Добірка наукової літератури з теми "Détecteur à puits quantiques"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Détecteur à puits quantiques".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Détecteur à puits quantiques"
Bastard, G., C. Delalande, Y. Guldner, and M. Voos. "Mobilité des puits quantiques étroits." Revue de Physique Appliquée 24, no. 1 (1989): 79–81. http://dx.doi.org/10.1051/rphysap:0198900240107900.
Повний текст джерелаGRYBA, T., and J. E. LEFEBVRE. "MODULATEURS ACOUSTO-OPTIQUES À PUITS QUANTIQUES MULTIPLES." Le Journal de Physique IV 02, no. C1 (April 1992): C1–1133—C1–1136. http://dx.doi.org/10.1051/jp4:19921250.
Повний текст джерелаBoucaud, P., and F. H. Julien. "Génération de second-harmonique dans les puits quantiques asymetriques GaAs-AlGaAs." Journal de Physique III 1, no. 1 (January 1991): 13–28. http://dx.doi.org/10.1051/jp3:1991105.
Повний текст джерелаJulien, F. H., J. M. Lourtioz, N. Herschkorn, D. Delacourt, J. P. Pocholle, M. Papuchon, R. Planel, and G. Le Roux. "Non-linéarités d'absorption intrabande dans les puits quantiques GaAs-AlxGa1-xAs." Revue de Physique Appliquée 24, no. 1 (1989): 37–43. http://dx.doi.org/10.1051/rphysap:0198900240103700.
Повний текст джерелаCheng, SuPing, François Brillouet, and François Alexandre. "Étude de la sous-linéarité du gain dans les lasers à puits quantiques." Annales des Télécommunications 43, no. 3-4 (March 1988): 109–11. http://dx.doi.org/10.1007/bf02999515.
Повний текст джерелаAndré, R., F. Boeuf, Le Si Dang, J. Kasprzak, M. Richard, R. Romestain, J. Bleuse, and M. Müller. "Vers le laser à polaritons : apport des microcavités semiconductrices à puits quantiques CdTe." Journal de Physique IV (Proceedings) 119 (November 2004): 9–12. http://dx.doi.org/10.1051/jp4:2004119002.
Повний текст джерелаQuillec, M. "Puits quantiques et superréseaux à base de III-V pour l'optoélectronique: fabrication et usages." Annales de Physique 20, no. 5-6 (1995): 735–42. http://dx.doi.org/10.1051/anphys:199556068.
Повний текст джерелаFortin, ER, and AP Roth. "Quelques propriétés optiques et électro-optiques des super-réseaux et puits quantiques semiconducteurs InGaAs/GaAs." Journal de Chimie Physique 88 (1991): 2197–209. http://dx.doi.org/10.1051/jcp/1991882197.
Повний текст джерелаNaouri, M. "Traitement de télangiectasies sur granulome par laser à puits quantiques pompés par diode, émettant à 532nm." Annales de Dermatologie et de Vénéréologie 140, no. 6-7 (June 2013): S207. http://dx.doi.org/10.1016/j.annder.2013.04.049.
Повний текст джерелаBoucher, Y. G., J. Le Rouzo, I. Ribet, R. Haïdar, and N. Guérineau. "Description matricielle de l'anisotropie de la transition inter-sous-bande d'une structure à multi-puits quantiques." Journal de Physique IV (Proceedings) 135, no. 1 (October 2006): 99–101. http://dx.doi.org/10.1051/jp4:2006135016.
Повний текст джерелаДисертації з теми "Détecteur à puits quantiques"
Gendron, Laure. "Transport électronique dans les détecteurs infrarouge à puits quantiques." Paris 7, 2005. http://www.theses.fr/2005PA077215.
Повний текст джерелаThis thesis deals with multi quantum wells infrared photodetectors (QWIPs). These photoconductor detectors, developed at Thales Research and Technology, are-at the heart of tomorrow's thermal cameras: night vision, in all weathers. . . For 10 years research, works at TRT allowed to reach a comprehension level of photodetection mechanisms precise enough to conceive a modelling tool. However a!l the working mechanisms of these devices are not totally controlled up to now. In order to suppress ail risks and to optimise these detectors toward a third generation working at higher temperature, progresses have to go through an additional effort of modelling. This research was centred on the electronic transport which is indeed a crucial point for these structures : the photoconductive detectors performances are limited by the dark current. We study basic mechanisms taking place in heterostructures as injection mechanism, electric field reconfiguration or impact ionisation phenomena. We also study a new type of photodetector based on electron transfer on a cascade of energy levels that works in a photovoltaic mode : a Quantum Cascade Detecter (QCD). Working with no applied bias, QCD is promising for small pixel, large Focal Plane Arrays where integration time and capacitor filling is a critical issue
Machhadani, Houssaine. "Transitions intersousbandes dans les puits quantiques GaN/AlN du proche infrarouge au THz." Phd thesis, Université Paris Sud - Paris XI, 2011. http://tel.archives-ouvertes.fr/tel-00591962.
Повний текст джерелаKoeniguer, Cédric. "Transport électronique dans les détecteurs à cascade quantique." Phd thesis, Université Paris-Diderot - Paris VII, 2008. http://tel.archives-ouvertes.fr/tel-00491605.
Повний текст джерелаAntoni, Thomas. "Structures de couplage optique originales pour les détecteurs infrarouge à puits quantiques." Phd thesis, Université Paris-Diderot - Paris VII, 2009. http://tel.archives-ouvertes.fr/tel-00441495.
Повний текст джерелаCarras, Mathieu. "Optimisation électronique et électromagnétique de détecteurs quantiques dans l'infrarouge." Paris 7, 2008. http://www.theses.fr/2008PA077227.
Повний текст джерелаBuffaz, Amandine. "Etude du transport et élaborations de nouveaux détecteurs à cascade quantique pour le lointain infrarouge." Paris 7, 2011. http://www.theses.fr/2011PA077005.
Повний текст джерелаThe applications of Infrared Imaging have highly broadened for the last 15 years, which explains why the scientific community searches for infrared detectors always more efficient. QWIPs (Quantum Well Infrared Photodetectors) show performances more than satisfying. However, their being photoconductive devices is a major brake on the increase of operating temperatures. In order to overcome this shortage, QCDs (Quantum Cascade Detectors) have been created. After introducing the basic features of infrared imaging and of the QCD itself, the state of the art of QCDs is drawn up in the different detection spectral ranges. In the second part, electronic transport in dark conditions and under illumination is modelised. Several approaches previously used for modeling in dark conditions are mentioned. Under a low bias and/or at low temperature, coherent transport processes occurring along several dozens of angströms are demonstrated. They are then explained and reproduced thanks to a modeling adapted from a Kazarinov-Suris formalism. A first modeling of electronic transport under illumination is finally presented, from experimental results in the LWIR and MWIR region. A study of QCDs detecting in the very long wave infrared (15 μm) and in the terahertz ends this thesis. They are designed, characterized and compared with the modelings developed in the previous chapter
Guériaux, Vincent. "Contribution à l'étude expérimentale et théorique des photodétecteurs infrarouge à multipuits quantiques couvrant la bande spectrale3-20 μm : physique, optimisation et nouvelles fonctionnalités". Paris 7, 2010. http://www.theses.fr/2010PA077263.
Повний текст джерелаThe QWIP (Quantum Well Infrared Photodetector) is a multidisciplinary component: material science for thegrowth, electronic transport through the active layer and electromagnetic modeling of the optical coupling. It is necessary to control each element in order to make this technology usable for infrared imagery. This thesis aims at expanding the spectral range of QWIPs. We study the common physics as well as the specificities of this component between 3 and 20 μm. After introducing the basic features of infrared imaging and the QWIP itself, we expose the results of a structural and chemical study of AlGaAs/InGaAs heterostructures. This alloy constitutes the basis of the detector, which explains why the extension of the spectral range requires the control, and so the knowledge of the material. Then, this thesis focus on the different electronic transport in QWIPs: sequential resonant tunneling, high field and thermionic regimes. Although these behaviors are observed in every sample, some of them are limiting thé transport for few specific operating conditions. Finally, thanks to the control of the various stages of design and manufacturing, we present several detectors for terrestrial and space applications in the spectral ranges [3-5 μm] and [10-20 μm]
Delga, Alexandre. "Du phénomène quantique au dispositif macroscopique : transport electronique dans les détecteurs inter-sousbandes." Paris 7, 2012. http://www.theses.fr/2012PA077220.
Повний текст джерелаThe development of high performance infrared (3-20μm) detectors is driven by technological applications such as thermography and spectroscopy for gas sensing. Among them, Quantum Cascade Detectors are photovoltaic unipolar devices where the transduction happens in nanometric quantum wells and on picosecond timescales. This Phd thesis deals with the modelling of electronic transport in these structures. The aim is to organize the continuum of time and length scales that span from the quantum phenomenon to the macroscopic de vice. In a first part, we underline the main limitations of semi-classical models to understand the quantity related to the signal (current, responsivity): they neglect the characteristic time of coherent phenomena. A hybridization of these models with a density matrix formalism is proposed and discussed. In a second part, we showed that noise can and must be understood on the same timescale as the current. A rigorous treatment of micro-macro articulation reveals that shot and Johnson noises, far from being independent as usually considered, are indeed the short time and long time limit visions of thé scattering of quantized charges. At last, the main potentialities of the QCD are discussed
Allain, Tituan. "Preuve de concept expérimentale d'un interféromètre hétérodyne astronomique moyen-infrarouge avec corrélation photonique à haute bande passante et détecteurs à puits quantiques." Electronic Thesis or Diss., Université Grenoble Alpes, 2024. http://www.theses.fr/2024GRALY065.
Повний текст джерелаThe mid-infrared emission from protoplanetary disks and stellar envelopes carries precious information about their dust and gas composition and the phenomena occurring in the vicinity of young stars, like the formation of terrestrial planets. To study the underlying physics of such dynamical systems, astronomical instruments require a resolution below the astronomical unit on objects a hundred parsecs away. This resolution can only be achieved with long-baseline interferometry because it corresponds to telescope diameters of a few kilometres. The Planet Formation Imager initiative has identified the creation of a mid-infrared interferometric array with a large number of telescopes as the next major step to constrain the theoretical models that describe planetary formation.Currently, the most sensitive infrared interferometers, like the MATISSE and GRAVITY instruments at VLTI, rely on the direct recombination of light from several telescopes. This method is hardly scalable to many telescopes on kilometric baselines because of transmission losses and the bulkiness of the infrastructures. Heterodyne interferometry, which is widely used in radio-interferometry, has been identified as a possible alternative to direct interferometry in the mid-infrared because it does not require recombining the light from all telescopes physically. Instead, it relies on the heterodyne detection of the astronomical electric field with a phase-referenced local oscillator (a laser) and detecting the intermediate frequency with high-bandwidth detectors. The resulting signals are transmitted to a correlator whose role is to retrieve the interferometric observables from them. However, mid-infrared heterodyne interferometry suffers from reduced sensitivity because of the inherent quantum noise in heterodyne detection. Therefore, to detect weak astronomical objects, considerable efforts must be put to solve the technical and technological challenges that further limit the sensitivity of an heterodyne system.My PhD thesis concentrates on the correlation and detection aspects of mid-infrared heterodyne interferometry. The correlation aspect consists of setting up, operating, and characterising the HIKE (Heterodyne Interferometry Kilometric Experiment) demonstration bench at IPAG, Grenoble. The bench uses an analogue photonic correlator built with commercial telecom components at 1.5 micrometres wavelength to correlate mid-infrared signals at 10 micrometres wavelength with gigahertz bandwidths. Such a set-up is a world premiere. I have developed a methodology to characterise the noise levels inside the system to identify the top offenders that hamper the measurement of interferometric visibility, and implement solutions to improve the sensitivity of the bench. My results show that the noise level associated with the photonic correlator is sufficiently low not to deteriorate the signal-to-noise ratio of the system. Hence, photonic correlation is sensitive enough to be used by heterodyne interferometry as an alternative to the computationally heavy digital correlation that is often used for radio heterodyne interferometry.The current top offenders of our system are the commercial mid-infrared detectors that are used for heterodyne detection. Therefore, to improve the sensitivity of the bench, I have studied the possibility of replacing our detectors with high-bandwidth mid-infrared quantum well detectors. This work has been done in collaboration with the QUAD team at LPENS, Paris, where I have characterised metamaterial enhanced Quantum Well Infrared Photodetectors (QWIP) and Quantum Cascade Detectors (QCD). The high bandwidths of these detectors would represent a significant advantage to detect a larger chunk of the astronomical signal. However, despite recent progress, their quantum efficiencies currently remain too low to obtain a game-changing sensitivity improvement in heterodyne interferometry. Further improvement in the technology is required
Delga, Alexandre. "Du phénomène quantique au dispositif macroscopique, transport électronique dans les détecteurs inter-sousbandes." Phd thesis, Université Paris-Diderot - Paris VII, 2012. http://tel.archives-ouvertes.fr/tel-00769454.
Повний текст джерелаКниги з теми "Détecteur à puits quantiques"
International Symposium on Ultrafast Phenomena in Semiconductors (10th 1998 Vilnius, Lithuania). Ultrafast phenomena in semiconductors: Proceedings of the 10th International Conference on Ultrafast Phenomena in Semiconductors (10-UFPS), held in Vilnius, Lithuania, August/September 1998. Edited by Ašmontas Steponas and Dargys A. Uetikon-Zuerich, Switzerland: Trans TechPublications, 1999.
Знайти повний текст джерела1957-, Li E. Herbert, ed. Semiconductor quantum wells intermixing. Amsterdam, The Netherlands: Gordon and Breach Science Publishers, 2000.
Знайти повний текст джерелаThon, Tsen Kong, ed. Non-equilibrium dynamics of semiconductors and nanostructures. Boca Raton: Taylor & Francis, 2005.
Знайти повний текст джерелаK, Bhattacharya P., and INSPEC (Information service), eds. Properties of III-V quantum wells and superlattices. Stevenage: INSPEC, 1996.
Знайти повний текст джерелаHolst, Gerald C. Electro-Optical Imaging System Performance (Spie Press Monograph). 3rd ed. SPIE-International Society for Optical Engine, 2003.
Знайти повний текст джерелаProperties of Iii-V Quantum Wells and Superlattices (E M I S Datareviews Series). Institution of Electrical Engineers, 1996.
Знайти повний текст джерелаTsen, Kong Thon. Non-Equilibrium Dynamics of Semiconductors and Nanostructures. Taylor & Francis Group, 2018.
Знайти повний текст джерелаTsen, Kong Thon. Non-Equilibrium Dynamics of Semiconductors and Nanostructures. Taylor & Francis Group, 2018.
Знайти повний текст джерелаTsen, Kong Thon. Non-Equilibrium Dynamics of Semiconductors and Nanostructures. Taylor & Francis Group, 2006.
Знайти повний текст джерелаТези доповідей конференцій з теми "Détecteur à puits quantiques"
Pocholle, J. P. "Propriétés optiques des matériaux semiconducteurs à puits quantiques et applications dans le domaine du traitement du signal." In Optoélectronique (Volume 1). Les Ulis, France: EDP Sciences, 1990. http://dx.doi.org/10.1051/sfo/1990006.
Повний текст джерела