Добірка наукової літератури з теми "Degenerate semiconductors"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Degenerate semiconductors".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Degenerate semiconductors"

1

Khan, Arif, and Atanu Das. "Diffusivity-Mobility Relationship for Heavily Doped Semiconductors with Non-Uniform Band Structures." Zeitschrift für Naturforschung A 65, no. 10 (October 1, 2010): 882–86. http://dx.doi.org/10.1515/zna-2010-1017.

Повний текст джерела
Анотація:
A general relationship between the diffusivity and the mobility in degenerate semiconductors with non-uniform energy band structures has been presented. The relationship is general enough to be applicable to both non-degenerate and degenerate semiconductors. It is suitable for the study of electrical transport in heavily doped semiconductors and semiconductor devices.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Khan, Arif, and Atanu Das. "General Diffusivity-Mobility Relationship for Heavily Doped Semiconductors." Zeitschrift für Naturforschung A 64, no. 3-4 (April 1, 2009): 257–62. http://dx.doi.org/10.1515/zna-2009-3-414.

Повний текст джерела
Анотація:
Abstract A relationship between diffusivity and mobility in degenerate semiconductors is presented. The relationship is general enough to be applicable to both non-degenerate and degenerate semiconductors. It is suitable for the investigation of the electrical transport in heavily doped semiconductors
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Preezant, Yevgeni, Yohai Roichman, and Nir Tessler. "Amorphous organic devices degenerate semiconductors." Journal of Physics: Condensed Matter 14, no. 42 (October 11, 2002): 9913–24. http://dx.doi.org/10.1088/0953-8984/14/42/306.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Das, Atanu, and Arif Khan. "The Diffusivity-Mobility Relationship of Heavily Doped Semiconductors Exhibiting a Non-Parabolic Band Structure and Bandgap Narrowing." Zeitschrift für Naturforschung A 62, no. 10-11 (November 1, 2007): 605–8. http://dx.doi.org/10.1515/zna-2007-10-1108.

Повний текст джерела
Анотація:
A relationship between the mobility and diffusivity of semiconductors exhibiting bandgap narrowing has been presented. The relationship is general and applicable to both non-degenerate and degenerate semiconductors under an applied bias. It is suitable for the investigation of the electrical transport in heavily doped semiconductors.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Dmitriev, A. P., E. Borovitskaya, M. E. Levinshtein, S. L. Rumyantsev, and M. S. Shur. "Low frequency noise in degenerate semiconductors." Journal of Applied Physics 90, no. 1 (July 2001): 301–5. http://dx.doi.org/10.1063/1.1379556.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Keyes, R. W. "Potentials and junctions in degenerate semiconductors." Solid-State Electronics 32, no. 2 (February 1989): 159–64. http://dx.doi.org/10.1016/0038-1101(89)90183-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Lax, M., and B. I. Halperin. "Impurity band tails in degenerate semiconductors." International Journal of Quantum Chemistry 1, S1 (June 18, 2009): 767. http://dx.doi.org/10.1002/qua.560010683.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Aktsipetrov, O. A., I. M. Baranova, K. N. Evtyukhov, T. V. Murzina, and I. V. Chernyĭ. "Reflected second harmonic in degenerate semiconductors: nonlinear electroreflection under surface degeneracy conditions." Soviet Journal of Quantum Electronics 22, no. 9 (September 30, 1992): 807–14. http://dx.doi.org/10.1070/qe1992v022n09abeh003603.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Mondal, M., and K. P. Gnatak. "Effect of carrier degeneracy on the screening length in degenerate tetragonal semiconductors." physica status solidi (b) 135, no. 1 (May 1, 1986): 239–51. http://dx.doi.org/10.1002/pssb.2221350125.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Nagaev, É. L. "Phase separation in degenerate magnetic oxide semiconductors." Physics of the Solid State 40, no. 11 (November 1998): 1873–77. http://dx.doi.org/10.1134/1.1130676.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Degenerate semiconductors"

1

Canto, Edesly J. "Picosecond degenerate four-wave mixing in semiconductors." Thesis, University of North Texas, 1990. https://digital.library.unt.edu/ark:/67531/metadc798147/.

Повний текст джерела
Анотація:
This study reports on a variety of experimental and theoretical studies conducted in ZnSe, CdTe, and in semiconductor-doped glasses. The transient picosecond degenerate four-wave mixing (DFWM) experiments performed in these II-VI direct-gap semiconductors are part of our efforts to understand the picosecond dynamics of the free-carriers generated via two and three-photon absorption.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Conduit, C. J. "Collective phenomena in correlated semiconductors, degenerate Fermi gases, and ferroelectrics." Thesis, University of Cambridge, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.597887.

Повний текст джерела
Анотація:
Degenerate semiconductors: Assuming that there is large number of degenerate conduction band minima provides a useful route to developing an exact analytical treatment of semiconductors. The new formalism, which was also verified computationally, gives an exact expression for the total electron energy, and provides convenient access to the electron dynamical response. Ultracold atomic gases: These are a new tool that offers investigators an exquisite level of control over a many-body systems. Firstly we show how an atomic gas could be used to unravel a long-standing mystery about textured superconductors, secondary we explore the properties of collective models, and thirdly we investigate a novel form of ferromagnetism. Critical phenomena in correlated quantum systems: As the temperature falls thermal excitations give way to quantum fluctuations. These can couple leading to unexpected phases; firstly we search for a putative textured phase that could pre-empt the first order ferromagnetic transition, and secondly predict a metaelectric phase transition in ferroelectrics.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Ikeda, Katsumoto. "Magnetothermoelectric properties of the degenerate semiconductor Hg1-xFexSe." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2001. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/MQ53000.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Gabel, Allan Harley. "Degenerate four wave mixing in semiconductor doped glass waveguides." Diss., The University of Arizona, 1988. http://hdl.handle.net/10150/184367.

Повний текст джерела
Анотація:
This dissertation begins with a study of some of the linear and nonlinear optical properties of composite materials consisting of CdSₓSe₁₋ₓ microcrystallites embedded in a host glass matrix. These studies investigate changes in absorption, refractive index and nonlinear response time under a variety of experimental conditions. The data demonstrates that this class of materials exhibit: a strong saturation of absorption due to band filling; a large n₂ which also saturates; response times which range from <100ps to many nanoseconds; and a permanent darkening and change of n₂ induced by extended exposure to high energy pulses. These measurements were used to identify the optimum sample of the semiconductor doped glasses to demonstrate an efficient degenerate four-wave mixing process within a planar waveguide. High quality single mode waveguides were fabricated from the semiconductor doped glass by K⁺-ion exchange. Four wave mixing was performed in the waveguide that produced a peak reflectivity of ≅.003, which is 8 orders of magnitude larger than that achieved previously in a similar experiment where CS₂ was used as the nonlinear medium.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Bonafè, Filippo. "Charge accumulation and transport in degenerately doped semiconducting polymers with mixed ionic and electronic conductivity." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/21710/.

Повний текст джерела
Анотація:
This thesis is part of the fields of Material Physics and Organic Electronics and aims to determine the charge carrier density and mobility in the hydrated conducting polymer–polyelectrolyte blend PEDOT:PSS. This kind of material combines electronic semiconductor functionality with selective ionic transport, biocompatibility and electrochemical stability in water. This advantageous material properties combination makes PEDOT:PSS a unique material to build organic electrochemical transistors (OECTs), which have relevant application as amplifying transducers for bioelectronic signals. In order to measure charge carrier density and mobility, an innovative 4-wire, contact independent characterization technique was introduced, the electrolyte-gated van der Pauw (EgVDP) method, which was combined with electrochemical impedance spectroscopy. The technique was applied to macroscopic thin film samples and micro-structured PEDOT:PSS thin film devices fabricated using photolithography. The EgVDP method revealed to be effective for the measurements of holes’ mobility in hydrated PEDOT:PSS thin films, which resulted to be <μ>=(0.67±0.02) cm^2/(V*s). By comparing this result with 2-point-probe measurements, we found that contact resistance effects led to a mobility overestimation in the latter. Ion accumulation at the drain contact creates a gate-dependent potential barrier and is discussed as a probable reason for the overestimation in 2-point-probe measurements. The measured charge transport properties of PEDOT:PSS were analyzed in the framework of an extended drift-diffusion model. The extended model fits well also to the non-linear response in the transport characterization and results suggest a Gaussian DOS for PEDOT:PSS. The PEDOT:PSS-electrolyte interface capacitance resulted to be voltage-independent, confirming the hypothesis of its morphological origin, related to the separation between the electronic (PEDOT) and ionic (PSS) phases in the blend.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Winarski, David J. "Development of zinc oxide based flexible electronics." Bowling Green State University / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1558088851479794.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Cornelius, Steffen. "Charge transport limits and electrical dopant activation in transparent conductive (Al,Ga):ZnO and Nb:TiO2 thin films prepared by reactive magnetron sputtering." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-156145.

Повний текст джерела
Анотація:
Transparent conductive oxides (TCOs) are key functional materials in existing and future electro-optical devices in the fields of energy efficiency, energy generation and information technology. The main application of TCOs is as thin films transparent electrodes where a combination of maximum electrical conductivity and transmittance in the visible to nearinfrared spectral range is required. However, due to the interdependence of the optical properties and the free electron density and mobility, respectively, these requirements cannot be achieved simultaneously in degenerately doped wide band-gap oxide semiconductors. Therefore, a detailed understanding of the mechanisms governing the generation of free charge carriers by extrinsic doping and the charge transport in these materials is essential for further development of high performance TCOs and corresponding deposition methods. The present work is aimed at a comprehensive investigation of the electrical, optical and structural properties as well as the elemental composition of (Al,Ga) doped ZnO and Nb doped TiO2 thin films prepared by pulsed DC reactive magnetron sputtering. The evolution of the film properties is studied in dependence of various deposition parameters through a combination of characterization techniques including Hall-effect, spectroscopic ellipsometry, spectral photometry, X-ray diffraction, X-ray near edge absorption, Rutherford backscattering spectrometry and particle induced X-ray emission. This approach resulted in the development of an alternative process control method based on the material specific current-voltage pressure characteristics of the reactive magnetron discharge which allows to precisely control the oxygen deficiency of the sputter deposited films. Based on the experimental data, models have been established that describe the room temperature charge transport properties and the dielectric function of the obtained ZnO and TiO2 based transparent conductors. On the one hand, these findings allow the prediction of material specific electron mobility limits by identifying the dominating charge carrier scattering mechanisms. On the other hand, new insight is gained into the origin of the observed transition from highly conductive to electrically insulating ZnO layers upon the incorporation of increasing concentrations of Al at elevated growth temperatures. Moreover, the Al and Ga dopant activation in ZnO have been quantified systematically for a wide range of Al concentrations and deposition conditions. A direct comparison of the Ga and Al doping efficiency demonstrates that Ga is a more efficient electron donor in ZnO. Further, it has been shown that high free electron mobilities in polycrystalline and epitaxial Nb:TiO2 layers can be achieved by reactive magnetron sputtering of TiNb alloy targets. The suppression of rutile phase formation and the control of the Nb dopant activation by fine tuning the oxygen deficiency have been identified as crucial for the growth of high quality TiO2 based TCO layers.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Yang, Chao-Neng, and 楊肇能. "Exploring spatial and temporal states in optically pumped semiconductor lasers at degenerate cavities and non-degenerate cavities." Thesis, 2016. http://ndltd.ncl.edu.tw/handle/40012032726465660757.

Повний текст джерела
Анотація:
碩士
國立交通大學
理學院應用科技學程
104
We use high-power optically pumped semiconductor laser module as experimental architecture, the laser resonant cavity composed by the different curvatures plano-concave lens as an output mirror, via adjusting the pumping power and laser resonator length, observe transverse pattern, temporal trace and RF power spectrum in the non-degenerate and degenerate cavity. During the experiment, we add an aperture in the resonance cavity and investigate the influence of high-order transverse modes on the self-mode locking (SML) in an optically pumped semiconductor laser (OPSL). We discovered the temporal behavior becomes the random dynamics when too many high-order transverse modes are excited. In the degenerate cavity we found the laser spot that presents special triangular pattern when the ratio of fT and fL approaches to 1/3, we also found that the curve of output power will drop first and then rise.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Cornelius, Steffen. "Charge transport limits and electrical dopant activation in transparent conductive (Al,Ga):ZnO and Nb:TiO2 thin films prepared by reactive magnetron sputtering: Charge transport limits and electrical dopant activation in transparent conductive (Al,Ga):ZnO and Nb:TiO2 thin films prepared by reactive magnetron sputtering." Doctoral thesis, 2013. https://tud.qucosa.de/id/qucosa%3A28409.

Повний текст джерела
Анотація:
Transparent conductive oxides (TCOs) are key functional materials in existing and future electro-optical devices in the fields of energy efficiency, energy generation and information technology. The main application of TCOs is as thin films transparent electrodes where a combination of maximum electrical conductivity and transmittance in the visible to nearinfrared spectral range is required. However, due to the interdependence of the optical properties and the free electron density and mobility, respectively, these requirements cannot be achieved simultaneously in degenerately doped wide band-gap oxide semiconductors. Therefore, a detailed understanding of the mechanisms governing the generation of free charge carriers by extrinsic doping and the charge transport in these materials is essential for further development of high performance TCOs and corresponding deposition methods. The present work is aimed at a comprehensive investigation of the electrical, optical and structural properties as well as the elemental composition of (Al,Ga) doped ZnO and Nb doped TiO2 thin films prepared by pulsed DC reactive magnetron sputtering. The evolution of the film properties is studied in dependence of various deposition parameters through a combination of characterization techniques including Hall-effect, spectroscopic ellipsometry, spectral photometry, X-ray diffraction, X-ray near edge absorption, Rutherford backscattering spectrometry and particle induced X-ray emission. This approach resulted in the development of an alternative process control method based on the material specific current-voltage pressure characteristics of the reactive magnetron discharge which allows to precisely control the oxygen deficiency of the sputter deposited films. Based on the experimental data, models have been established that describe the room temperature charge transport properties and the dielectric function of the obtained ZnO and TiO2 based transparent conductors. On the one hand, these findings allow the prediction of material specific electron mobility limits by identifying the dominating charge carrier scattering mechanisms. On the other hand, new insight is gained into the origin of the observed transition from highly conductive to electrically insulating ZnO layers upon the incorporation of increasing concentrations of Al at elevated growth temperatures. Moreover, the Al and Ga dopant activation in ZnO have been quantified systematically for a wide range of Al concentrations and deposition conditions. A direct comparison of the Ga and Al doping efficiency demonstrates that Ga is a more efficient electron donor in ZnO. Further, it has been shown that high free electron mobilities in polycrystalline and epitaxial Nb:TiO2 layers can be achieved by reactive magnetron sputtering of TiNb alloy targets. The suppression of rutile phase formation and the control of the Nb dopant activation by fine tuning the oxygen deficiency have been identified as crucial for the growth of high quality TiO2 based TCO layers.
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Degenerate semiconductors"

1

Tadyszak, Patrick, Alain Cappy, Francois Danneville, Lino Reggiani, Luca Varani, and Lucio Rota. "Hot-Carrier Noise under Degenerate Conditions." In Hot Carriers in Semiconductors, 413–15. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4613-0401-2_94.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Uhrig, A., U. Woggon, M. Portuné, V. Sperling, and C. Klingshirn. "Dephasing Time Measurements in Quantum Dots by Non-Degenerate Four Wave Mixing." In Coherent Optical Interactions in Semiconductors, 261–65. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4757-9748-0_12.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Foreman, Bradley A. "New effective-mass theory for degenerate bands in semiconductors." In Springer Proceedings in Physics, 41–42. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-59484-7_11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Ohta, Hiromichi, S. Ohta, and K. Koumoto. "High-Temperature Thermoelectric Performance of Strontium Titanate Degenerate Semiconductors." In Ceramic Transactions Series, 343–48. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118144121.ch33.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Rudan, M., and G. Perroni. "A Method for Determining the Screening Length of the Coulombic Scattering in Non-Degenerate and Degenerate Semiconductors." In Simulation of Semiconductor Processes and Devices 2004, 121–24. Vienna: Springer Vienna, 2004. http://dx.doi.org/10.1007/978-3-7091-0624-2_29.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Kantner, Markus, and Thomas Koprucki. "Non-isothermal Scharfetter–Gummel Scheme for Electro-Thermal Transport Simulation in Degenerate Semiconductors." In Finite Volumes for Complex Applications IX - Methods, Theoretical Aspects, Examples, 173–82. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-43651-3_14.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Halperin, B. I. "Degenerately-Doped Semiconductors in Strong Magnetic Fields." In Condensed Matter Theories, 259–64. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4613-0917-8_28.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Isler, M., D. Liebig, and K. Schünemann. "Efficient Modeling of Spatially Varying Degeneracy in Monte Carlo Particle Simulation of Highly Doped Submicron HEMT." In Simulation of Semiconductor Processes and Devices 1998, 169–72. Vienna: Springer Vienna, 1998. http://dx.doi.org/10.1007/978-3-7091-6827-1_43.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

"Degenerate Ferromagnetic Semiconductors." In Colossal Magnetoresistance and Phase Separation in Magnetic Semiconductors, 189–241. PUBLISHED BY IMPERIAL COLLEGE PRESS AND DISTRIBUTED BY WORLD SCIENTIFIC PUBLISHING CO., 2002. http://dx.doi.org/10.1142/9781860949661_0005.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

"Non-degenerate Ferromagnetic Semiconductors." In Colossal Magnetoresistance and Phase Separation in Magnetic Semiconductors, 85–131. PUBLISHED BY IMPERIAL COLLEGE PRESS AND DISTRIBUTED BY WORLD SCIENTIFIC PUBLISHING CO., 2002. http://dx.doi.org/10.1142/9781860949661_0003.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Degenerate semiconductors"

1

Salamat, Shuaib, Muneeb Ahsan, and Irslan Arif. "Thermoelectric performance of non-degenerate and degenerate semiconductors." In 2017 Fifth International Conference on Aerospace Science & Engineering (ICASE). IEEE, 2017. http://dx.doi.org/10.1109/icase.2017.8374246.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Hannes, Wolf-Rüdiger, Laura Krauß-Kodytek, Claudia Ruppert, Markus Betz, and Torsten Meier. "Intensity-dependent degenerate and non-degenerate nonlinear optical absorption of direct-gap semiconductors." In Ultrafast Phenomena and Nanophotonics XXIII, edited by Markus Betz and Abdulhakem Y. Elezzabi. SPIE, 2019. http://dx.doi.org/10.1117/12.2503539.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Kira, M., and S. W. Koch. "Photoluminescence and quantum-degenerate exciton states in semiconductors." In Microelectronics, MEMS, and Nanotechnology, edited by Derek Abbott, Yuri S. Kivshar, Halina H. Rubinsztein-Dunlop, and Shanhui Fan. SPIE, 2005. http://dx.doi.org/10.1117/12.649847.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Surmalyan, Ash V. "Electron mobility variance in metals and degenerate semiconductors." In 2013 International Conference on Noise and Fluctuations (ICNF). IEEE, 2013. http://dx.doi.org/10.1109/icnf.2013.6578973.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Evlyukhin, Andrey B., Alexey V. Dmitriev, and Alexey Artamkin. "Interband breakdown in a Kane semiconductor with a degenerate hole distribution." In PHYSICS OF SEMICONDUCTORS: 28th International Conference on the Physics of Semiconductors - ICPS 2006. AIP, 2007. http://dx.doi.org/10.1063/1.2729809.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Folkes, Patrick A., Mitra B. Dutta, Sergey Rudin, Hongen Shen, Monica A. Taysing-Lara, Doran D. Smith, Peter G. Newman, and Melanie W. Cole. "Excitonic recombination of degenerate two-dimensional electrons with localized photoexcited holes in a single heterojunction quantum well." In Semiconductors '92, edited by Gottfried H. Doehler and Emil S. Koteles. SPIE, 1992. http://dx.doi.org/10.1117/12.137601.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Reichert, Matthew, Brendan Turnbull, Dmitry A. Fishman, Himansu Pattanaik, Scott Webster, David J. Hagan, and Eric W. Van Stryland. "Extremely Non-Degenerate Two-Photon Emission in Direct-Gap Semiconductors." In Laser Science. Washington, D.C.: OSA, 2012. http://dx.doi.org/10.1364/ls.2012.lth2i.6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Güçlü, A. D., P. Potasz, P. Hawrylak, Jisoon Ihm, and Hyeonsik Cheong. "Optical Properties of Graphene Quantum Dots with Fractionally Filled Degenerate Shell of Zero Energy States." In PHYSICS OF SEMICONDUCTORS: 30th International Conference on the Physics of Semiconductors. AIP, 2011. http://dx.doi.org/10.1063/1.3666604.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Rudolph, J., J. H. Buß, F. Semond, and D. Hägele. "Dyakonov-perel electron spin relaxation in a highly degenerate wurtzite semiconductor." In THE PHYSICS OF SEMICONDUCTORS: Proceedings of the 31st International Conference on the Physics of Semiconductors (ICPS) 2012. AIP, 2013. http://dx.doi.org/10.1063/1.4848435.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Yee, K. J., J. H. Kim, M. H. Jung, B. H. Hong, K. J. Kong, Jisoon Ihm, and Hyeonsik Cheong. "Observation of Different Transient Absorptions Between Single and Multilayer Graphene from Non-degenerate Pump-probe Spectroscopy." In PHYSICS OF SEMICONDUCTORS: 30th International Conference on the Physics of Semiconductors. AIP, 2011. http://dx.doi.org/10.1063/1.3666609.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії