Добірка наукової літератури з теми "Detailed kinetics model"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Detailed kinetics model".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Detailed kinetics model"
Mai, Tam V. T., Minh v. Duong, Hieu T. Nguyen, and Lam K. Huynh. "Detailed kinetics of tetrafluoroethene ozonolysis." Physical Chemistry Chemical Physics 20, no. 44 (2018): 28059–67. http://dx.doi.org/10.1039/c8cp05386c.
Повний текст джерелаDai, Qian, and Hua Ye Guan. "A New Skeletal Chemical Kinetic Mechanism of Ethanol Combustion for HCCI Engine Simulation." Advanced Materials Research 614-615 (December 2012): 381–84. http://dx.doi.org/10.4028/www.scientific.net/amr.614-615.381.
Повний текст джерелаKeddam, Mourad, Polat Topuz, and Özlem Aydin. "Simulation of boronizing kinetics of AISI 316 steel with an integral diffusion model." Materials Testing 63, no. 10 (October 1, 2021): 906–12. http://dx.doi.org/10.1515/mt-2021-0023.
Повний текст джерелаBROUWER, J., G. SACCHI, J. P. LONGWELL, and A. F. SAROFIM. "A Turbulent Reacting Flow Model that Incorporates Detailed Chemical Kinetics." Combustion Science and Technology 101, no. 1-6 (November 1994): 361–82. http://dx.doi.org/10.1080/00102209408951883.
Повний текст джерелаHuebner, W. F., D. C. Boice, I. Konno, and P. D. Singh. "A Model of P/Tempel 2 With Dust and Detailed Chemistry." Symposium - International Astronomical Union 150 (1992): 449–50. http://dx.doi.org/10.1017/s0074180900090665.
Повний текст джерелаPannala, Venkat R., Amadou K. S. Camara, and Ranjan K. Dash. "Modeling the detailed kinetics of mitochondrial cytochrome c oxidase: Catalytic mechanism and nitric oxide inhibition." Journal of Applied Physiology 121, no. 5 (November 1, 2016): 1196–207. http://dx.doi.org/10.1152/japplphysiol.00524.2016.
Повний текст джерелаFiçicilar, Berker, İnci Eroğlu, and Trung V. Nguyen. "A Five Layer One-Dimensional PEMFC Model with Detailed Electrode Kinetics." ECS Transactions 33, no. 1 (December 17, 2019): 1515–27. http://dx.doi.org/10.1149/1.3484644.
Повний текст джерелаDandy, David S., and Michael E. Coltrin. "A simplified analytical model of diamond growth in direct current arcjet reactors." Journal of Materials Research 10, no. 8 (August 1995): 1993–2010. http://dx.doi.org/10.1557/jmr.1995.1993.
Повний текст джерелаKukshinov, N. V., S. N. Batura, and M. S. Frantsuzov. "Validation of Methods for Calculating Hydrogen Combustion in a Supersonic Model Air Flow Using the Experimental Data of Beach — Evans — Schexnayder." Proceedings of Higher Educational Institutions. Маchine Building, no. 11 (716) (November 2019): 36–45. http://dx.doi.org/10.18698/0536-1044-2019-11-36-45.
Повний текст джерелаZhang, Pei, Siyan Liu, Dan Lu, Ramanan Sankaran, and Guannan Zhang. "An out-of-distribution-aware autoencoder model for reduced chemical kinetics." Discrete & Continuous Dynamical Systems - S 15, no. 4 (2022): 913. http://dx.doi.org/10.3934/dcdss.2021138.
Повний текст джерелаДисертації з теми "Detailed kinetics model"
Davidson, Jeffrey E. "Combustion Modeling of RDX, HMX and GAP with Detailed Kinetics." BYU ScholarsArchive, 1996. https://scholarsarchive.byu.edu/etd/6531.
Повний текст джерелаPark, Sung-Woo. "Detailed chemical kinetic model for oxygenated fuels." Thesis, Imperial College London, 2012. http://hdl.handle.net/10044/1/9599.
Повний текст джерелаMaurice, Lourdes Quintana. "Detailed chemical kinetic models for aviation fuels." Thesis, Imperial College London, 1996. http://hdl.handle.net/10044/1/8153.
Повний текст джерелаAdams, Waldo Wayne. "Glycerol production in plasmodium falciparum : towards a detailed kinetic model." Thesis, Stellenbosch : Stellenbosch University, 2015. http://hdl.handle.net/10019.1/97159.
Повний текст джерелаENGLISH ABSTRACT: Having caused the deaths of more than 10 million individuals since 2000 with most of them occurring in Africa, malaria remains a serious disease that requires undivided attention. To this end a detailed kinetic model of Plasmodium falciparum glycolysis was constructed, validated and used to determine potential drug targets for the development of novel, effective antimalarial therapies. The kinetic model described the behaviour of the glycolytic enzymes with a set of ordinary differential equations that was solved to obtain the steady state fluxes and concentrations of internal metabolites. The model included a glycerol branch represented in a single fitted equation. This present study set out to detect, characterise, and incorporate into the model the enzymes that constitute the glycerol branch of P. falciparum glycolysis. The kinetic parameters of glycerol 3-phosphate dehydrogenase (G3PDH), the first enzyme in the branch and catalyst of the dihydroxyacetone phosphosate (DHAP) reducing reaction, was determined and added to the detailed kinetic model. The model was subsequently validated by comparing its prediction of steady state fluxes with experimentally measured fluxes. Once it was evident that the predictions of the unfitted model agreed with experimentally measured fluxes, metabolic control analysis was performed on this branched system to ascertain the distribution of control over the steady state flux through the glycerol branch. The control G3PDH exercised over its own flux was less than expected due to the enzyme’s sensitivity to changes in NADH and thus the redox balance of the cell. Attempts were made to detect the enzymes responsible for the conversion of glycerol 3-phosphate (G3P) to glycerol. Very low levels of glycerol kinase activity was observed. Although G3P-dependent release of inorganic phosphate was detected results were inconclusive as to whether a non-specific phosphatase also mediated the conversion. Overall, the expansion of the model to include G3PDH did not affect the steady state metabolite concentrations and flux adversely.
AFRIKAANSE OPSOMMING: Vanaf die jaar 2000 het malaria die dood van meer as 10 miljoen mense veroorsaak. Die meeste sterftes het in Afrika voorgekom —’n aanduiding van hoe ernstige siekte dit is en een wat onverdeelde aandag moet geniet. Om hierdie rede is ’n gedetaileerde kinetiese model van glikoliese in Plasmodium falciparum gebou, gevalideer en gebruik om potensiële dwelm teikens te identifiseer vir die ontwikkeling van nuwe, meer effektiewe anti-malaria terapieë. Die kinetiese model beskryf die gedrag van die glikolitiese ensieme in terme van gewone differensiële vergelykings wat opgelos is om die bestendige toestand fluksies en interne metaboliet konsentrasies te bepaal. Die model sluit ’n gliserol-tak in wat deur ’n enkele aangepaste vergelyking verteenwoordig word. Hierdie studie het voorgeneem om die ensieme van die gliserol-tak van P. falciparum glikoliese te identifiseer, karakteriseer en in die model te inkorporeer. Ons het die kinetiese parameters van die eerste ensiem in die gliserol-tak, gliserol 3-fosfaat dehidrogenase (G3PDH), die katalis van die dihidroksiasetoon fosfaat(DHAP) reduserende reaksie, bepaal. Die kinetiese parameters is by die gedetaileerde model gevoeg. Validering het plaasgevind deur die model se voorspellings met eksperimenteel bepaalde waardes te vergelyk. Toe dit duidelik geword het dat die voorspellings van die model met die eksperimenteel bepaalde fluks ooreenstem, is metaboliese kontrole analiese op die vertakte sisteem uitgevoer. Dit is gedoen om vas te stel hoe die bestendige toestand fluks deur die gliserol-tak beheer word. G3PDH het nie volle beheer oor sy eie fluks nie, in teenstelling met ons vergewagtinge. Daar is gepoog om vas te stel watter ensieme verantwoordelik is vir die produksie van gliserol vanuit gliserol 3-fosfaat (G3P). ’n Lae gliserolkinase aktiwiteit is waargeneem. Alhoewel G3P afhanklike vrystelling van anorganise fosfaat waargeneem is, is dit nie duidelik vanuit die resultate of die proses deur ’n nie-spesifieke fosfatase uitgevoer word nie. Die uitbreiding van die model om ’n G3PDH vergelyking in te sluit het nie die bestendige toestand metaboliet konsentrasies en fluks negatief geaffekteer nie.
Honnet, Sylvie. "Detailed and reduced kinetic mechanisms in low-emission combustion processes /." Göttingen : Cuvillier, 2007. http://d-nb.info/98605528X/04.
Повний текст джерелаDu, Preez Franco B. "Comparative cross-species analysis of detailed kinetic models of glycolysis." Thesis, Stellenbosch : University of Stellenbosch, 2009. http://hdl.handle.net/10019.1/1208.
Повний текст джерелаENGLISH ABSTRACT: With the recent advances in the field of molecular biology, there is an increased need to integrate data on the various constituents of the cell in kinetic models that can predict and describe cellular behavior. When working towards a description of the entire cell using such kinetic models, the question arises: How do we compare different models for a given biological network? This is the central question addressed in my thesis and I developed and applied mathematical and computational methods for comparing dozens of existing models of erythrocyte and yeast glycolysis. To compare the steady-state behavior in models of erythrocyte glycolysis, I focussed on the function of the pathway, which is to supply the cell with Gibbs-free energy (γ- phosphate of ATP). I used supply-demand analysis in the framework of metabolic control analysis to make this comparison, which revealed that the ATP concentrations were homeostatically buffered at varying supply rates. I also applied this approach to compare steady-state behavior in models of yeast glycolysis, finding that they were not necessarily optimized for homeostatic maintenance of the ATP concentration and that in models for this organism the rate of ATP production is often determined by the supply reactions of glycolysis. In addition, I tested whether a kinetic model can describe novel behavior if it is adjusted to conditions different from those for which the model was originally constructed. More specifically, using a model of steady-state yeast glycolysis, I showed that small adjustments to the original enzyme concentrations are enough to obtain an oscillating model, which shows a remarkable resemblance to the experimentally observed oscillations. Importantly, some of these enzyme concentrations changes are known to occur during the pre-treatment of the cells which is necessary to obtain oscillatory behavior. To the best of my knowledge, the resulting model is the first detailed kinetic model that describes the experimentally observed strong synchronization of glycolytic oscillations in yeast populations. To analyze the dynamic behavior of yeast glycolytic models and to compare different models in terms of dynamics, I introduced a framework used in physics and engineering to create a vector based, two dimensional graphical representation of the oscillating metabolites and reactions of glycolysis. Not only was it possible to make a concise comparison of the set of models, but with the method I could also quantify the contribution of the interactions in the network to the transduction of the oscillations. Furthermore I could distinguish between different mechanisms of oscillation for each of the models, and demonstrated how the framework can be used to create such representations for experimental data sets.
AFRIKAANSE OPSOMMING: Met die onlangse vooruitgang in die veld van molekulere biologie, is daar ?n toenemende behoefte om data rakende die verskeie komponente van die sel in kinetiese modelle te integreer, om sodanig selgedrag te voorspel en te beskryf. As daar gepoog word om ’n beskrywing van die sel as geheel te verkry d.m.v. sulke kinetiese modelle, onstaan die vraag: Hoe vergelyk ons verskillende modelle van ’n gegewe biologiese netwerk? Dit is die sentrale vraag wat my tesis aanspreek en ek het wiskundige en numeriese metodes ontwikkel en toegepas om talle bestaande modelle van gis- en eritrosietglikolise te vergelyk. Om die bestendige-toestand gedrag in modelle van eritrosietglikolise te vergelyk, het ek gefokus op die funksie van die padweg, naamlik om die sel met Gibbs-vrye energie (γ-fosfaat van ATP) te voorsien. Ek het vraag-aanbod analiese in die raamwerk van metaboliese kontrole analiese gebruik om hierdie vergelyking te maak, wat getoon het dat die ATP konsentrasies homeostaties gebuffer was by verskillende aanbod tempos. Ek het ook hierdie aanpak gebruik om die bestendige-toestand gedrag in modelle van gisglikolise te vergelyk, en het bevind dat hulle nie noodwendig geoptimiseer is om ?n homeostatiese balans in die ATP konsentrasie te handhaaf nie, en dat in modelle vir hierdie organisme, die tempo van ATP produksie dikwels bepaal word deur die aanbod reaksies van glikoliese. Ek het verder ook bepaal of so ?n kinetiese model nuwe soorte gedrag kan beskryf, as dit aangepas word aan omstandighede wat verskil van dié waarvoor die model oorspronklik gekonstrueer was. Meer spesifiek, deur ?n model van bestendige-toestand gisglikolise te gebruik, kon ek wys dat klein veranderinge aan die oorspronkline ensiem konsentrasies genoeg was om ?n ossilerende model te verkry, wat opmerklik ooreenstem met die eksperimenteel waargenome ossilasies. Let ook daarop dat sommige van hierdie ensiem konsentrasie veranderinge plaasvind tydens die voorafbehandeling van die selle, wat essensieel is om die ossilasies waar te neem. Tot die beste van my kennis is die model wat ek met hierdie prosedures verkry het, die eerste gedetaileerde kinetiese model wat die eksperimenteel waargenome sterk sinkronisasie in ossilerende gis populasies voorspel. Om gis glikolitiese modelle te vergelyk in terme van hul dinamiese gedrag, het ek ?n raamwerk wat in fisika en ingeneurswese gebruik word, ingespan om ?n vektor-gebasseerde, twee dimensionele grafiese voorstelling van die ossilerende metaboliete en reaksies te maak. Hierdie raamwerk het dit nie net moontlik gemaak om ?n kompakte vergelyking van ?n stel modelle te maak nie, maar ek kon ook die bydrae van interaksies in die netwerk tot transduksie van die ossilasies kwantifiseer. Ek kon verder onderskeid tref tussen die verskillende ossilasiemeganismes vir elk van die modelle, en het ook gedemonstreer hoe die raamwerk gebruik kan word om sulke voorstellings vir eksperimentele datastelle te skep.
Penkler, Gerald Patrick. "Construction and validation of a detailed kinetic model of glycolysis in asexual Plasmodium falciparum : a feasibility study." Thesis, Stellenbosch : University of Stellenbosch, 2009. http://hdl.handle.net/10019.1/2298.
Повний текст джерелаENGLISH ABSTRACT: In Africa alone, Plasmodium, the causative agent of malaria is estimated to kill a child, under the age of five every thirty seconds140. The ability of the parasite to rapidly attain resistance, has resulted in immunity of the parasite to all, except one group of frontline drugs. The need to develop novel drugs, vaccines and prevention strategies that are accessible and affordable for third world countries is of the utmost importance to prevent needless human suffering and death. The glycolytic pathway is an attractive drug target since it is the principal source of ATP for the parasite. Many of the glycolytic enzymes have been studied and proposed as drug targets, but the importance of these enzymes for the function of the pathway as a whole has not been considered. It is known, from the frameworks of metabolic control analysis, that control of the flux and metabolite concentration can be divided among the individual steps. Differential control analysis of Plasmodium and erythrocyte glycolysis may reveal potential drug targets. These analyses require a detailed kinetic model of Plasmodium glycolysis, and the feasibility of constructing and validating such a model was the aim of this study. In this work we determined the feasibility of constructing and validating a detailed kinetic model for the Plasmodium falciparum glycolytic pathway. Whether the construction and validation of this kinetic model was feasible or not was decided on the basis of the ability to: i) culture and isolate sufficient asexual parasites for enzymatic and steady state assays , ii) obtain kinetic parameters such as Km and Vmax for each glycolytic enzyme, either from literature or experimentally, iii) measure glycolytic fluxes, iv) determine glycolytic intermediate concentrations, v) construct a kinetic model from the kinetic parameters and vi) validate it with steady state glycolytic fluxes and metabolite concentrations Each of the above criteria were successfully addressed. In summary, the kinetic parameters and glycolytic fluxes that were measured experimentally, were used to construct and partially validate a detailed kinetic model, respectively. Further validation of the model by means of steady state metabolite concentrations was shown to be possible with the development of a suitable protocol to measure the glycolytic intermediate concentrations. The model presented in this work may play an important role in drug target identification and improving the current understanding of host-parasite interactions and glycolytic regulation.
AFRIKAANSE OPSOMMING: Plasmodium, die parasiet wat malaria veroorsaak, is in Afrika alleen elke dertig sekondes verantwoordelik vir die afsterwe van ’n kind jonger as vyf jaar. Die parasiet se vermoë om vinnig weerstand op te bou het daartoe gelei dat Plasmodium weerstandbiedend is teen byna alle nuwe teen-malaria middels, behalwe vir ’n enkele toonaangewende groep. Die ontwikkeling van nuwe malaria teen-middels is van uiterste belang om lyding te voorkom. ’n Goeie teiken vir teen-malaria middels is die glikolitiese padweg omdat die metaboliese padweg essensieël is vir die produksie van ATP, die energiebron van die parasiet. Desondanks die feit dat meeste van die glikolitiese ensieme al goed bestudeer en as teiken voorgestel is, is dit steeds onduidelik hoe hierdie ensieme saam funksioneer om die metaboliese weg, as geheel, tot stand te bring. Metaboliese kontrole analise het aangetoon dat die glikolitiese beheer verdeel is tussen die onderskeie glikolitiese ensieme, m.a.w. geen enkele ensiematiese stap het volledige beheer oor die fluksie van die glikolitiese padweg nie. Die afsonderlike analise en vergelyking van Plasmodium - en rooibloedselglikolise met behulp van differensiële metaboliese kontrole analise sal moontlik gebruik kan word om gasheervriendelike teikens vir nuwe middels aan te toon. So ’n analise benodig ’n omvattende kinetiese model van Plasmodium glikolise. Derhalwe was die doel van hierdie studie om vas te stel hoe uitvoerbaar dit is om ’n kinetiese model van Plasmodium glikolise te konstrueer en te valideer. Die uitvoerbaarheid van die konstruksie en validering van die kinetiese model was geasseseer op grond van die vermoë om: i) parasietkulture te kweek en genoegsame parasiete, wat in die aseksuele fase is, te isoleer sodat ensiembepalings en bestendige toestand-bepalings gedoen kan word, ii) kinetiese parameters soos Km - en Vmax-waardes vir elke glikolitiese ensiem, hetsy vanuit literatuur of eksperimentele werk, te verkry, iii) glikolitiese fluksie te meet, iv) glikolitiese intermediaatkonsentrasies te bepaal, v) ’n kinetiese model van die bepaalde kinetiese parameters op te stel en vi) die model te valideer met glikolitiese flukswaardes en metaboliet- konsentrasies wat in die bestendige toestand verkry is. Elk van die bogenoemde kriteria was met sukses in hierdie studie aangespreek. Ter opsomming, die eksperimenteel bepaalde kinetiese parameters en glikolietiese flukswaardes was gebruik om onderskeidelik ’n gedetaileerde kinetiese model te konstrueer en gedeeltelik te valideer. Daar was getoon dat verdere validering van die model deur middel van bestendige toestand metabolietkonsentrasies moontlik is met die ontwikkeling van ’n geskikte protokol om glikolitiese intermediaatkonsentrasies te meet. Die model, soos opgestel in hierdie studie, kan moontlik ’n belangrike rol speel om teikens vir nuwe malaria teen-middels te identifiseer en om gasheer-parasiet interaksies en glikolitiese regulering beter te verstaan.
Savage, Nicholas. "The use of a modified IQT™ apparatus and detailed chemical kinetic model to investigate the atmospheric autoignition characteristics of model fuels." Master's thesis, University of Cape Town, 2009. http://hdl.handle.net/11427/5474.
Повний текст джерелаKONOPKA, THIAGO FABRICIUS. "COMPARATIVE STUDY OF DETAILED CHEMICAL KINETIC MODELS OF SOOT PRECURSORS FOR ETHYLENE/AIR AND METHANE/AIR COMBUSTION." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2014. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=23399@1.
Повний текст джерелаEssa dissertação apresenta um estudo comparativo de quatro diferentes modelos de cinética química detalhada que envolvem as principais espécies químicas responsáveis pelo processo de formação e oxidação da fuligem, i.e., o oxigênio molecular, o radical hidroxila, o acetileno, o propargil, benzeno, fenil e pireno. Para este fim, considera-se a combustão de misturas de etileno/ar e metao/ar. Para analisar os modelos cinéticos são utilizados um reator perfeitamente misturado (PSR) e um reator parcialmente misturado (PaSR). No caso do reator perfeitamente misturado, um estudo sistemático da influência do tempo de residência e a riqueza da mistura sobre estas espécies químicas é apresentado. São discutidas as importantes discrepâncias obtidas, para o acetileno, o propargil, o benzeno, o fenil e o pireno, entre os modelos cinéticos analisados. As espécies oxidantes exibem menores discrepâncias dentre todas as espécies analisadas. No caso do reator parcialmente misturado, a razão entre o tempo de residência e o tempo de mistura é o parâmetro de análise. De modo geral, os resultados obtidos permitem avaliar o comportamento dos mecanismos cinéticos em uma situação representativa de combustão em escoamentos turbulentos.
In this dissertation a comparative study is presented of four different detailed kinetics models involving the main chemical species responsible for the soot formation and oxidation, i.e., the molecular oxygen, the hydroxyl, the acetylene, the propargyl, the benzene and the pyrene. To this purpose is considered the combustion of ethylene/air and metane/air. To analyze the kinetic models are used a perfect stirred reactor (PSR) and a partial stirred reactor (PaSR). In the case of a perfect stirred reactor a systematic study of the influence of the residence time and of the equivalence ratio on these chemical species is presented. Are discussed the important discrepancies obtained for acetylene, propargyl, benzene, phenyl and pyrene, between the kinetic models analyzed. The oxidizing species exhibit minor discrepancies only. In the case of the partially mixed reactor, the ratio between the residence time and the mixing time is the analysis parameter. Overall, the results obtained allow to evaluate the behavior of the kinetic mechanisms in situations representative of combustion in turbulent flows.
Calisesi, Federico. "The analysis of the injection of hydrogen-oxygen mixtures in gasoline-powered internal combustion engines." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2018. http://amslaurea.unibo.it/15553/.
Повний текст джерелаКниги з теми "Detailed kinetics model"
Battin-Leclerc, Frédérique, John M. Simmie, and Edward Blurock. Cleaner Combustion: Developing Detailed Chemical Kinetic Models. Springer, 2013.
Знайти повний текст джерелаSimmie, John M., Edward Blurock, and édérique Battin-Leclerc. Cleaner Combustion: Developing Detailed Chemical Kinetic Models. Springer London, Limited, 2013.
Знайти повний текст джерелаBattin-Leclerc, Frédérique, John M. Simmie, and Edward Blurock. Cleaner Combustion: Developing Detailed Chemical Kinetic Models. Springer, 2016.
Знайти повний текст джерелаChappell, Michael, Bradley MacIntosh, and Thomas Okell. Introduction. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198793816.003.0001.
Повний текст джерелаZaitsev, Fedor, and Vladimir Bychkov. Mathematical modeling of electromag-netic and gravitational phenomena by the methodology of continuous media mechanics. LCC MAKS Press, 2021. http://dx.doi.org/10.29003/m2011.978-5-317-06604-8.
Повний текст джерелаЧастини книг з теми "Detailed kinetics model"
Zhao, Peng. "Detailed Kinetics in Combustion Simulation: Manifestation, Model Reduction, and Computational Diagnostics." In Energy, Environment, and Sustainability, 45–71. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-7410-3_2.
Повний текст джерелаRebosio, F., A. Widenhorn, B. Noll, and M. Aigner. "Analysis of the Effects of Wall Boundary Conditions and Detailed Kinetics on the Simulation of a Gas Turbine Model Combustor Under Very Lean Conditions." In High Performance Computing in Science and Engineering '11, 229–43. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-23869-7_18.
Повний текст джерелаBattin-Leclerc, Frédérique, Henry Curran, Tiziano Faravelli, and Pierre A. Glaude. "Specificities Related to Detailed Kinetic Models for the Combustion of Oxygenated Fuels Components." In Cleaner Combustion, 93–109. London: Springer London, 2013. http://dx.doi.org/10.1007/978-1-4471-5307-8_4.
Повний текст джерелаTotis, Niccolò, Andrea Tagherloni, Marco Beccuti, Paolo Cazzaniga, Marco S. Nobile, Daniela Besozzi, Marzio Pennisi, and Francesco Pappalardo. "Efficient and Settings-Free Calibration of Detailed Kinetic Metabolic Models with Enzyme Isoforms Characterization." In Computational Intelligence Methods for Bioinformatics and Biostatistics, 187–202. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-34585-3_17.
Повний текст джерелаCarstensen, Hans-Heinrich, and Anthony M. Dean. "Development of Detailed Kinetic Models for the Thermal Conversion of Biomass via First Principle Methods and Rate Estimation Rules." In ACS Symposium Series, 201–43. Washington, DC: American Chemical Society, 2010. http://dx.doi.org/10.1021/bk-2010-1052.ch010.
Повний текст джерелаGrana, R., S. Sommariva, T. Maffei, A. Cuoci, T. Faravelli, A. Frassoldati, S. Pierucci, and E. Ranzi. "Detailed kinetics in the mathematical model of fixed bed gasifiers." In Computer Aided Chemical Engineering, 829–34. Elsevier, 2010. http://dx.doi.org/10.1016/s1570-7946(10)28139-7.
Повний текст джерелаArshad, Muzammil. "Numerical Simulations and Validation of Engine Performance Parameters Using Chemical Kinetics." In Numerical Simulation [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.106536.
Повний текст джерелаFawcett, W. Ronald. "Chemical Reaction Kinetics in Solution." In Liquids, Solutions, and Interfaces. Oxford University Press, 2004. http://dx.doi.org/10.1093/oso/9780195094329.003.0011.
Повний текст джерелаBanerjee, Diptonil, Amit Kumar Sharma, and Nirmalya Sankar Das. "Removal of Dyes by the Process of Adsorption." In Nano Materials Induced Removal of Textile Dyes from Waste Water, 232–66. BENTHAM SCIENCE PUBLISHERS, 2022. http://dx.doi.org/10.2174/9789815050295122010009.
Повний текст джерелаMorishima, Isao. "Pressure Effects on the Ligand-Binding Kinetics for Hemoproteins and Their Site-Directed Mutants." In High Pressure Effects in Molecular Biophysics and Enzymology. Oxford University Press, 1996. http://dx.doi.org/10.1093/oso/9780195097221.003.0016.
Повний текст джерелаТези доповідей конференцій з теми "Detailed kinetics model"
LUTZ, ANDREW, ROBERT KEE, ROBERT DIBBLE, and JAMES BROADWELL. "A model for detailed chemical kinetics in turbulent nonpremixed jet flames." In 29th Aerospace Sciences Meeting. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1991. http://dx.doi.org/10.2514/6.1991-478.
Повний текст джерелаSherrill, Manolo E., Roberto C. Mancini, James E. Bailey, Alex B. Filuk, Brian F. Clark, Patrick Lake, and Joseph Abdallah, Jr. "Detailed atomic kinetics model for the spectroscopic analysis of laser-ablated plasma plumes." In Photonics West 2001 - LASE, edited by Richard F. Haglund, Jr., Joseph Neev, and Richard F. Wood. SPIE, 2001. http://dx.doi.org/10.1117/12.428007.
Повний текст джерелаNaik, Chitralkumar V., Karthik V. Puduppakkam, Abhijit Modak, Cheng Wang, and Ellen Meeks. "Validated F-T Fuel Surrogate Model for Simulation of Jet-Engine Combustion." In ASME Turbo Expo 2010: Power for Land, Sea, and Air. ASMEDC, 2010. http://dx.doi.org/10.1115/gt2010-23709.
Повний текст джерелаAceves, Salvador M., Joel Martinez-Frias, Daniel L. Flowers, J. Ray Smith, Robert W. Dibble, John F. Wright, and Randy P. Hessel. "A Decoupled Model of Detailed Fluid Mechanics Followed by Detailed Chemical Kinetics for Prediction of Iso-Octane HCCI Combustion." In SAE International Fall Fuels & Lubricants Meeting & Exhibition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2001. http://dx.doi.org/10.4271/2001-01-3612.
Повний текст джерелаRomano, Augusto, and Leonel R. Cancino. "A simplified model for compression-ignition internal combustion engines analysis by using detailed chemical kinetics." In 18th Brazilian Congress of Thermal Sciences and Engineering. ABCM, 2020. http://dx.doi.org/10.26678/abcm.encit2020.cit20-0069.
Повний текст джерелаKhairallah, H. A., and U. O. Koylu. "Combustion Simulation of Hydrogen-Fuelled Diesel Engines Using Detailed Chemical Kinetics." In ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-65194.
Повний текст джерелаEldeeb, Mazen A., and Malshana Wadugurunnehalage. "Chemical Kinetic Model Reduction and Analysis of Tetrahydrofuran Combustion Using Stochastic Species Elimination." In ASME 2020 Power Conference collocated with the 2020 International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/power2020-16583.
Повний текст джерелаLiang, Long, Rolf D. Reitz, Claudia O. Iyer, and Jianwen Yi. "Modeling Knock in Spark-Ignition Engines Using a G-equation Combustion Model Incorporating Detailed Chemical Kinetics." In SAE World Congress & Exhibition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2007. http://dx.doi.org/10.4271/2007-01-0165.
Повний текст джерелаNicolas, Ghassan, Fariba Seiyedzadeh Khanshan, Hameed Metghalchi, and Richard H. West. "Reduction Techniques Methods for Simplifying Complex Kinetic Systems: A General Review." In ASME 2014 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/imece2014-36351.
Повний текст джерелаBolin, Christopher D., and Abraham Engeda. "Modeling Static Instabilities of Biogas Flames in a Stirred-Reactor Using Detailed Chemical Kinetics Simulations." In ASME Turbo Expo 2013: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/gt2013-95095.
Повний текст джерелаЗвіти організацій з теми "Detailed kinetics model"
Kao, C. Y. J., S. Elliott, R. P. Turco, and X. Zhao. Integrating chemistry into 3D climate models: Detailed kinetics in the troposphere and stratosphere of a global climate model. Office of Scientific and Technical Information (OSTI), November 1997. http://dx.doi.org/10.2172/548668.
Повний текст джерелаKokjohn, Sage. Development and Validation of a Lagrangian Soot Model Considering Detailed Gas Phase Kinetics and Surface Chemistry. Office of Scientific and Technical Information (OSTI), December 2019. http://dx.doi.org/10.2172/1580657.
Повний текст джерелаMusculus, Mark P. July 2018 Progress Report for Sandia National Laboratories on DE-EE0007300 Development and Validation of a Lagrangian Soot Model Considering Detailed Gas Phase Kinetics and Surface Chemistry. Office of Scientific and Technical Information (OSTI), July 2018. http://dx.doi.org/10.2172/1463071.
Повний текст джерелаMarinov, N. Detailed chemical kinetic model for ethanol oxidation. Office of Scientific and Technical Information (OSTI), April 1997. http://dx.doi.org/10.2172/611758.
Повний текст джерелаHart, Carl, and Gregory Lyons. A tutorial on the rapid distortion theory model for unidirectional, plane shearing of homogeneous turbulence. Engineer Research and Development Center (U.S.), July 2022. http://dx.doi.org/10.21079/11681/44766.
Повний текст джерелаJury, William A., and David Russo. Characterization of Field-Scale Solute Transport in Spatially Variable Unsaturated Field Soils. United States Department of Agriculture, January 1994. http://dx.doi.org/10.32747/1994.7568772.bard.
Повний текст джерелаSessa, Guido, and Gregory Martin. A functional genomics approach to dissect resistance of tomato to bacterial spot disease. United States Department of Agriculture, January 2004. http://dx.doi.org/10.32747/2004.7695876.bard.
Повний текст джерела