Добірка наукової літератури з теми "Denoising Image"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Denoising Image".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Denoising Image"
Rubel, Andrii, Oleksii Rubel, Vladimir Lukin, and Karen Egiazarian. "Decision-making on image denoising expedience." Electronic Imaging 2021, no. 10 (January 18, 2021): 237–1. http://dx.doi.org/10.2352/issn.2470-1173.2021.10.ipas-237.
Повний текст джерелаR. Tripathi, Mr Vijay. "Image Denoising." IOSR Journal of Engineering 1, no. 1 (November 2011): 84–87. http://dx.doi.org/10.9790/3021-0118487.
Повний текст джерелаXu, Shaoping, Xiaojun Chen, Yiling Tang, Shunliang Jiang, Xiaohui Cheng, and Nan Xiao. "Learning from Multiple Instances: A Two-Stage Unsupervised Image Denoising Framework Based on Deep Image Prior." Applied Sciences 12, no. 21 (October 24, 2022): 10767. http://dx.doi.org/10.3390/app122110767.
Повний текст джерелаHuang, Tingsheng, Chunyang Wang, and Xuelian Liu. "Depth Image Denoising Algorithm Based on Fractional Calculus." Electronics 11, no. 12 (June 19, 2022): 1910. http://dx.doi.org/10.3390/electronics11121910.
Повний текст джерелаBertalmío, Marcelo, and Stacey Levine. "Denoising an Image by Denoising Its Curvature Image." SIAM Journal on Imaging Sciences 7, no. 1 (January 2014): 187–211. http://dx.doi.org/10.1137/120901246.
Повний текст джерелаKhan, Aamir, Weidong Jin, Amir Haider, MuhibUr Rahman, and Desheng Wang. "Adversarial Gaussian Denoiser for Multiple-Level Image Denoising." Sensors 21, no. 9 (April 24, 2021): 2998. http://dx.doi.org/10.3390/s21092998.
Повний текст джерелаGavini, Venkateswarlu, and Gurusamy Ramasamy Jothi Lakshmi. "CT Image Denoising Model Using Image Segmentation for Image Quality Enhancement for Liver Tumor Detection Using CNN." Traitement du Signal 39, no. 5 (November 30, 2022): 1807–14. http://dx.doi.org/10.18280/ts.390540.
Повний текст джерелаZhang, Xiangning, Yan Yang, and Lening Lin. "Edge-aware image denoising algorithm." Journal of Algorithms & Computational Technology 13 (October 30, 2018): 174830181880477. http://dx.doi.org/10.1177/1748301818804774.
Повний текст джерелаManjón, José V., Neil A. Thacker, Juan J. Lull, Gracian Garcia-Martí, Luís Martí-Bonmatí, and Montserrat Robles. "Multicomponent MR Image Denoising." International Journal of Biomedical Imaging 2009 (2009): 1–10. http://dx.doi.org/10.1155/2009/756897.
Повний текст джерелаBadgainya, Shruti, Prof Pankaj Sahu, and Prof Vipul Awasthi. "Image Denoising by OWT for Gaussian Noise Corrupted Images." International Journal of Trend in Scientific Research and Development Volume-2, Issue-5 (August 31, 2018): 2477–84. http://dx.doi.org/10.31142/ijtsrd18337.
Повний текст джерелаДисертації з теми "Denoising Image"
Zhang, Jiachao. "Image denoising for real image sensors." University of Dayton / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1437954286.
Повний текст джерелаGhazel, Mohsen. "Adaptive Fractal and Wavelet Image Denoising." Thesis, University of Waterloo, 2004. http://hdl.handle.net/10012/882.
Повний текст джерелаLi, Zhi. "Variational image segmentation, inpainting and denoising." HKBU Institutional Repository, 2016. https://repository.hkbu.edu.hk/etd_oa/292.
Повний текст джерелаDanda, Swetha. "Generalized diffusion model for image denoising." Morgantown, W. Va. : [West Virginia University Libraries], 2007. https://eidr.wvu.edu/etd/documentdata.eTD?documentid=5481.
Повний текст джерелаTitle from document title page. Document formatted into pages; contains viii, 62 p. : ill. Includes abstract. Includes bibliographical references (p. 59-62).
Deng, Hao. "Mathematical approaches to digital color image denoising." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/31708.
Повний текст джерелаCommittee Chair: Haomin Zhou; Committee Member: Luca Dieci; Committee Member: Ronghua Pan; Committee Member: Sung Ha Kang; Committee Member: Yang Wang. Part of the SMARTech Electronic Thesis and Dissertation Collection.
Hussain, Israr. "Non-gaussianity based image deblurring and denoising." Thesis, University of Manchester, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.489022.
Повний текст джерелаSarjanoja, S. (Sampsa). "BM3D image denoising using heterogeneous computing platforms." Master's thesis, University of Oulu, 2015. http://urn.fi/URN:NBN:fi:oulu-201504141380.
Повний текст джерелаKohinanpoisto on yksi keskeisimmistä digitaaliseen kuvankäsittelyyn liittyvistä ongelmista, joka useimmiten pyritään ratkaisemaan jo signaalinkäsittelyvuon varhaisessa vaiheessa. Kohinaa ilmestyy kuviin monella eri tavalla ja sen esiintyminen on väistämätöntä. Useat kuvankäsittelyalgoritmit toimivat paremmin, jos niiden syöte on valmiiksi mahdollisimman virheetöntä käsiteltäväksi. Jotta kuvankäsittelyviiveet pysyisivät pieninä eri laskenta-alustoilla, on tärkeää että myös kohinanpoisto suoritetaan nopeasti. Viihdeteollisuuden kehityksen myötä näytönohjaimien laskentateho on moninkertaistunut. Nykyisin näytönohjainpiirit koostuvat useista sadoista tai jopa tuhansista laskentayksiköistä. Näiden laskentayksiköiden käyttäminen yleiskäyttöiseen laskentaan on mahdollista OpenCL- ja CUDA-ohjelmointirajapinnoilla. Rinnakkaislaskenta usealla laskentayksiköllä mahdollistaa suuria suorituskyvyn parannuksia käyttökohteissa, joissa käsiteltävä tieto on toisistaan riippumatonta tai löyhästi riippuvaista. Näytönohjainpiirien käyttö yleisessä laskennassa on yleistymässä myös mobiililaitteissa. Lisäksi valokuvaaminen on nykypäivänä suosituinta juuri mobiililaitteilla. Tämä diplomityö pyrkii selvittämään viimeisimmän kohinanpoistoon käytettävän tekniikan, lohkonsovitus ja kolmiulotteinen suodatus (block-matching and three-dimensional filtering, BM3D), laskennan toteuttamista heterogeenisissä laskentaympäristöissä. Työssä arvioidaan esiteltyjen toteutusten suorituskykyä tekemällä vertailuja jo olemassa oleviin toteutuksiin. Esitellyt toteutukset saavuttavat merkittäviä hyötyjä rinnakkaislaskennan käyttämisestä. Samalla vertailuissa havainnollistetaan yleisiä ongelmakohtia näytönohjainlaskennan hyödyntämisessä monimutkaisten kuvankäsittelyalgoritmien laskentaan
Houdard, Antoine. "Some advances in patch-based image denoising." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLT005/document.
Повний текст джерелаThis thesis studies non-local methods for image processing, and their application to various tasks such as denoising. Natural images contain redundant structures, and this property can be used for restoration purposes. A common way to consider this self-similarity is to separate the image into "patches". These patches can then be grouped, compared and filtered together.In the first chapter, "global denoising" is reframed in the classical formalism of diagonal estimation and its asymptotic behaviour is studied in the oracle case. Precise conditions on both the image and the global filter are introduced to ensure and quantify convergence.The second chapter is dedicated to the study of Gaussian priors for patch-based image denoising. Such priors are widely used for image restoration. We propose some ideas to answer the following questions: Why are Gaussian priors so widely used? What information do they encode about the image?The third chapter proposes a probabilistic high-dimensional mixture model on the noisy patches. This model adopts a sparse modeling which assumes that the data lie on group-specific subspaces of low dimensionalities. This yields a denoising algorithm that demonstrates state-of-the-art performance.The last chapter explores different way of aggregating the patches together. A framework that expresses the patch aggregation in the form of a least squares problem is proposed
Karam, Christina Maria. "Acceleration of Non-Linear Image Filters, and Multi-Frame Image Denoising." University of Dayton / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1575976497271633.
Повний текст джерелаTuncer, Guney. "A Java Toolbox For Wavelet Based Image Denoising." Master's thesis, METU, 2005. http://etd.lib.metu.edu.tr/upload/12608037/index.pdf.
Повний текст джерелаКниги з теми "Denoising Image"
Shukla, K. K. Efficient Algorithms for Discrete Wavelet Transform: With Applications to Denoising and Fuzzy Inference Systems. London: Springer London, 2013.
Знайти повний текст джерелаBertalmío, Marcelo, ed. Denoising of Photographic Images and Video. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-96029-6.
Повний текст джерелаKok, Chi-Wah, and Wing-Shan Tam. Digital Image Denoising in MATLAB. Wiley & Sons, Incorporated, John, 2022.
Знайти повний текст джерелаKok, Chi-Wah, and Wing-Shan Tam. Digital Image Denoising in MATLAB. Wiley & Sons, Incorporated, John, 2022.
Знайти повний текст джерелаKok, Chi-Wah, and Wing-Shan Tam. Digital Image Denoising in MATLAB. Wiley & Sons, Limited, John, 2022.
Знайти повний текст джерелаKok, Chi-Wah, and Wing-Shan Tam. Digital Image Denoising in MATLAB. Wiley & Sons, Incorporated, John, 2022.
Знайти повний текст джерелаShukla, K. K., and Arvind K. Tiwari. Efficient Algorithms for Discrete Wavelet Transform: With Applications to Denoising and Fuzzy Inference Systems. Springer London, Limited, 2013.
Знайти повний текст джерелаBertalmío, Marcelo. Denoising of Photographic Images and Video: Fundamentals, Open Challenges and New Trends. Springer, 2018.
Знайти повний текст джерелаBertalmío, Marcelo. Denoising of Photographic Images and Video: Fundamentals, Open Challenges and New Trends. Springer, 2018.
Знайти повний текст джерелаЧастини книг з теми "Denoising Image"
Lisowska, Agnieszka. "Image Denoising." In Geometrical Multiresolution Adaptive Transforms, 67–82. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05011-9_6.
Повний текст джерелаElad, Michael. "Image Denoising." In Sparse and Redundant Representations, 273–307. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-7011-4_14.
Повний текст джерелаAravind, B. N., K. V. Suresh, Nataraj H. D. Urs, N. Yashwanth, and Usha Desai. "Image Denoising." In Human-Machine Interface Technology Advancements and Applications, 181–212. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003326830-9.
Повний текст джерелаGomo, Panganai. "PageRank Image Denoising." In Lecture Notes in Computer Science, 1–10. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-13772-3_1.
Повний текст джерелаXiao, Yao, Kai Huang, Hely Lin, and Ruogu Fang. "Medical Imaging Denoising." In Medical Image Synthesis, 99–119. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003243458-10.
Повний текст джерелаRadow, Georg, Michael Breuß, Laurent Hoeltgen, and Thomas Fischer. "Optimised Anisotropic Poisson Denoising." In Image Analysis, 502–14. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-59126-1_42.
Повний текст джерелаZhang, Jiangang, Xiang Pan, and Tianxu Lv. "Unsupervised MRI Images Denoising via Decoupled Expression." In Proceeding of 2021 International Conference on Wireless Communications, Networking and Applications, 769–77. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-2456-9_77.
Повний текст джерелаLisowska, Agnieszka. "Multiwedgelets in Image Denoising." In Lecture Notes in Electrical Engineering, 3–11. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-6738-6_1.
Повний текст джерелаKoziarski, Michał, and Bogusław Cyganek. "Deep Neural Image Denoising." In Computer Vision and Graphics, 163–73. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-46418-3_15.
Повний текст джерелаKumbhar, Mursal Furqan. "Image Denoising Using Autoencoders." In Artificial Intelligence and Knowledge Processing, 137–44. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003328414-13.
Повний текст джерелаТези доповідей конференцій з теми "Denoising Image"
Yue, Huanjing, Xiaoyan Sun, Jingyu Yang, and Feng Wu. "Image denoising using cloud images." In SPIE Optical Engineering + Applications, edited by Andrew G. Tescher. SPIE, 2013. http://dx.doi.org/10.1117/12.2022506.
Повний текст джерелаEstrada, Francisco, David Fleet, and Allan Jepson. "Stochastic Image Denoising." In British Machine Vision Conference 2009. British Machine Vision Association, 2009. http://dx.doi.org/10.5244/c.23.117.
Повний текст джерелаLiu, Yang, Saeed Anwar, Liang Zheng, and Qi Tian. "GradNet Image Denoising." In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). IEEE, 2020. http://dx.doi.org/10.1109/cvprw50498.2020.00262.
Повний текст джерелаAravind, B. N., and K. V. Suresh. "Hybrid image denoising." In 2017 International Conference on Electrical, Electronics, Communication, Computer, and Optimization Techniques (ICEECCOT). IEEE, 2017. http://dx.doi.org/10.1109/iceeccot.2017.8284524.
Повний текст джерелаKattakinda, Priyatham, and A. N. Rajagopalan. "Unpaired Image Denoising." In 2020 IEEE International Conference on Image Processing (ICIP). IEEE, 2020. http://dx.doi.org/10.1109/icip40778.2020.9190932.
Повний текст джерелаS. B, Anuja, and Ramesh Dhanaseelan F. "Denoising of Diabetic Retinopathy Images Using Adaptive Median Filter." In The International Conference on scientific innovations in Science, Technology, and Management. International Journal of Advanced Trends in Engineering and Management, 2023. http://dx.doi.org/10.59544/gxpd6690/ngcesi23p15.
Повний текст джерелаНасонов, Андрей, Andrey Nasonov, Николай Мамаев, Nikolay Mamaev, Ольга Володина, Olga Volodina, Андрей Крылов, and Andrey Krylov. "Automatic Choice of Denoising Parameter in Perona-Malik Model." In 29th International Conference on Computer Graphics, Image Processing and Computer Vision, Visualization Systems and the Virtual Environment GraphiCon'2019. Bryansk State Technical University, 2019. http://dx.doi.org/10.30987/graphicon-2019-2-144-147.
Повний текст джерелаGondara, Lovedeep. "Medical Image Denoising Using Convolutional Denoising Autoencoders." In 2016 IEEE 16th International Conference on Data Mining Workshops (ICDMW). IEEE, 2016. http://dx.doi.org/10.1109/icdmw.2016.0041.
Повний текст джерелаXiang, Qian, and Xuliang Pang. "Improved Denoising Auto-Encoders for Image Denoising." In 2018 11th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI). IEEE, 2018. http://dx.doi.org/10.1109/cisp-bmei.2018.8633143.
Повний текст джерелаJain, Arti, and Anand Singh Jalal. "An Effective Image Denoising Approach Based on Denoising with Image Interpolation." In 2023 IEEE World Conference on Applied Intelligence and Computing (AIC). IEEE, 2023. http://dx.doi.org/10.1109/aic57670.2023.10263909.
Повний текст джерелаЗвіти організацій з теми "Denoising Image"
Yufang, Bao. Nonlinear Image Denoising Methodologies. Fort Belvoir, VA: Defense Technical Information Center, May 2002. http://dx.doi.org/10.21236/ada460128.
Повний текст джерелаD'Elia, Marta, and De lo Reyes, Juan Carlos, Miniguano, Andres. Bilevel parameter optimization for nonlocal image denoising models. Office of Scientific and Technical Information (OSTI), November 2019. http://dx.doi.org/10.2172/1592945.
Повний текст джерелаD'Elia, Marta, Juan Carlos De los Reyes, and Andres Trujillo. Bilevel parameter optimization for learning nonlocal image denoising models. Office of Scientific and Technical Information (OSTI), April 2020. http://dx.doi.org/10.2172/1617438.
Повний текст джерелаPotts, Catherine Gabriel. Visual Data: Technical Diagrams. Denoising of Technical Diagram Images. Office of Scientific and Technical Information (OSTI), August 2019. http://dx.doi.org/10.2172/1558025.
Повний текст джерелаNifong, Nathaniel. Learning General Features From Images and Audio With Stacked Denoising Autoencoders. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.1549.
Повний текст джерелаTadmor, Eitan, Suzanne Nezzar, and Luminita Vese. Multiscale Hierarchical Decomposition of Images with Applications to Deblurring, Denoising and Segmentation. Fort Belvoir, VA: Defense Technical Information Center, November 2007. http://dx.doi.org/10.21236/ada489758.
Повний текст джерелаLevesque, Joseph. Neural network denoising of HED x-ray images, with an introduction to neural networks. Office of Scientific and Technical Information (OSTI), April 2023. http://dx.doi.org/10.2172/1970268.
Повний текст джерела