. The Ediacaran sample contained only Neoproterozoic micas (590–783 Ma), whereas the Cambrian sample contained three age groups: Neoproterozoic (550–640 Ma, Avalonian–Cadomian–Pan African), Mesoproterozoic- Neoproterozoic boundary (ca. 920–1060 Ma, Grenvillian-Sunsas), and late Paleoproterozoic (ca. 1580–1780 Ma, Rio Negro). Comparison of 40Ar/39Ar muscovite ages with published detrital zircon age data from the same formations supports the hypothesis that the Neoproterozoic basins of northwest Iberia were located in a peri-Amazonian realm, where the sedimentary input was dominated by local periarc sources. Tectonic slivering and strike-slip transport along the northern Gondwanan margin affected both the basins and fragments of basement that were transferred from Amazonian to northern African realms during the latest Neoproterozoic–earliest Cambrian. Exhumation and erosion of these basement sources caused shedding of detritus to the Cambrian basins, in addition to detritus sourced in the continental mainland. The apparent dominance of Rio Negro–aged micas in the Cambrian sandstone suggests the presence of unexposed basement of that age beneath the core of the Ibero-Armorican Arc.
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Ershova, Victoria B., Andrei V. Prokopiev, Andrey K. Khudoley, Tom Andersen, Kåre Kullerud, and Daniil A. Kolchanov. "U–Pb Age and Hf Isotope Geochemistry of Detrital Zircons from Cambrian Sandstones of the Severnaya Zemlya Archipelago and Northern Taimyr (Russian High Arctic)." Minerals 10, no. 1 (December 30, 2019): 36. http://dx.doi.org/10.3390/min10010036.

Повний текст джерела
Анотація:
U–Pb and Lu–Hf isotope analyses of detrital zircons collected from metasedimentary rocks from the southern part of Kara Terrane (northern Taimyr and Severnaya Zemlya archipelago) provide vital information about the paleogeographic and tectonic evolution of the Russian High Arctic. The detrital zircon signatures of the seven dated samples are very similar, suggesting a common provenance for the clastic detritus. The majority of the dated grains belong to the late Neoproterozoic to Cambrian ages, which suggests the maximum depositional age of the enclosing sedimentary units to be Cambrian. The εHf(t) values indicate that juvenile magma mixed with evolved continental crust and the zircons crystallized within a continental magmatic arc setting. Our data strongly suggest that the main provenance for the studied clastics was located within the Timanian Orogen. A review of the available detrital zircon ages from late Neoproterozoic to Cambrian strata across the wider Arctic strongly suggests that Kara Terrane, Novaya Zemlya, Seward Peninsula (Arctic Alaska), Alexander Terrane, De Long Islands, and Scandinavian Caledonides all formed a single tectonic domain during the Cambrian age, with clastics predominantly sourced from the Timanian Orogen.
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Qasim, Muhammad, Javed Iqbal Tanoli, Luqman Ahmad, Lin Ding, Qasim Ur Rehman, and Umbreen Umber. "First U-Pb Detrital Zircon Ages from Kamlial Formation (Kashmir, Pakistan): Tectonic Implications for Himalayan Exhumation." Minerals 12, no. 3 (February 26, 2022): 298. http://dx.doi.org/10.3390/min12030298.

Повний текст джерела
Анотація:
This study reports the first-ever detrital zircon provenance investigation of sandstones of the Kamlial Formation, exposed in Kashmir Basin along the Kohala–Bagh road section (Muzaffarabad, Pakistan). Analysis of probability density plots of detrital U-Pb zircon ages displayed a major age population clustered around ≈400–1200 Ma and a minor age population clustered around ≈1600–1900 Ma. In addition, scattered ages existed between ≈2000 and 3000 Ma. This age pattern resembled strongly the Himalayan sources, including the Tethys Himalaya, Greater/Higher Himalaya, and Lesser Himalaya. The younger ages (<150 Ma) present in the studied samples indicated the Asian provenance. The Lesser Himalayan component (≈166–1900 Ma) was more pronounced in the 2015KM03 and 2015KM04 samples, representing the middle to the upper portion of the formation. The recycled orogen provenance of the Kamlial Formation as deduced from the sandstone petrography supports the mixed detrital zircon provenance. Considering the provenance, we propose a tectonic model that suggests that large-scale exhumation occurred in the Himalaya as a result of Panjal thrust activation during 25–14 Ma (age of Kamlial Formation), which uplifted the hinterland zone that acted as a source area that fed the foreland basin, where the Kamlial Formation deposited.
Стилі APA, Harvard, Vancouver, ISO та ін.
15

YAO, WEI-HUA, ZHENG-XIANG LI, and WU-XIAN LI. "Was there a Cambrian ocean in South China? – Insight from detrital provenance analyses." Geological Magazine 152, no. 1 (July 18, 2014): 184–91. http://dx.doi.org/10.1017/s0016756814000338.

Повний текст джерела
Анотація:
AbstractWe use detrital provenance data from Cambrian sandstones to examine whether the Yangtze and Cathaysia blocks in South China were separated by an ocean during the Cambrian period. Zircons from the Cambrian sandstones exhibit a dominant ~ 800 Ma age peak in the central Yangtze Block, being sourced from the western Yangtze Block, whereas a ~ 980 Ma peak dominates in the northwestern Cathaysia Block, being sourced from an exotic continent once connected to Cathaysia. A mixed provenance with both age peaks is found in Cambrian sandstones from the southeastern Yangtze Block, indicating that detritus can travel from the Cathaysia Block to the Yangtze Block, and therefore arguing against the existence of a broad Cambrian ocean.
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Qin, Yang, Chiyang Liu, Lihua Yang, Heng Peng, and Xiaoqin Jiao. "Detrital-Zircon Geochronology of Jurassic–Cretaceous Strata in the Turpan-Hami Basin: Implication for the Late Mesozoic Tectonic Evolution of Eastern Tien Shan." Minerals 12, no. 8 (July 22, 2022): 926. http://dx.doi.org/10.3390/min12080926.

Повний текст джерела
Анотація:
Detrital-zircon U-Pb geochronology is extensively used to imply provenance histories as one of the most common methods to constrain the tectonic evolution of ancient sedimentary systems. The rapid accumulation of detrital-zircon thermochronology data in the eastern Tien Shan region brought great convenience for understanding the basin–mountain evolution in the region. In this work, 41 samples for zircon U-Pb dating from the Jurassic–Cretaceous strata of the Turpan-Hami basin and its adjacent region were compiled. Based on the systematic investigation, comparison, and summarization of Late Mesozoic sources in the eastern Tien Shan region and the quantitative characterization of source variations, we further explored and dissected the Late Mesozoic tectonic evolution of the eastern Tien Shan orogenic belt. Data from detrital-zircon age spectra, KS tests, MDS plots, Monte Carlo simulations, etc., suggested that eastern Tien Shan was also highly active during the Mesozoic, and especially, Bogda was the most remarkable. Moreover, there was a sig-nificant differential segmental exhumation before the Late Jurassic. In general, from the Early Ju-rassic to the Cretaceous, the proportion of Bogda provenance gradually increased, especially the large-scale uplift and denudation that occurred after the development of the Qigu Formation. The provenance of central Tien Shan and Jueluotag gradually stabilized before the Cretaceous. From the Late Jurassic to the Cretaceous, the decreasing tendency of the central-Tien-Shan-provenance percentages decreased, while that of Jueluotag provenance increased. Furthermore, central Tien Shan provenance had a slightly growing trend from the Early Jurassic (38%) to the Middle Jurassic (41.3%) and then gradually decreased to 20.3%. The Central Tien Shan still accounted for a sizeable proportion of the provenance, the genesis of which suggests that it may be that provenance as-cribable to central Tien Shan still crossed the poorly uplifted Jueluotag to the Turpan-Hami basin. Similar to central Tien Shan, the provenance ascribable to Jueluotag gradually decreased from an initial 51.8% to 14.9% in the Late Jurassic, but the proportion of the provenance increased again to 26% during the Cretaceous. These features opened the prelude to the Cenozoic tectonic activities in this region. In addition, the decomposition results revealed that the inverse Monte Carlo mixed model for dissecting the provenance of sandstone samples was subject to large biases in complex geological settings, such as detrital-zircon populations, the age spectra of source areas, contempo-raneous magmatism, and recovered older strata.
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Baral, Upendra, Ding Lin, Khum N. Paudayal, Deepak Chamlagain, and Qasim Muhammad. "Erosional unroofing of Himalaya in far western Nepal: a detrital zircon U-Pb geochronology and petrography study." Journal of Nepal Geological Society 53 (December 31, 2017): 1–8. http://dx.doi.org/10.3126/jngs.v53i0.23795.

Повний текст джерела
Анотація:
Since the collision between the Indian and Asian plates, several peripheral foreland basin were formed, and started to accumulate the sediments from the hinterland Himalayan orogeny. The sediments deposited at the northern tip of the Greater India have been uplifted, exhumed after the activation of several south propagating thrusts and finally transported to the foreland basin by southward flowing fluvial system. We present petrography and detrital zircon dating for the interpretation of possible provenance of the Neogene Siwalik foreland basin sediments in far western Nepal. The QFL ternary plot for provenance analysis show a 'recycled orogeny' field for the studied sandstone samples, indicating Tethys Himalaya, Higher Himalaya and Lesser Himalaya as the source of the foreland basin sediments. The detrital zircon U-Pb ages of the studied samples have shown that during the time of deposition there was dominant numbers of detritus supplied from the Tethys and upper Lesser Himalaya. Subsequently the amount of the Higher and Lower Lesser Himalaya increased during the time of deposition of the Middle Siwalik.
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Andersen, T., M. A. Elburg, and J. Lehmann. "Enigmatic provenance signature of sandstone from the Okwa Group, Botswana." South African Journal of Geology 123, no. 3 (September 1, 2020): 331–42. http://dx.doi.org/10.25131/sajg.123.0022.

Повний текст джерела
Анотація:
Abstract Detrital zircon grains from three samples of sandstone from the Tswaane Formation of the Okwa Group of Botswana have been dated by U-Pb and analysed for Hf isotopes by multicollector LA-ICPMS. The detrital zircon age distribution pattern of the detrital zircons is dominated by a mid-Palaeoproterozoic age fraction (2 000 to 2 150 Ma) with minor late Archaean – early Palaeoproterozoic fractions. The 2 000 to 2 150 Ma zircon grains show a range of epsilon Hf from -12 to 0. The observed age and Hf isotope distributions overlap closely with those of sandstones of the Palaeoproterozoic Waterberg Group and Keis Supergroup of South Africa, but are very different from Neoproterozoic deposits in the region, and from the Takatswaane siltstone of the Okwa Group, all of which are dominated by detrital zircon grains younger than 1 950 Ma. The detrital zircon data indicate that the sources of Tswaane Formation sandstones were either Palaeoproterozoic rocks in the basement of the Kaapvaal Craton, or recycled Palaeoproterozoic sedimentary rocks similar to the Waterberg, Elim or Olifantshoek groups of South Africa. This implies a significant shift in provenance regime between the deposition of the Takatswaane and Tswaane formations. However, the detrital zircon data are also compatible with a completely different scenario in which the Tswaane Formation consists of Palaeoproterozoic sedimentary rock in tectonic rather than depositional contact with the other units of the Okwa Group.
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Bell, Elizabeth A., Patrick Boehnke, T. Mark Harrison, and Matthew M. Wielicki. "Mineral inclusion assemblage and detrital zircon provenance." Chemical Geology 477 (January 2018): 151–60. http://dx.doi.org/10.1016/j.chemgeo.2017.12.024.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Song, Jiaxuan, Hujun Gong, Jingli Yao, Huitao Zhao, Xiaohui Zhao, Yunxiang Zhang, and Biao Chen. "U–Pb Dating and Hf Isotopes Analysis of Detrital Zircons of the Shanxi Formation in the Otuokeqi Area, Northwestern Ordos Basin." Geofluids 2021 (February 25, 2021): 1–14. http://dx.doi.org/10.1155/2021/6693005.

Повний текст джерела
Анотація:
The Paleozoic strata are widely distributed in the northwest of the Ordos Basin, and the provenance attributes of the basin sediments during this period are still controversial. In this paper, the detrital zircon LA-MC-ICPMS U-Pb age test was conducted on the drilling core samples of the Shanxi Formation of the Upper Paleozoic in the Otuokeqi area of the Ordos Basin, and the provenance age and the characteristic of the Shanxi formation in the Otuokeqi area in the northwest were discussed. The cathodoluminescence image shows that the detrital zircon has a clear core-edge structure, and most of the cores have clear oscillatory zonings, which suggests that they are magmatic in origin. Zircons have no oscillatory zoning structure that shows the cause of metamorphism. The age of detrital zircon is dominated by Paleoproterozoic and can be divided into four groups, which are 2500~2300 Ma, 2100~1600 Ma, 470~400 Ma, and 360~260 Ma. The first two groups are the specific manifestations of the Precambrian Fuping Movement (2.5 billion years) and the Luliang Movement (1.8 billion years) of the North China Craton. The third and fourth groups of detrital zircons mainly come from Paleozoic magmatic rocks formed by the subduction and collision of the Siberian plate and the North China plate. The ε Hf t value of zircon ranges from -18.36 to 4.33, and the age of the second-order Hf model T DM 2 ranges from 2491 to 1175 Ma. The source rock reflecting the provenance of the sediments comes from the material recycling of the Paleoproterozoic and Mesoproterozoic in the crust, combined with the Meso-Neoproterozoic detrital zircons discovered this time, indicating that the provenance area has experienced Greenwellian orogeny.
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Yin, Jianguo, Shuai Zhang, and Zhixiong Wu. "Provenance Analysis of the Paleogene Strata in the Northern Qaidam Basin, China: Evidences from Sediment Distribution, Heavy Mineral Assemblages and Detrital Zircon U‒Pb Geochronology." Minerals 10, no. 10 (September 27, 2020): 854. http://dx.doi.org/10.3390/min10100854.

Повний текст джерела
Анотація:
Using provenance analysis to build an accurate source-to-sink relationship is the key to infer mountain building scenarios around the Qaidam Basin, and also important to understanding the uplift and expansion of the Tibetan Plateau. However, some conflicting provenance inferences are caused by different interpretations for the prevalent existence of the late Paleozoic to early Mesozoic age group in detrital zircon U‒Pb age spectra of the Paleogene strata at the northern Qaidam Basin, and these need to be resolved. In this article, an integrated study of sediment distribution, heavy mineral assemblages, and detrital zircon U‒Pb geochronology is carried out to analyze provenance of the Paleogene strata at the northern Qaidam Basin. The decreasing trends of the net sand to gross thickness ratios and conglomerate percentages away from the Qilian Mountains and Altyn Tagh range to basin interior clearly support they are the provenance areas. Sedimentation of materials from the Altyn Tagh range is spatially confined to a small area in front of the mountains. A large sandy body with a uniform distribution of detrital zircon ages (containing a lot of the late Paleozoic to early Mesozoic zircon ages) and heavy mineral assemblages in the Xiaganchaigou Formation is supplied by the Qilian Mountains.
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Yue, Wei, Xiyuan Yue, Lingmin Zhang, Xianbin Liu, and Jian Song. "Morphology of Detrital Zircon as a Fingerprint to Trace Sediment Provenance: Case Study of the Yangtze Delta." Minerals 9, no. 7 (July 17, 2019): 438. http://dx.doi.org/10.3390/min9070438.

Повний текст джерела
Анотація:
Deltaic areas and marginal seas are important archives that document information on regional tectonic movement, sea level rise, river evolution, and climate change. Here, sediment samples from boreholes of the Yangtze Delta and the modern Yangtze drainage were collected. A quantitative analysis of detrital zircon morphology was used to discuss the provenance evolution of the Yangtze Delta. This research demonstrated that a dramatic change in sediment provenance occurred in the transition from the Pliocene to Quaternary. Zircon grains in the Pliocene sediments featured euhedral crystals with large elongation (>3 accounted for 13.2%) and were closely matched to tributary samples in the Lower Yangtze (>3 accounted for 11.3%), suggesting sediment provenance from the proximal river basin. However, most detrital zircon grains of the Quaternary samples exhibited lower values of elongation and increased roundness (rounded grains were 9.4%), which was similar to those found in the modern Yangtze mainstream (rounded grains were 12.5%) and the middle tributaries (rounded grains were 7.0%). The decrease in zircon elongation and improvement of its roundness in the Quaternary strata implied that the Yangtze Delta received sediments of different provenance that originated from the Middle-Upper Yangtze basin due to the uplift of the Tibetan Plateau. Statistical analysis of detrital zircon morphology has proven useful for studying the source-to-sink of sediments.
Стилі APA, Harvard, Vancouver, ISO та ін.
23

STEPHAN, TOBIAS, UWE KRONER, and ROLF L. ROMER. "The pre-orogenic detrital zircon record of the Peri-Gondwanan crust." Geological Magazine 156, no. 2 (February 8, 2018): 281–307. http://dx.doi.org/10.1017/s0016756818000031.

Повний текст джерела
Анотація:
AbstractWe present a statistical approach to data mining and quantitatively evaluating detrital age spectra for sedimentary provenance analyses and palaeogeographic reconstructions. Multidimensional scaling coupled with density-based clustering allows the objective identification of provenance end-member populations and sedimentary mixing processes for a composite crust. We compiled 58 601 detrital zircon U–Pb ages from 770 Precambrian to Lower Palaeozoic shelf sedimentary rocks from 160 publications and applied statistical provenance analysis for the Peri-Gondwanan crust north of Africa and the adjacent areas. We have filtered the dataset to reduce the age spectra to the provenance signal, and compared the signal with age patterns of potential source regions. In terms of provenance, our results reveal three distinct areas, namely the Avalonian, West African and East African–Arabian zircon provinces. Except for the Rheic Ocean separating the Avalonian Zircon Province from Gondwana, the statistical analysis provides no evidence for the existence of additional oceanic lithosphere. This implies a vast and contiguous Peri-Gondwanan shelf south of the Rheic Ocean that is supplied by two contrasting super-fan systems, reflected in the zircon provinces of West Africa and East Africa–Arabia.
Стилі APA, Harvard, Vancouver, ISO та ін.
24

McMechan, Margot, Lisel Currie, Barry Richards, Filippo Ferri, William Matthews, and Paul O’Sullivan. "Zircon provenance of the Carboniferous Mattson delta complex, western Laurentian margin, Canada: record of a Greenland-sourced pancontinental river system." Canadian Journal of Earth Sciences 55, no. 10 (October 2018): 1129–38. http://dx.doi.org/10.1139/cjes-2018-0060.

Повний текст джерела
Анотація:
New detrital zircon U–Pb dates for seven late Viséan to Bashkirian (Middle Mississippian to Lower Pennsylvanian) Mattson and Kindle formation sandstone samples from the Mattson delta complex in the Liard Basin of northeastern British Columbia, combined with two previously published detrital zircon samples from these units, indicate a dominant Greenland Caledonian clastic wedge and orogen source with a small contribution of Ellesmerian-aged material. This provenance remained consistent over time. The Labrador–Greenland high was the only paleogeographically viable source area during the time of deposition of the Mattson delta complex. Detritus deposited on the western margin of Laurentia in the Mattson delta complex was likely transported southwestward by a late Viséan to Bashkirian pancontinental river system. This conclusion contrasts with previous interpretations which proposed that these sediments were recycled from the Ellesmerian clastic wedge. Tectonic uplift and denudation of eastern Greenland provided detritus from the Silurian to Devonian Caledonian clastic wedge and orogen to the western margin of Laurentia and detritus from the Caledonian orogen to the Serpukhovian to middle Bashkirian (Namurian) conglomeratic successions of the Millstone Grits in England. Detrital zircon U–Pb dates for two samples from the unconformably overlying Cisuralian (lower Permian) Tika formation are similar to those of the Mattson delta complex samples, as are those from the Pennsylvanian Spray Lakes Group of the southern Prophet Trough, indicating they all probably shared the same dominant source areas. The Tika formation was mainly derived from recycling of the Mattson and other Caledonide-sourced sediments of northern Laurentia.
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Cao, Licheng, Tao Jiang, and Jingke He. "Fingerprinting sand from Asian rivers to the deep central South China Sea since the Late Miocene." GSA Bulletin 133, no. 9-10 (January 21, 2021): 1964–78. http://dx.doi.org/10.1130/b35845.1.

Повний текст джерела
Анотація:
Abstract The complex sedimentary processes from source to sink lead to a substantial fractionation of sediment size and composition. Relatively coarse-grained, continent-derived detritus is rarely transported and deposited in the deep ocean, and the terminus of this sediment routing system is poorly understood. Sandy turbidite deposits within the Upper Miocene–Pleistocene strata drilled in the deep central South China Sea during the International Ocean Discovery Program (IODP) Expedition 349 provide valuable samples for evaluating the evolution of sediment contributions from different Asian landmasses. This study reconstructs this ancient source-to-sink system based on an integration of heavy mineral and detrital zircon analyses (including U-Pb age, trace element, grain size and shape), obtained from IODP sites U1431 and U1432, as well as a zircon age-based mixture modeling of well-defined provenance end-members. The results show several provenance shifts that correspond to more complex and dynamic source-to-sink scenarios than previously envisaged. Certain source areas, like East Vietnam, present a different provenance signature than that of today. Multiple provenances have been mixed and diluted during sediment transport, exhibiting a large regional variability. We interpret that siliciclastic turbidite deposits in the central South China Sea were mainly derived from East Vietnam during the early Late Miocene and Pliocene, and the Pearl River Basin during the late Late Miocene and Pleistocene. Additional, but less significant, contributions from the Red and Mekong river basins and coastal Southeast China are also observed.
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Beranek, Luke P., Victoria Pease, Robert A. Scott, and Tonny B. Thomsen. "Detrital zircon geochronology of Ediacaran to Cambrian deep-water strata of the Franklinian basin, northern Ellesmere Island, Nunavut: implications for regional stratigraphic correlations." Canadian Journal of Earth Sciences 50, no. 10 (October 2013): 1007–18. http://dx.doi.org/10.1139/cjes-2013-0026.

Повний текст джерела
Анотація:
Enigmatic successions of deep-water strata referred to as the Nesmith beds and Grant Land Formation comprise the exposed base of the Franklinian passive margin sequence in northern Ellesmere Island, Nunavut. To test stratigraphic correlations with Ediacaran to Cambrian shallow-water strata of the Franklinian platform that are inferred by regional basin models, >500 detrital zircons from the Nesmith beds and Grant Land Formation were analyzed for sediment provenance analysis using laser ablation (LA–ICP–MS) and ion-microprobe (SIMS) methods. Samples of the Nesmith beds and Grant Land Formation are characterized by 1000–1300, 1600–2000, and 2500–2800 Ma detrital zircon age distributions and indicate provenance from rock assemblages of the Laurentian craton. In combination with regional stratigraphic constraints, these data support an Ediacaran to Cambrian paleodrainage model that features the Nesmith beds and Grant Land Formation as the offshore marine parts of a north- to northeast-directed depositional network. Proposed stratigraphic correlations between the Nesmith beds and Ediacaran platformal units of northern Greenland are consistent with the new detrital zircon results. Cambrian stratigraphic correlations within northern Ellesmere Island are permissive, but require further investigation because the Grant Land Formation provenance signatures agree with a third-order sedimentary system that has been homogenized by longshore current or gravity-flow processes, whereas coeval shallow-water strata yield a restricted range of detrital zircon ages and imply sources from local drainage areas or underlying rock units. The detrital zircon signatures of the Franklinian passive margin resemble those for the Cordilleran and Appalachian passive margins of Laurentia, which demonstrates the widespread recycling of North American rock assemblages after late Neoproterozoic continental rifting and breakup of supercontinent Rodinia.
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Barr, Sandra M., Deanne Van Rooyen, Brent V. Miller, Chris E. White, and Susan C. Johnson. "Detrital zircon signatures in Precambrian and Paleozoic sedimentary units in southern New Brunswick – more pieces of the puzzle." Atlantic Geology 55 (October 2, 2019): 275–322. http://dx.doi.org/10.4138/atlgeol.2019.010.

Повний текст джерела
Анотація:
Southern New Brunswick consists of a complex collage of fault-bounded belts of Late Neoproterozoic igneous and metamorphic rocks, Early Paleozoic sedimentary, metamorphic and igneous units, and overlying Carboniferous sedimentary rocks. The area also contains the boundary between the Avalonian and Ganderian terranes as interpreted in the northern Appalachian orogen. New detrital zircon ages reported here provide improved understanding of depositional ages and provenance of diverse Neoproterozoic to Carboniferous rocks in this complex area. Detrital zircon data from samples with Neoproterozoic maximum depositional ages indicate a dominantly Gondwanan provenance with a strong influence from the Amazonian craton. However, quartzite from The Thoroughfare Formation on Grand Manan Island contains dominanly 2 Ga zircon grains, consistent with derivation from the West African Craton. The age spectrum is similar to that from the Hutchins Island Quartzite in the Isleboro block in Penobscot Bay, Maine, strengthening the previously proposed correlation between the two areas. Cambrian samples also show prominent peri-Gondwanan provenance with strong influence from Ediacaran to Early Cambrian arc magmatism. The maximum depositional ages of these samples are consistent with previous interpretations of Cambrian ages based on fossil correlations and field data. A Carboniferous sample from Avalonia shows a significant contribution from Devonian magmatism as the youngest detrital component, although its depositional age based on field relationships is Carboniferous. The results exemplify the need to integrate multiple datasets in making interpretations from detrital zircon data.
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Koshnaw, Renas I., Fritz Schlunegger, and Daniel F. Stockli. "Detrital zircon provenance record of the Zagros mountain building from the Neotethys obduction to the Arabia–Eurasia collision, NW Zagros fold–thrust belt, Kurdistan region of Iraq." Solid Earth 12, no. 11 (November 3, 2021): 2479–501. http://dx.doi.org/10.5194/se-12-2479-2021.

Повний текст джерела
Анотація:
Abstract. Recognition of a new angular unconformity and the synthesis of new detrital zircon U–Pb and (U–Th) / He provenance records, including zircon (U–Th) / He double dating, from the NW Zagros region elucidate the basin dynamics of the foreland wedge-top and intermontane units, as well as the tectonic processes in the source terranes in response to the different geodynamic phases. In this contribution, we present field observations and detrital zircon provenance data from hinterland basins to reconstruct the basin dynamics and the underlying tectonic controls in the NW Zagros area in the Kurdistan region of Iraq. Results reveal that the deposition of the suture zone units of the Red Beds Series (RBS; Suwais Group, Govanda Formation, Merga Group) occurred in an intermontane basin on top of folded Upper Cretaceous units and that the RBS deposits rest with an angular unconformity on the underlying older strata. The RBS provenance data point to the Paleogene Walash–Naopurdan–Kamyaran (WNK) complex as a source area and imply a substantial decrease in magmatism by ∼ 36 Ma, as reflected by the youngest age peaks. New detrital zircon provenance data from the hinterland wedge-top units of the proto-Zagros foreland basin (the Tanjero, Kolosh, and Gercus formations) exhibit exclusive derivation from the Upper Cretaceous Neotethys ophiolitic terranes, which differs from the provenance of the older Lower Cretaceous and Paleozoic units that are dominated by the Paleozoic and Neoproterozoic age spectra. These shifts in provenance between different tectonostratigraphic units argue for a sediment source reversal from the west to the east in response to ophiolite obduction, arrival of the WNK complex, and commencement of the Arabia–Eurasia continental collision during the latest Eocene (< 36 Ma). According to the provenance data, the incipient collision was followed by the deposition of the RBS in the hinterland of the proto-Zagros fold–thrust belt as well as the connection of drainages with the collision-related Neogene foreland basin.
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Krasnobaev, A. A., V. N. Puchkov, N. D. Sergeeva, and S. V. Busharina. "The sources of zircons in clastic rocks of the Riphean deposits of the Urals." Доклады Академии наук 488, no. 4 (October 10, 2019): 413–19. http://dx.doi.org/10.31857/s0869-56524884413-419.

Повний текст джерела
Анотація:
New age determinations of detrital zircons of sandstones augmented the possibilities of interpretation of their provenance. This interpretation is often restricted by a formal comparison of age-and-composition characteristics of detrital crystals with any very distant model objects. A different situation arises when the role of a source of a detritus is claimed by local objects. The analysis of SHRIMP and TIMS - datеs of zircons and U and Th concentrations in them, and also a comparison of histograms of primary zircons from Riphean volcanics and rocks of the Taratash complex on one hand and the detrital zircons from the sandstones of Vendian (Asha series) and Lower Riphean (Ai Formation) on the other, have shown that the age variations of sources and clastics are comparable in many aspects. It means that the age characteristics of primary zircons from the Riphean volcanics and rocks of the Taratash complex as sources of zircon clastics for the Riphean and Vendian sandstones in the Southern Urals are regulated by processes of resedimentation, though the influence of distant sources is not excluded.
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Khan, Zuhi, and A. H. M. Ahmad. "Provenance, tectonic setting and palaeoclimate of the Ridge Sandstone of Jumara Dome, Kachchh, Gujarat." Journal of Palaeosciences 65, no. (1-2) (December 31, 2016): 189–201. http://dx.doi.org/10.54991/jop.2016.310.

Повний текст джерела
Анотація:
This study deals with petrography, provenance, tectonic setting and palaeoclimate of the Ridge Sandstone Member encountered in the Jumara Dome, Kachchh, Gujarat. The sandstones in this member are medium to coarse grained, poorly to moderately sorted and sub angular to sub rounded. Framework grains are sand–sized to silt–sized particles of mainly detrital origin. Among the main detrital framework grains, quartz constitutes 55.42–96.09%, feldspar 4.9–27.76%, and lithic fragments 0–3.73%. These sandstones have been classified as sub–arkose to arkose in composition and were deposited in continental block provenance with stable craton in rifted continental margin basin setting in a humid climate with the source material from either the Aravalli or Nagar Parker massif.
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Vozárová, Anna, Nickolay Rodionov, and Katarína Šarinová. "Recycling of Paleoproterozoic and Neoproterozoic crust recorded in Lower Paleozoic metasandstones of the Northern Gemericum (Western Carpathians, Slovakia): Evidence from detrital zircons." Geologica Carpathica 70, no. 4 (August 1, 2019): 298–310. http://dx.doi.org/10.2478/geoca-2019-0017.

Повний текст джерела
Анотація:
Abstract U–Pb (SHRIMP) detrital zircon ages from the Early Paleozoic meta-sedimentary rocks of the Northern Gemericum Unit (the Smrečinka Formation) were used to characterize their provenance. The aim was to compare and reconcile new analyses with previously published data. The detrital zircon age spectrum demonstrates two prominent populations, the first, Late Neoproterozoic (545–640 Ma) and the second, Paleoproterozoic (1.8–2.1 Ga), with a minor Archean population (2.5–3.4 Ga). The documented zircon ages reflect derivation of the studied metasedimentary rocks from the Cadomian arc, which was located along the West African Craton. The acquired data supports close relations of the Northern Gemericum basement with the Armorican terranes during Neoproterozoic and Ordovician times and also a close palinspastic relation with the other crystalline basements of the Central Western Carpathians. In comparison, the detrital zircons from the Southern Gemericum basement and its Permian envelope indicate derivation from the Pan-African Belt–Saharan Metacraton provenance.
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Pointon, Michael A., Helen Smyth, Jenny E. Omma, Andrew C. Morton, Simon Schneider, Peter Hülse, Stephen J. Rippington, et al. "A Multi-proxy Provenance Study of Late Carboniferous to Middle Jurassic Sandstones in the Eastern Sverdrup Basin and Its Bearing on Arctic Palaeogeographic Reconstructions." Geosciences 13, no. 1 (December 28, 2022): 10. http://dx.doi.org/10.3390/geosciences13010010.

Повний текст джерела
Анотація:
A multi-proxy provenance study of Late Carboniferous to Middle Jurassic sandstones from the eastern Sverdrup Basin was undertaken employing optical petrography and heavy mineral analysis, chemical analysis of apatite, garnet and rutile grains, as well as detrital zircon U–Pb geochronology and Hf isotope analysis. Late Carboniferous to Middle Jurassic strata on the southern basin margin are inferred as being predominantly reworked from Silurian to Devonian strata within the adjacent Franklinian Basin succession. Higher-grade metamorphic detritus appeared during Middle to Late Triassic times and indicates exhumation and erosion of lower (Neoproterozoic to Cambrian) levels within the Franklinian Basin succession and/or a direct detrital input from the Canadian-Greenland Shield. The provenance of northern-derived sediments is more enigmatic owing to the subsequent opening of the Arctic Ocean. Northern-derived Middle Permian to Early Triassic sediments were likely derived from proximal areas of the Chukotkan part of the Arctic Alaska-Chukotka microplate. Late Triassic northern-derived sediments have different detrital zircon U–Pb age spectra from Middle Permian to Early Triassic ones and were likely derived from the Uralian orogenic belt and/or the Arctic Uralides. The loss of this sand input during latest Triassic times is interpreted to reflect drainage reorganisation farther upstream on the Barents Shelf. Middle Jurassic sands in the northern and axial parts of the basin were largely reworked from local northern-derived Late Triassic strata. This may have been facilitated by rift flank uplift of the northern basin margin in response to rifting in the adjacent proto-Amerasia Basin.
Стилі APA, Harvard, Vancouver, ISO та ін.
33

VORSTER, CLARISA, JAN KRAMERS, NIC BEUKES, and HERMAN VAN NIEKERK. "Detrital zircon U–Pb ages of the Palaeozoic Natal Group and Msikaba Formation, Kwazulu-Natal, South Africa: provenance areas in context of Gondwana." Geological Magazine 153, no. 3 (August 7, 2015): 460–86. http://dx.doi.org/10.1017/s0016756815000370.

Повний текст джерела
Анотація:
AbstractThe Natal Group and Msikaba Formation remain relatively poorly understood with regards to their provenance and relative age of deposition; a much-needed geochronological study of the detrital zircons from these two units was therefore undertaken. Five samples of the Durban and Mariannhill Formations (Natal Group) and the Msikaba Formation (Cape Supergroup) were obtained. A total of 882 concordant U–Pb ages of detrital zircon populations from these units were determined by means of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Major Neoproterozoic and secondary Mesoproterozoic detrital zircon age populations are present in the detrital zircon content of all the samples. Smaller contributions from Archean-, Palaeoproterozoic-, Cambrian- and Ordovician-aged grains are also present. Due to the presence of a prominent major population of 800–1000 Ma zircons in all the samples, late Stenian – Tonian ancient volcanic arc complexes overprinted by Pan-African metamorphism of Mozambique, Malawi and Zambia, along with areas of similar age within Antarctica, India and Sri Lanka, are suggested as major sources of detritus. The Namaqua–Natal Metamorphic Complex is suggested as a possible source of minor late Mesoproterozoic-aged detritus. Minor populations of Archean and Palaeoproterozoic zircons were likely sourced from the Kaapvaal and Grunehogna Cratons. Post-orogenic Cambrian – Lower Ordovician granitoids of the Mozambique Belt (Mozambique) and the Maud Belt (Antarctica) made lesser contributions. In view of the apparent broad similarity of source areas for the Natal Group and Msikaba Formation, their sedimentation occurred in parts of the same large and evolving basin rather than localized in small continental basins, and the current exposures merely represent small erosional relicts.
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Krasnobaev, A. A., V. N. Puchkov, N. D. Sergeeva, and S. V. Busharina. "Nature of zircon clastics in the Riphean and Vendian sandstones of the Southern Urals." Georesursy 21, no. 1 (March 30, 2019): 15–25. http://dx.doi.org/10.18599/grs.2019.1.15-25.

Повний текст джерела
Анотація:
New age dates of detrital zircons of terrigenous rocks augmented the possibilities of interpretation of their provenance. Unfortunately this interpretation is restricted by a formal comparison of age-and-composition characteristics of detrital crystals with any very distant model objects. The paper deals with a situation when the role of a source of a detritus is claimed by local objects. When comparing the age parameters of primary and detrital crystals of zircons, the data on Riphean volcanics and ancient metamorphics of the Taratash complex of the Southern Urals were used. Specifying the ideas on the nature of the zircon clastics (detritus) and its relationships with primary zircons of sources, a role of processes of mechanical abrasion is pointed out, leading to a clearing of heterogenous primary grains of defect crystals, which results in an accumulation of crystals of more homogenous appearance. The analysis of SHRIMP and TIMS-dates of zircons and U and Th concentrations in them, and also a comparison of histograms of primary zircons from Riphean volcanics and rocks of the Taratash complex on one hand and the detrital zircons from the Vendian and Riphean sandstones of the Southern Urals on the other, have shown that the age variations of both are rather comparable. It means that the age characteristics of primary zircons from the Riphean volcanics and rocks of the Taratash complex as sources of zircon clastics for the Riphean and Vendian sandstones are regulated by processes of resedimentation, and a detrital fraction of zircons is formed at the expense of local objects. The participation of very distant sources is not excluded, but in our case it is not detected.
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Liu, Chaohui, Guochun Zhao, Fulai Liu, Jianrong Shi, and Lei Ji. "Detrital zircon records of late Paleoproterozoic to early Neoproterozoic northern North China Craton drainage reorganization: Implications for supercontinent cycles." GSA Bulletin 132, no. 9-10 (March 9, 2020): 2135–53. http://dx.doi.org/10.1130/b35506.1.

Повний текст джерела
Анотація:
Abstract Statherian through Tonian strata of the Langshan–Zha’ertai–Bayan Obo–Huade rift zone (LZBH) at the northern margin of the North China Craton provide an excellent record of changes in sediment provenance related to the supercontinent dispersal and amalgamation. During the late Paleoproterozoic to early Neoproterozoic, the LZBH developed over the Yinshan Block and was flanked by the Khondalite Belt to the south, the Trans–North China Orogen and Yanliao rift zone to the east, ultimately preserving a &gt;7000-m-sequence of fluvial, marginal marine, and offshore marine sediments. In order to decipher the influence of these tectonic features on sediment delivery to the area, we evaluated 4955 U-Pb and 1616 Lu-Hf analyses from 66 samples across the entire LZBH, of which 1002 U-Pb and 271 Lu-Hf analyses from 12 samples are newly reported herein. The detrital zircon results indicate three stratigraphic intervals with internally consistent age peaks: (1) Changcheng to lower Jixian system (Statherian–lower Calymmian), (2) upper Jixian system (upper Calymmian), and (3) Qingbaikou system (Tonian). Statistical analysis of the detrital zircon results reveals two distinct changes in sediment provenance. The first transition, between the lower and upper Calymmian, reflects a provenance change from the basement of the Yinshan Block and the Khondalite Belt to a mixed signature, indicating derivation from both basement and Statherian rift-related magmatic products. Such a transition implies establishment of east–west drainage systems traversing the Paleoproterozoic Trans–North China Orogen caused by continued rifting since Statherian and pre-magmatic uplift during breakup of the North China Craton from the Columbia supercontinent. The second transition is indicated by the presence of Mesoproterozoic detrital zircons with juvenile Hf isotopic features since Tonian time and the up-section and northward increase of Mesoproterozoic detrital zircons. Their provenance is interpreted to be the Fennoscandian shield by a pancontinental drainage system related to aggregation of the Rodinia supercontinent. Thus, the detrital zircon spectra in the LZBH document the transition from initial unroofing of local uplifted basement of the Yinshan Block and Khondalite Belt to the distant Yanliao rift zone, then to the more distant Fennoscandian shield.
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Xu, Zhongjie, Yizhi Lan, Jintao Kong, Rihui Cheng, and Liaoliang Wang. "Detrital zircon U–Pb dating of Late Triassic Wenbinshan Formation in southwestern Fujian, South China, and its geological significance." Canadian Journal of Earth Sciences 55, no. 8 (August 2018): 980–96. http://dx.doi.org/10.1139/cjes-2018-0007.

Повний текст джерела
Анотація:
Based on research of the petrology, geochemistry, and zircon U–Pb dating of detrital rocks in the Late Triassic Wenbinshan Formation in southwestern Fujian, and comparing the detrital zircon ages of Wenbinshan Formation with those of Late Paleozoic – Early Mesozoic main basins in South China, the sedimentary provenance of the Late Triassic in southwestern Fujian and its implications for changes in basin properties are discussed. The research results demonstrate that there is a major age peak at 222 Ma, two subordinate age peaks at 275 Ma and 1851 Ma, and two minor age peaks at 413 Ma and 2447 Ma in the detrital zircon age spectra of the upper samples (YGP–6) of the Wenbinshan Formation, whereas there are two major age peaks at 229 Ma and 1817 Ma and other minor age peaks 265 Ma 309 Ma, 415 Ma, 1968 Ma, and 2435 Ma in the detrital zircon age spectra of the lower samples (YGP–26) of the Wenbinshan Formation. The upper samples contain fewer old detrital zircons than the lower samples, but the upper and lower samples of Wenbinshan Formation are similar in major age composition, which indicates the main provenances of the upper and lower sediments are very similar. The source rocks are mainly sedimentary rocks and their provenances are derived from a source area of recycled orogenic belt and volcanic arc orogenic belt (acidic island arc). The detrital zircon composition of the Wenbinshan Formation is mainly composed of Paleoproterozoic zircon and Late Paleozoic – Early Mesozoic zircon. In the Paleoproterozoic, sedimentary provenances were mainly derived from the Wuyi Massif and partly from northwestern Fujian-southwestern Zhejiang. As for the period of Late Paleozoic – Early Mesozoic, the provenances of the Wenbinshan Formation were derived from magmatic active belts of the Early Indosinian Epoch of northern South China, eastern South China, and the Indosinian Period of northern South China and coastal areas of eastern South China. The similarities and differences between detrital zircon age peaks of the Wenbinshan Formation in southwestern Fujian and that of the main basins in South China during the period of Late Paleozoic – Early Mesozoic indicate that from eastern coastal areas of South China to the north and interior of South China, the age composition of basin sediments has changed from simple to relatively complex, and from young sediments to older sediments. There are similarities and differences in the detrital zircon compositions of the different basins, which can indicate differences in the nature of the basins.
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Chang, Zhe, Zhiqian Gao, Liangliang Zhang, Tailiang Fan, Duan Wei, and Jingbin Wang. "Provenance of Ordovician Malieziken Group, Southwest Tarim and Its Implication on the Paleo-Position of Tarim Block in East Gondwana." Minerals 13, no. 1 (December 27, 2022): 42. http://dx.doi.org/10.3390/min13010042.

Повний текст джерела
Анотація:
Tarim is inferred to have a close connection with East Gondwana during the Ordovician, but the position in East Gondwana remains controversial. In this study, we report 316 detrital zircons U-Pb data from three samples of Ordovician Malieziken Group sedimentary rocks, collected in the Qiate Section, Southwest Tarim, provided new insight into the position of Tarim in East Gondwana. Detrital zircons data indicated the maximum depositional age for the three samples is 489.5 Ma, 478.1 Ma, and 465 Ma, respectively, indicating the Qiate and Kandilike Formation of the Malieziken Group was deposited in Early—Middle Ordovician. The detrital zircons are characterized by two main peaks at ~490 Ma and ~1100 Ma, and three subordinate peaks at ~880 Ma, ~1400 Ma, and ~1650 Ma, suggesting most of the detritus of Malieziken Group from the South Kunlun Terrane (SKT) itself. However, the source of the ~1650 Ma peak is not found in the Tarim block, and the ~1400 Ma and the ~1650 Ma peak are absent in the middle of the three samples, which implied that there is an exotic source. The Paleoproterozoic sediment strata in the Albany–Fraser belt shows dominant peaks at ~1400 Ma and ~1650 Ma may have been transported to SKT and redeposited in the Malieziken Group during the Ordovician. The Malieziken Group shows detrital zircon age patterns resembling those of East Sumatra, Lhasa, and Western Australia which, in combination with the Albany–Fraser belt provenance, enables us to propose that the Tarim block has a close linkage with Western Australia, East Sumatra, and Lhasa in East Gondwana.
Стилі APA, Harvard, Vancouver, ISO та ін.
38

WU, LONG, DONG JIA, HAIBIN LI, FEI DENG, and YIQUAN LI. "Provenance of detrital zircons from the late Neoproterozoic to Ordovician sandstones of South China: implications for its continental affinity." Geological Magazine 147, no. 6 (September 7, 2010): 974–80. http://dx.doi.org/10.1017/s0016756810000725.

Повний текст джерела
Анотація:
AbstractThe U–Pb geochronology of 687 detrital zircons from the voluminous Upper Neoproterozoic–Ordovician succession in the Wuyishan Fold Belt of South China reveals a common dominant c. 1200–950 Ma group, indicative of an outboard provenance terrane with a Grenville-age province to the southeast during the late Neoproterozoic–Early Palaeozoic. Compared with coeval samples from the Gondwanan and eastern Laurentian margins, our data show a scarcity of distinctive Gondwanan provenances (c. 650–500 Ma) and reveal some Laurentian signatures. These results argue against the peri-Gondwanan setting for South China during the late Neoproterozoic–Ordovician, instead implying a Laurentian affinity.
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Xie, Xiaofeng, Zhenning Yang, Huan Zhang, Ali Polat, Yang Xu, and Xin Deng. "Finding of Ca. 1.6 Ga Detrital Zircons from the Mesoproterozoic Dagushi Group, Northern Margin of the Yangtze Block." Minerals 11, no. 4 (March 31, 2021): 371. http://dx.doi.org/10.3390/min11040371.

Повний текст джерела
Анотація:
The middle Mesoproterozoic is a crucial time period for understanding the Precambrian tectonic evolutionary history of the northern Yangtze Block and its relationship with the supercontinent Columbia. The Dagushi Group (Gp) is one of the Mesoproterozoic strata rarely found at the northern margin of the Yangtze Block. U–Pb geochronology and Lu–Hf isotopic analyses of detrital zircons were analyzed for three metamorphic quartz sandstone samples collected from the Luohanling and Dangpuling formations of the Dagushi Gp. These metasandstones yielded major zircon populations at ~2.65 Ga and ~1.60 Ga, respectively. The ~1.60 Ga ages first discovered yield a narrow range of ɛHf(t) values from −1.8 to +1.8, which lie above the old crust evolutionary line of the Yangtze Block, suggesting the addition of mantle material. Trace element data indicate that ~1.60 Ga detrital zircons share a basic provenance, whereby they have low Hf/Th and high Nb/Yb ratios. Zircon discrimination diagrams suggest that the ~1.60 Ga detrital zircon source rocks formed in an intra-plate rifting environment. Dagushi Gp provenance studies indicate that the ~1.60 Ga detrital zircon was most likely sourced from the interior Yangtze Block. Thus, we suggest that the late Paleoproterozoic to early Mesoproterozoic continental break-up occurred at the northern margin of the Yangtze Block.
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Stuart, F. M. "The exhumation history of orogenic belts from 40Ar/39Ar ages of detrital micas." Mineralogical Magazine 66, no. 1 (February 2002): 121–35. http://dx.doi.org/10.1180/0026461026610017.

Повний текст джерела
Анотація:
AbstractThe exhumation history of mountain belts can be derived from radiometric dating of detrital mineral grains in proximal and distal post- and synorogenic sediments. The application of single-crystal dating techniques avoids the averaging effect that characterizes multi-grain and whole-rock techniques and allows the identification of populations of grains with distinct thermal histories. Of the major single crystal dating methods available, 40Ar/39Ar dating of detrital K-bearing minerals, in particular white mica, is perhaps the most versatile and widely applied technique. For a closure temperature of Ar of 350–400°C, muscovite 40Ar/39Ar ages record the time a rock mass passed through 8–10 km beneath actively eroding mountain belts. Detrital muscovit ages eroded from orogenic mountain belts have been used extensively to identify the provenance of sediments from source regions with distinct thermal histories, determine the history and rate of exhumation of the source region, and provide an upper limit on the sediment age. Here I review the principles of 40Ar/39Ar dating of detrital muscovite and illustrate the method with examples showing how the provenance and the thermal history of sediment source regions derived from such studies can be used to constrain the exhumation and tectonic history of orogenic belts.
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Sun, Fengyu, Gaoshe Cao, and Qikai Zhou. "Provenance and tectonic implications of the Yanshi bauxite area in Western Henan, China." E3S Web of Conferences 261 (2021): 03058. http://dx.doi.org/10.1051/e3sconf/202126103058.

Повний текст джерела
Анотація:
The bauxite layer in Western Henan supplies a large number of bauxite ores and is useful for studying tectonic movement. In this paper, the bauxite samples were selected to carry out LA-ICP-MS detrital zircons U-Pb dating and Hf isotope testing. The results indicated that the detrital zircons with the Early Paleozoic ages were mainly derived from the North Qinling Orogenic Belt. The detrital zircons of the Precambrian age may be derived mainly from the basement of the North China Block and the North Qinling Orogenic Belt. The results of this study support the opinion that the North Qinling Orogenic Belt has been uplifted at ~310 Ma, and the surface of the southern craton has an overall north-dipping topography at this time.
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Stockli, Daniel F., and Yani M. R. Najman. "Earth’s Dynamic Past Revealed by Detrital Thermochronometry." Elements 16, no. 5 (October 1, 2020): 311–17. http://dx.doi.org/10.2138/gselements.16.5.311.

Повний текст джерела
Анотація:
A dvances in detrital noble gas thermochronometry by 40Ar/39Ar and (U–Th)/He dating are improving the resolution of sedimentary provenance reconstructions and are providing new insights into the evolution of Earth’s surface. Detrital thermochronometry has the ability to quantify tectonic unroofing or erosion, temporal and dynamic connections between sediment source and sink, sediment lag-times and transfer rates, the timing of deposition, and postdepositional burial heating. Hence, this technique has the unique ability to use the detrital record in sedimentary basins to reconstruct Earth’s dynamic long-term landscape evolution and how basins are coupled to their hinterlands.
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Scott, David J., Richard A. Stern, Marc R. St-Onge, and Sarah M. McMullen. "U–Pb geochronology of detrital zircons in metasedimentary rocks from southern Baffin Island: implications for the Paleoproterozoic tectonic evolution of Northeastern Laurentia." Canadian Journal of Earth Sciences 39, no. 5 (May 1, 2002): 611–23. http://dx.doi.org/10.1139/e01-093.

Повний текст джерела
Анотація:
A geochronological investigation of metasedimentary rocks from southern Baffin Island using the Geological Survey of Canada SHRIMP II (sensitive high-resolution ion microprobe) has characterized the ages of detrital zircon populations to determine their provenance, bracket timing of deposition, and distinguish potentially distinct sequences of rocks. Four lithologically and structurally distinct metasedimentary packages have been identified; each appears to have been derived from a different source region. In the structurally lowest package, all analysed zircons are Archean, and > 90% have ages between 2.83 and 2.63 Ga; these rocks are interpreted as the northernmost exposures of the Paleoproterozoic Povungnituk Group of the Cape Smith Belt, northern Quebec, with detritus derived from the Superior craton. Occupying the intermediate structural levels, the most abundant supracrustal rocks on southern Baffin Island are siliciclastic and carbonate units of the Lake Harbour Group, and the Tasiuyak paragneiss. Five samples show a dominantly Paleoproterozoic signature (2.2–1.9 Ga), with only rare Archean zircons; the provenance of this detritus is uncertain. In the distinct package of feldspathic quartzite and pelite that stratigraphically overlies the Lake Harbour Group, all of the analysed detrital grains are Archean, ~80% are > 2.83 Ga, with a small proportion of the grains in excess of 3.0 Ga; all of this material is thought to be derived from the Archean craton exposed on the Hall Peninsula east of the study area. Finally, at the highest structural level, a sample associated with the Hall Peninsula orthogneisses contains zircons with prominent modes at 2.92, 2.82, and 2.77 Ga, consistent with derivation from the surrounding orthogneisses.
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Vozárová, Anna, Patrik Konečný, Marek Vďačný, Jozef Vozár, and Katarína Šarinová. "Provenance of Permian Malužiná Formation sandstones (Hronicum, Western Carpathians): evidence from monazite geochronology." Geologica Carpathica 65, no. 5 (October 1, 2014): 329–41. http://dx.doi.org/10.2478/geoca-2014-0023.

Повний текст джерела
Анотація:
Abstract The Permian Malužiná Formation and the Pennsylvanian Nižná Boca Formation are Upper Paleozoic volcano- sedimentary complexes in the Hronicum nappe system. Sandstones, shales and conglomerates are the dominant lithological members of the Malužiná Formation sequence. Detrital monazites were analysed by electron microprobe, to obtain Th-U-Pb ages of the source areas. The majority of detrital monazites showed Devonian-Mississippian ages, ranging from 330 to 380 Ma with a weighted average of 351 ± 3.3 (2σ), that correspond well with the main phase of arcrelated magmatic activity in the Western Carpathians. Only a small portion of detrital monazites displayed Permian ages in the range of 250-280 Ma, with a significant maximum around 255 Ma. The weighted average corresponds to 255 ± 6.2 Ma. These monazites may have been partially derived from the synsedimentary acid volcanism that was situated on the margins of the original depositional basin. However, some of the Triassic ages (230-240 Ma), reflect, most likely, the genetic relationship with the overheating connected with Permian and subsequent Triassic extensional regime. Detrital monazite ages document the Variscan age of the source area and also reflect a gradual development of the Hronicum terrestrial rift, accompanied by the heterogeneous cooling of the lithosphere.
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Schönig, Jan, Guido Meinhold, Hilmar von Eynatten, and Nils K. Lünsdorf. "Provenance information recorded by mineral inclusions in detrital garnet." Sedimentary Geology 376 (November 2018): 32–49. http://dx.doi.org/10.1016/j.sedgeo.2018.07.009.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

McConnell, Brian, Nancy Riggs, and Quentin G. Crowley. "Detrital zircon provenance and Ordovician terrane amalgamation, western Ireland." Journal of the Geological Society 166, no. 3 (May 2009): 473–84. http://dx.doi.org/10.1144/0016-76492008-081.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Sickmann, Zachary T., Theresa M. Schwartz, Matthew A. Malkowski, Stephen C. Dobbs, and Stephan A. Graham. "Interpreting large detrital geochronology data sets in retroarc foreland basins: An example from the Magallanes-Austral Basin, southernmost Patagonia." Lithosphere 11, no. 5 (July 12, 2019): 620–42. http://dx.doi.org/10.1130/l1060.1.

Повний текст джерела
Анотація:
Abstract The Magallanes-Austral retroarc foreland basin of southernmost South America presents an excellent setting in which to examine interpretive methods for large detrital zircon data sets. The source regions for retroarc foreland basins generally, and the Magallanes-Austral Basin specifically, can be broadly divided into (1) the magmatic arc, (2) the fold-and-thrust belt, and (3) sources around the periphery of foreland flexural subsidence. In this study, we used an extensive detrital zircon data set (30 new, 87 previously published samples) that is complemented by a large modal provenance data set of 183 sandstone petrography samples (32 new, 151 previously published) and rare earth element geochemical analyses (130 previously published samples) to compare the results of empirical (multidimensional scaling) and interpretive (age binning based on source regions) treatments of detrital zircon data, ultimately to interpret the detailed evolution of sediment dispersal patterns and their tectonic controls in the Magallanes-Austral Basin. Detrital zircon sample groupings based on both a priori age binning and multidimensional scaling are required to maximize the potential of the Magallanes-Austral Basin data set. Multidimensional scaling results are sensitive to differences in major unimodal arc-related U-Pb detrital zircon ages and less sensitive to differences in multimodal, thrust belt–related age peaks. These sensitivities complicate basin-scale interpretations when data from poorly understood, less densely sampled sectors are compared to data from better-understood, more densely sampled sectors. Source region age binning alleviates these biases and compares well with multidimensional scaling results when samples from the less well-understood southern basin sector are excluded. Sample groupings generated by both multidimensional scaling and interpretive methods are also compatible with compositional provenance data. Together, this integration of provenance data and methods facilitates a detailed interpretation of sediment dispersal patterns and their tectonic controls for the Late Cretaceous to Eocene fill of the Magallanes-Austral retroarc foreland basin. We interpret that provenance signatures and dispersal patterns during the retroarc foreland phase were fundamentally controlled by conditions set by a predecessor extensional basin phase, including (1) variable magnitude of extension with latitude, (2) the composition of lithologies emplaced on the antecedent western flank, and (3) long-lasting structural discontinuities associated with early rifting that may have partitioned dispersal systems or controlled the location of long-lived drainage networks.
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Wang, Yanpeng, Wentao Yang, Shenyuan Peng, Shuaishuai Qi, and Deshun Zheng. "Early Triassic Conversion from Source to Sink on the Southern Margin of the North China Craton: Constraints by Detrital Zircon U-Pb Ages." Minerals 10, no. 1 (December 19, 2019): 7. http://dx.doi.org/10.3390/min10010007.

Повний текст джерела
Анотація:
Provenance analysis of sediments provides important constraints on basin formation and orogenic processes. With the aim to define the sedimentary provenance and tectonic evolution of the southern margin of the North China Craton, this paper presents new detrital zircon U-Pb data from Early Triassic sediments in the Yiyang area. The results showed major peaks at 1848, 458, 425, and 268 Ma and subordinate peaks at ca. 2500, 872, and 957 Ma on age spectra from the Liujiagou Formation. The Heshanggou Formation exhibited a major age peak at 445 Ma and subordinate peaks at 755 and 947 Ma. Integrated with the analysis of sandstone detrital compositions, we suggest that the sources of the Liujiagou Formation were mainly a mixture of the southern margin of the North China Craton and the North Qinling Orogenic Belt, whereas the Heshanggou Formation was derived primarily from the North Qinling Orogenic Belt. Age comparisons of detrital zircon geochronology collected from different basins in the North China Craton indicated that the paleogeography of the North China Craton during the Early Triassic was strongly asymmetric, wherein the uplifted highland along the southern margin of the North China Craton was relatively lower than the northern margin. Meanwhile, the marked shift in source region from the Liujiagou to the Heshanggou formations provides a constraint regarding the conversion from denuded zone to deposited zone along the southern margin of the North China Craton in the Early Triassic, which controlled the evolution of the provenance and sedimentary system.
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Mahoney, J. Brian, James W. Haggart, Marty Grove, David L. Kimbrough, Virginia Isava, Paul K. Link, Mark E. Pecha, and C. Mark Fanning. "Evolution of the Late Cretaceous Nanaimo Basin, British Columbia, Canada: Definitive provenance links to northern latitudes." Geosphere 17, no. 6 (November 8, 2021): 2197–233. http://dx.doi.org/10.1130/ges02394.1.

Повний текст джерела
Анотація:
Abstract Accurate reconstruction of the Late Cretaceous paleogeography and tectonic evolution of the western North American Cordilleran margin is required to resolve the long-standing debate over proposed large-scale, orogen-parallel terrane translation. The Nanaimo Basin (British Columbia, Canada) contains a high-fidelity record of orogenic exhumation and basin subsidence in the southwestern Canadian Cordillera that constrains the tectonic evolution of the region. Integration of detrital zircon U-Pb geochronology, conglomerate clast U-Pb geochronology, detrital muscovite 40Ar/39Ar thermochronology, and Lu-Hf isotopic analysis of detrital zircon defines a multidisciplinary provenance signature that provides a definitive linkage with sediment source regions north of the Sierra Nevada arc system (western United States). Analysis of spatial and temporal provenance variations within Nanaimo Group strata documents a bimodal sediment supply with a local source derived from the adjacent magmatic arc in the southern Coast Mountains batholith and an extra-regional source from the Mesoproterozoic Belt Supergroup and the Late Cretaceous Atlanta lobe of the Idaho batholith. Particularly robust linkages include: (1) juvenile (εHf &gt;+10) Late Cretaceous zircon derived from the southern Coast Mountains batholith; (2) a bimodal Proterozoic detrital zircon signature consistent with derivation from Belt Supergroup (1700–1720 Ma) and ca. 1380 Ma plutonic rocks intruding the Lemhi subbasin of central Idaho (northwestern United States); (3) quartzite clasts that are statistical matches for Mesoproterozoic and Cambrian strata in Montana and Idaho (northwestern United States) and southern British Columbia; and (4) syndepositional evolved (εHf &gt;−10) Late Cretaceous zircon and muscovite derived from the Atlanta lobe of the Idaho batholith. These provenance constraints support a tectonic restoration of the Nanaimo Basin, the southern Coast Mountains batholith, and Wrangellia to a position outboard of the Idaho batholith in Late Cretaceous time, consistent with proposed minimal- fault- offset models (&lt;~1000 km).
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Coutts, Daniel S., William A. Matthews, Rebecca G. Englert, Morgan D. Brooks, Marie-Pier Boivin, and Stephen M. Hubbard. "Along-strike variations in sediment provenance within the Nanaimo basin reveal mechanisms of forearc basin sediment influx events." Lithosphere 12, no. 1 (February 1, 2020): 180–97. http://dx.doi.org/10.1130/l1138.1.

Повний текст джерела
Анотація:
Abstract The along-strike variability in sediment provenance within the Nanaimo basin is important for understanding the tectonic evolution of North America’s Late Cretaceous Pacific margin, providing context for paleogeographic reconstructions. Here, we provide 35 point-counted sandstone samples and 22 new detrital zircon samples from the Nanaimo basin. These new detrital zircon samples compose a portion of a basin-wide data set (N = 49, n = 10,942) that is leveraged to discern spatio-temporal changes in sediment provenance. Provenance data demonstrates that the majority of Nanaimo basin strata were sourced from regions within and east of the Coast Mountains Batholith, while only the southernmost Nanaimo basin, exposed in the San Juan Islands, was supplied sediment from the North Cascade thrust system. Additionally, near-identical age modes and synchronous changes in detrital zircon facies are used to hypothesize a correlation between the Nanaimo Group and the protolith of the Swakane Gneiss. These observations, along with previously identified events in the Cordillera, are used to define two basin-wide events that affected the Nanaimo basin: the first at 84 Ma and the second at 72 Ma. The first event is correlated to the onset of Kula-Farallon spreading, which affected basin subsidence, introduced Proterozoic detrital zircon to the central and southern Nanaimo basin, and uplifted the North Cascade thrust system. The second basin-wide event, which is speculated to have been driven by increased rates of subduction and obliquity, resulted in localized high-flux events in the arc, increased exhumation of the Cascade Crystalline Core, underplating of the Swakane Gneiss, and coarse-grained sedimentation across the basin. The data presented here provides added context for the evolution of the basin and provides insight into the protracted geodynamics of forearc basins undergoing oblique subduction.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії