Добірка наукової літератури з теми "Dempster-Shafer theory (DST)"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Dempster-Shafer theory (DST)".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Dempster-Shafer theory (DST)"
Siemiątkowska, Barbara, and Bogdan Harasymowicz-Boggio. "Place Classification using Dempster-Shafer Theory." Foundations of Computing and Decision Sciences 42, no. 3 (September 1, 2017): 257–73. http://dx.doi.org/10.1515/fcds-2017-0013.
Повний текст джерелаDutta, Palash. "Dempster Shafer Structure-Fuzzy Number Based Uncertainty Modeling in Human Health Risk Assessment." International Journal of Fuzzy System Applications 5, no. 2 (April 2016): 96–117. http://dx.doi.org/10.4018/ijfsa.2016040107.
Повний текст джерелаWahyuni, Ias Sri, and Rachid Sabre. "Local Distance and Dempster-Dhafer for Multi-Focus Image Fusion." Signal & Image Processing : An International Journal 13, no. 1 (February 28, 2022): 29–43. http://dx.doi.org/10.5121/sipij.2022.13103.
Повний текст джерелаSkoruchi, Amirhossein, and Emran Mohammadi. "Uncertain portfolio optimization based on Dempster-Shafer theory." Management Science Letters 12, no. 3 (2022): 207–14. http://dx.doi.org/10.5267/j.msl.2022.1.001.
Повний текст джерелаSarabi-Jamab, Atiye, and Babak N. Araabi. "Information-Based Evaluation of Approximation Methods in Dempster-Shafer Theory." International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 24, no. 04 (August 2016): 503–35. http://dx.doi.org/10.1142/s0218488516500252.
Повний текст джерелаGudiyangada Nachappa, Thimmaiah, Sepideh Tavakkoli Piralilou, Omid Ghorbanzadeh, Hejar Shahabi, and Thomas Blaschke. "Landslide Susceptibility Mapping for Austria Using Geons and Optimization with the Dempster-Shafer Theory." Applied Sciences 9, no. 24 (December 10, 2019): 5393. http://dx.doi.org/10.3390/app9245393.
Повний текст джерелаKazemi, Mohammad Reza, Saeid Tahmasebi, Francesco Buono, and Maria Longobardi. "Fractional Deng Entropy and Extropy and Some Applications." Entropy 23, no. 5 (May 17, 2021): 623. http://dx.doi.org/10.3390/e23050623.
Повний текст джерелаXu, Wei Xiao, Ji Wen Tan, and Hong Zhan. "Research and Application of the Improved DST New Method Based on Fuzzy Consistent Matrix and the Weighted Average." Advanced Materials Research 1030-1032 (September 2014): 1764–68. http://dx.doi.org/10.4028/www.scientific.net/amr.1030-1032.1764.
Повний текст джерелаWang, Xiaochuan. "Robustness evaluation of coal mine based on FAHP and DST." Journal of Computational Methods in Sciences and Engineering 22, no. 1 (January 26, 2022): 295–303. http://dx.doi.org/10.3233/jcm-215653.
Повний текст джерелаGanguly, Kunal. "Integration of analytic hierarchy process and Dempster-Shafer theory for supplier performance measurement considering risk." International Journal of Productivity and Performance Management 63, no. 1 (January 7, 2014): 85–102. http://dx.doi.org/10.1108/ijppm-10-2012-0117.
Повний текст джерелаДисертації з теми "Dempster-Shafer theory (DST)"
Tong, Zheng. "Evidential deep neural network in the framework of Dempster-Shafer theory." Thesis, Compiègne, 2022. http://www.theses.fr/2022COMP2661.
Повний текст джерелаDeep neural networks (DNNs) have achieved remarkable success on many realworld applications (e.g., pattern recognition and semantic segmentation) but still face the problem of managing uncertainty. Dempster-Shafer theory (DST) provides a wellfounded and elegant framework to represent and reason with uncertain information. In this thesis, we have proposed a new framework using DST and DNNs to solve the problems of uncertainty. In the proposed framework, we first hybridize DST and DNNs by plugging a DSTbased neural-network layer followed by a utility layer at the output of a convolutional neural network for set-valued classification. We also extend the idea to semantic segmentation by combining fully convolutional networks and DST. The proposed approach enhances the performance of DNN models by assigning ambiguous patterns with high uncertainty, as well as outliers, to multi-class sets. The learning strategy using soft labels further improves the performance of the DNNs by converting imprecise and unreliable label data into belief functions. We have also proposed a modular fusion strategy using this proposed framework, in which a fusion module aggregates the belief-function outputs of evidential DNNs by Dempster’s rule. We use this strategy to combine DNNs trained from heterogeneous datasets with different sets of classes while keeping at least as good performance as those of the individual networks on their respective datasets. Further, we apply the strategy to combine several shallow networks and achieve a similar performance of an advanced DNN for a complicated task
Taroun, Abdulmaten. "Decision Support System (DSS) for construction project risk analysis and evaluation via evidential reasoning (ER)." Thesis, University of Manchester, 2012. https://www.research.manchester.ac.uk/portal/en/theses/decision-support-system-dss-for-construction-project-risk-analysis-and-evaluation-via-evidential-reasoning-er(1eb74da2-ded1-4ea7-8f50-1fc6edd12353).html.
Повний текст джерелаКниги з теми "Dempster-Shafer theory (DST)"
Florentin, Smarandache, and Dezert Jean, eds. Advances and applications of DSmT for information fusion: Collected works. Rehoboth, N.M: American Research Press, 2004.
Знайти повний текст джерелаAdvances and Applications of DSmT for Information Fusion (Collected works). Am. Res. Press, 2006.
Знайти повний текст джерелаЧастини книг з теми "Dempster-Shafer theory (DST)"
Beynon, Malcolm J. "Effective Intelligent Data Mining Using Dempster-Shafer Theory." In Data Warehousing and Mining, 2943–63. IGI Global, 2008. http://dx.doi.org/10.4018/978-1-59904-951-9.ch188.
Повний текст джерелаDutta, Palash. "Fuzzy-DSS Human Health Risk Assessment Under Uncertain Environment." In Handbook of Research on Investigations in Artificial Life Research and Development, 316–47. IGI Global, 2018. http://dx.doi.org/10.4018/978-1-5225-5396-0.ch015.
Повний текст джерелаDutta, Palash. "Fuzzy-Probability." In Advanced Fuzzy Logic Approaches in Engineering Science, 174–206. IGI Global, 2019. http://dx.doi.org/10.4018/978-1-5225-5709-8.ch009.
Повний текст джерелаТези доповідей конференцій з теми "Dempster-Shafer theory (DST)"
Anugolu, Madhavi, Chandrasekhar Potluri, Alex Urfer, and Marco P. Schoen. "A Motor Point Identification Technique Based on Dempster Shafer Theory." In ASME 2014 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/dscc2014-6102.
Повний текст джерелаSri Wahyuni, Ias, and Rachid Sabre. "Dempster-Shafer and Multi-Focus Image Fusion using Local Distance." In 7th International Conference on Computer Science and Information Technology (CSTY 2021). Academy and Industry Research Collaboration Center (AIRCC), 2021. http://dx.doi.org/10.5121/csit.2021.112206.
Повний текст джерелаZhao, C. M., J. Wei, Z. G. Xing, and Z. Wei. "Application of DSmT in Facial Expression Recognition." In ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-86635.
Повний текст джерелаPopov, Mikhail A., and Maxim V. Topolnitskiy. "A Dempster-Shafer evidence theory-based approach to object classification on multispectral/hyperspectral images." In 2014 International Conference on Digital Technologies (DT). IEEE, 2014. http://dx.doi.org/10.1109/dt.2014.6868729.
Повний текст джерелаRen, Jinshen, Botao Jiang, and Fuyu Zhao. "Simultaneous Fault Diagnosis of the Reactor Coolant System Based on the DSM Evidence Theory." In 2013 21st International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/icone21-16209.
Повний текст джерела