Зміст
Добірка наукової літератури з теми "Détection d’anomalies réseaux"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Détection d’anomalies réseaux".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Détection d’anomalies réseaux"
ZIDAOUI, I., C. JOANNIS, J. WERTEL, S. ISEL, C. WEMMERT, J. VAZQUEZ, and M. DUFRESNE. "Utilisation de l’intelligence artificielle pour la validation des mesures en continu de la pollution des eaux usées." Techniques Sciences Méthodes 11 (November 21, 2022): 39–51. http://dx.doi.org/10.36904/tsm/202211039.
Повний текст джерелаBOICHARD, D., Aurélien CAPITAN, Coralie DANCHIN-BURGE, and Cécile GROHS. "Avant-propos : Anomalies génétiques." INRA Productions Animales 29, no. 5 (January 9, 2020): 293–96. http://dx.doi.org/10.20870/productions-animales.2016.29.5.2995.
Повний текст джерелаColpitts, Alexander G. B., and Brent R. Petersen. "Unsupervised Anomaly Detection for Rural Fixed Wireless LTE Networks Détection d’anomalies non supervisée pour les réseaux fixes ruraux sans fil LTE." IEEE Canadian Journal of Electrical and Computer Engineering, 2023, 1–6. http://dx.doi.org/10.1109/icjece.2023.3275975.
Повний текст джерелаДисертації з теми "Détection d’anomalies réseaux"
Maudoux, Christophe. "Vers l’automatisation de la détection d’anomalies réseaux." Electronic Thesis or Diss., Paris, HESAM, 2024. http://www.theses.fr/2024HESAC009.
Повний текст джерелаWe live in a hyperconnected world. Currently, the majority of the objects surrounding us exchangedata either among themselves or with a server. These exchanges consequently generate networkactivity. It is the study of this network activity that interests us here and forms the focus of thisthesis. Indeed, all messages and thus the network traffic generated by these devices are intentionaland therefore legitimate. Consequently, it is perfectly formatted and known. Alongside this traffic,which can be termed ”normal,” there may exist traffic that does not adhere to expected criteria. Thesenon-conforming exchanges can be categorized as ”abnormal” traffic. This illegitimate traffic can bedue to several internal and external causes. Firstly, for purely commercial reasons, most of theseconnected devices (phones, watches, locks, cameras, etc.) are poorly, inadequately, or not protectedat all. Consequently, they have become prime targets for cybercriminals. Once compromised, thesecommunicating devices form networks capable of launching coordinated attacks : botnets. The trafficinduced by these attacks or the internal synchronization communications within these botnets thengenerates illegitimate traffic that needs to be detected. Our first contribution aims to highlight theseinternal exchanges, specific to botnets. Abnormal traffic can also be generated when unforeseen orextraordinary external events occur, such as incidents or changes in user behavior. These events canimpact the characteristics of the exchanged traffic flows, such as their volume, sources, destinations,or the network parameters that characterize them. Detecting these variations in network activity orthe fluctuation of these characteristics is the focus of our subsequent contributions. This involves aframework and resulting methodology that automates the detection of these network anomalies andpotentially raises real-time alerts
Legrand, Adrien. "Détection, anticipation, action face aux risques dans les bâtiments connectés." Electronic Thesis or Diss., Amiens, 2019. http://www.theses.fr/2019AMIE0058.
Повний текст джерелаThis thesis aims to exploit the future mass of data that will emerge from the large number of connected objects to come. Focusing on data from connected buildings, this work aims to contribute to a generic anomaly detection system. The first year was devoted to defining the problem, the context and identifying the candidate models. The path of autoencoder neural networks has been selected and justified by a first experiment. A second, more consistent experiment, taking more into account the temporal aspect and dealing with all classes of anomalies was conducted in the second year. This experiment aims to study the improvements that recurrence can bring in response to convolution within an autoencoder used in connected buildings. The results of this study were presented and published in an IEEE conference on IoT in Egypt. The last year was devoted to improving the use of auto-encoder by proposing to include an estimate of uncertainty in the original operation of the auto-encoder. These tests, conducted on various known datasets initially and then on a connected building dataset later, showed improved performance and were published in an IEEE IA conference
Nguyen, Van Khang. "Détection et agrégation d'anomalies dans les données issues des capteurs placés dans des smartphones." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLL021/document.
Повний текст джерелаMobile and wireless networks have developed enormously over the recent years. Far from being restricted to industrialized countries, these networks which require a limited fixed infrastructure, have also imposed in emerging countries and developing countries. Indeed, with a relatively low structural investment as compared to that required for the implementation of a wired network, these networks enable operators to offer a wide coverage of the territory with a network access cost (price of devices and communications) quite acceptable to users. Also, it is not surprising that today, in most countries, the number of wireless phones is much higher than landlines. This large number of terminals scattered across the planet is an invaluable reservoir of information that only a tiny fraction is exploited today. Indeed, by combining the mobile position and movement speed, it becomes possible to infer the quality of roads or road traffic. On another level, incorporating a thermometer and / or hygrometer in each terminal, which would involve a ridiculous large-scale unit cost, these terminals could serve as a relay for more reliable local weather. In this context, the objective of this thesis is to study and analyze the opportunities offered by the use of data from mobile devices to offer original solutions for the treatment of these big data, emphasizing on optimizations (fusion, aggregation, etc.) that can be performed as an intermediate when transferred to center(s) for storage and processing, and possibly identify data which are not available now on these terminals but could have a strong impact in the coming years. A prototype including a typical sample application will validate the different approaches
Nguyen, Van Khang. "Détection et agrégation d'anomalies dans les données issues des capteurs placés dans des smartphones." Electronic Thesis or Diss., Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLL021.
Повний текст джерелаMobile and wireless networks have developed enormously over the recent years. Far from being restricted to industrialized countries, these networks which require a limited fixed infrastructure, have also imposed in emerging countries and developing countries. Indeed, with a relatively low structural investment as compared to that required for the implementation of a wired network, these networks enable operators to offer a wide coverage of the territory with a network access cost (price of devices and communications) quite acceptable to users. Also, it is not surprising that today, in most countries, the number of wireless phones is much higher than landlines. This large number of terminals scattered across the planet is an invaluable reservoir of information that only a tiny fraction is exploited today. Indeed, by combining the mobile position and movement speed, it becomes possible to infer the quality of roads or road traffic. On another level, incorporating a thermometer and / or hygrometer in each terminal, which would involve a ridiculous large-scale unit cost, these terminals could serve as a relay for more reliable local weather. In this context, the objective of this thesis is to study and analyze the opportunities offered by the use of data from mobile devices to offer original solutions for the treatment of these big data, emphasizing on optimizations (fusion, aggregation, etc.) that can be performed as an intermediate when transferred to center(s) for storage and processing, and possibly identify data which are not available now on these terminals but could have a strong impact in the coming years. A prototype including a typical sample application will validate the different approaches
Gil, Casals Silvia. "Risk assessment and intrusion detection for airbone networks." Thesis, Toulouse, INSA, 2014. http://www.theses.fr/2014ISAT0021/document.
Повний текст джерелаAeronautics is actually facing a confluence of events: connectivity of aircraft is graduallyincreasing in order to ease the air traffic management and aircraft fleet maintainability, andto offer new services to passengers while reducing costs. The core avionics functions are thuslinked to what we call the Open World, i.e. the non-critical network of an aircraft as well asthe air traffic services on the ground. Such recent evolutions could be an open door to cyberattacksas their complexity keeps growing. However, even if security standards are still underconstruction, aeronautical certification authorities already require that aircraft manufacturersidentify risks and ensure aircraft will remain in a safe and secure state even under threatconditions.To answer this industrial problematic, this thesis first proposes a simple semi-quantitative riskassessment framework to identify threats, assets and vulnerabilities, and then rank risk levelsaccording to threat scenario safety impact on the aircraft and their potential likelihood byusing adjustable attribute tables. Then, in order to ensure the aircraft performs securely andsafely all along its life-cycle, our second contribution consists in a generic and autonomousnetwork monitoring function for intrusion detection based on Machine Learning algorithms.Different building block options to compose this monitoring function are proposed such as:two ways of modeling the network traffic through characteristic attributes, two MachineLearning techniques for anomaly detection: a supervised one based on the One Class SupportVector Machine algorithm requiring a prior training phase and an unsupervised one based onsub-space clustering. Since a very common issue in anomaly detection techniques is thepresence of false alarms, we prone the use of the Local Outlier Factor (a density indicator) toset a threshold in order to distinguish real anomalies from false positives.This thesis summarizes the work performed under the CIFRE (Convention Industrielle deFormation par la Recherche) fellowship between THALES Avionics and the CNRS-LAAS atToulouse, France
Merino, Laso Pedro. "Détection de dysfonctionements et d'actes malveillants basée sur des modèles de qualité de données multi-capteurs." Thesis, Ecole nationale supérieure Mines-Télécom Atlantique Bretagne Pays de la Loire, 2017. http://www.theses.fr/2017IMTA0056/document.
Повний текст джерелаNaval systems represent a strategic infrastructure for international commerce and military activity. Their protection is thus an issue of major importance. Naval systems are increasingly computerized in order to perform an optimal and secure navigation. To attain this objective, on board vessel sensor systems provide navigation information to be monitored and controlled from distant computers. Because of their importance and computerization, naval systems have become a target for hackers. Maritime vessels also work in a harsh and uncertain operational environments that produce failures. Navigation decision-making based on wrongly understood anomalies can be potentially catastrophic.Due to the particular characteristics of naval systems, the existing detection methodologies can't be applied. We propose quality evaluation and analysis as an alternative. The novelty of quality applications on cyber-physical systems shows the need for a general methodology, which is conceived and examined in this dissertation, to evaluate the quality of generated data streams. Identified quality elements allow introducing an original approach to detect malicious acts and failures. It consists of two processing stages: first an evaluation of quality; followed by the determination of agreement limits, compliant with normal states to identify and categorize anomalies. The study cases of 13 scenarios for a simulator training platform of fuel tanks and 11 scenarios for two aerial drones illustrate the interest and relevance of the obtained results
Touati, Redha. "Détection de changement en imagerie satellitaire multimodale." Thèse, 2019. http://hdl.handle.net/1866/22662.
Повний текст джерелаCette recherche a pour objet l’étude de la détection de changements temporels entre deux (ou plusieurs) images satellitaires multimodales, i.e., avec deux modalités d’imagerie différentes acquises par deux capteurs hétérogènes donnant pour la même scène deux images encodées différemment suivant la nature du capteur utilisé pour chacune des prises de vues. Les deux (ou multiples) images satellitaires multimodales sont prises et co-enregistrées à deux dates différentes, avant et après un événement. Dans le cadre de cette étude, nous proposons des nouveaux modèles de détection de changement en imagerie satellitaire multimodale semi ou non supervisés. Comme première contribution, nous présentons un nouveau scénario de contraintes exprimé sur chaque paire de pixels existant dans l’image avant et après changement. Une deuxième contribution de notre travail consiste à proposer un opérateur de gradient textural spatio-temporel exprimé avec des normes complémentaires ainsi qu’une nouvelle stratégie de dé-bruitage de la carte de différence issue de cet opérateur. Une autre contribution consiste à construire un champ d’observation à partir d’une modélisation par paires de pixels et proposer une solution au sens du maximum a posteriori. Une quatrième contribution est proposée et consiste à construire un espace commun de caractéristiques pour les deux images hétérogènes. Notre cinquième contribution réside dans la modélisation des zones de changement comme étant des anomalies et sur l’analyse des erreurs de reconstruction dont nous proposons d’apprendre un modèle non-supervisé à partir d’une base d’apprentissage constituée seulement de zones de non-changement afin que le modèle reconstruit les motifs de non-changement avec une faible erreur. Dans la dernière contribution, nous proposons une architecture d’apprentissage par paires de pixels basée sur un réseau CNN pseudo-siamois qui prend en entrée une paire de données au lieu d’une seule donnée et est constituée de deux flux de réseau (descripteur) CNN parallèles et partiellement non-couplés suivis d’un réseau de décision qui comprend de couche de fusion et une couche de classification au sens du critère d’entropie. Les modèles proposés s’avèrent assez flexibles pour être utilisés efficacement dans le cas des données-images mono-modales.