Статті в журналах з теми "Deformed materials"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Deformed materials.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Deformed materials".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Destrade, M. "Surface waves in deformed Bell materials." International Journal of Non-Linear Mechanics 38, no. 6 (September 2003): 809–14. http://dx.doi.org/10.1016/s0020-7462(01)00125-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Embury, J. D. "Micromechanical descriptions of heavily deformed materials." Scripta Metallurgica et Materialia 27, no. 8 (October 1992): 981–86. http://dx.doi.org/10.1016/0956-716x(92)90460-v.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Klimanek, P., V. Klemm, A. E. Romanov, and M. Seefeldt. "Disclinations in Plastically Deformed Metallic Materials." Advanced Engineering Materials 3, no. 11 (November 2001): 877. http://dx.doi.org/10.1002/1527-2648(200111)3:11<877::aid-adem877>3.0.co;2-l.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Sauvage, Xavier, Amandine Duchaussoy, and Ghenwa Zaher. "Strain Induced Segregations in Severely Deformed Materials." MATERIALS TRANSACTIONS 60, no. 7 (July 1, 2019): 1151–58. http://dx.doi.org/10.2320/matertrans.mf201919.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Delsanto, P. P., and A. V. Clark. "Rayleigh wave propagation in deformed orthotropic materials." Journal of the Acoustical Society of America 81, no. 4 (April 1987): 952–60. http://dx.doi.org/10.1121/1.394575.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Field, D. P. "Analysis of Grain Fragmentation in Deformed Materials." Microscopy and Microanalysis 9, S02 (July 28, 2003): 76–77. http://dx.doi.org/10.1017/s1431927603440993.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Ivlev, Y. "Vibrational compaction of hard deformed powder materials." Metal Powder Report 52, no. 7-8 (July 1997): 38. http://dx.doi.org/10.1016/s0026-0657(97)80176-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Ivlev, Y. "Vibrational compaction of hard deformed powder materials." Metal Powder Report 53, no. 7-8 (July 8, 1997): 38. http://dx.doi.org/10.1016/s0026-0657(97)84682-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Merala, T. B., H. W. Chan, D. G. Howitt, P. V. Kelsey, G. E. Korth, and R. L. Williamson. "Dislocation microstructures in explosively deformed hard materials." Materials Science and Engineering: A 105-106 (November 1988): 293–98. http://dx.doi.org/10.1016/0025-5416(88)90510-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Baranov, V. L., and A. V. Kanunnikov. "Response of deformed materials in dynamic contact." Russian Engineering Research 28, no. 11 (November 2008): 1058–62. http://dx.doi.org/10.3103/s1068798x08110075.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Ovid'ko, I. "Triple junction nanocracks in deformed nanocrystalline materials." Acta Materialia 52, no. 5 (March 8, 2004): 1201–9. http://dx.doi.org/10.1016/j.actamat.2003.11.004.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Belyakov, Andrey, and Rustam Kaibyshev. "Two Types of Grain Boundaries in Deformed Materials." Materials Science Forum 207-209 (February 1996): 461–64. http://dx.doi.org/10.4028/www.scientific.net/msf.207-209.461.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Scheriau, S., M. Kriegisch, S. Kleber, N. Mehboob, R. Grössinger, and R. Pippan. "Magnetic characteristics of HPT deformed soft-magnetic materials." Journal of Magnetism and Magnetic Materials 322, no. 20 (October 2010): 2984–88. http://dx.doi.org/10.1016/j.jmmm.2010.04.032.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Galich, Pavel I., Nicholas X. Fang, Mary C. Boyce, and Stephan Rudykh. "Elastic wave propagation in finitely deformed layered materials." Journal of the Mechanics and Physics of Solids 98 (January 2017): 390–410. http://dx.doi.org/10.1016/j.jmps.2016.10.002.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Gutkin, M. Yu, and I. A. Ovid’ko. "Generation of dislocation loops in deformed nanocrystalline materials." Philosophical Magazine 86, no. 11 (April 11, 2006): 1483–511. http://dx.doi.org/10.1080/14786430500199302.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Ovid’ko, I. A., and A. G. Sheinerman. "Elliptic nanopores in deformed nanocrystalline and nanocomposite materials." Philosophical Magazine 86, no. 10 (April 2006): 1415–26. http://dx.doi.org/10.1080/14786430500311766.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

BOULANGER, PH, and M. HAYES. "FINITE-AMPLITUDE WAVES IN DEFORMED MOONEY-RIVLIN MATERIALS." Quarterly Journal of Mechanics and Applied Mathematics 45, no. 4 (1992): 575–93. http://dx.doi.org/10.1093/qjmam/45.4.575.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Gil Sevillano, J., and E. Aernoudt. "Low energy dislocation structures in highly deformed materials." Materials Science and Engineering 86 (February 1987): 35–51. http://dx.doi.org/10.1016/0025-5416(87)90441-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Destrade, M., M. Otténio, A. V. Pichugin, and G. A. Rogerson. "Non-principal surface waves in deformed incompressible materials." International Journal of Engineering Science 43, no. 13-14 (September 2005): 1092–106. http://dx.doi.org/10.1016/j.ijengsci.2005.03.009.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Freudenberger, J., J. Lyubimova, A. Gaganov, H. Klauß, and L. Schultz. "Mechanical behaviour of heavily deformed CuAgZr conductor materials." Journal of Physics: Conference Series 240 (July 1, 2010): 012112. http://dx.doi.org/10.1088/1742-6596/240/1/012112.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Bobylev, S. V., M. Yu Gutkin, and I. A. Ovid'ko. "Transformations of grain boundaries in deformed nanocrystalline materials." Acta Materialia 52, no. 13 (August 2004): 3793–805. http://dx.doi.org/10.1016/j.actamat.2004.04.029.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Romanov, A. E. "Importance of Disclinations in Severe Plastically Deformed Materials." Advanced Engineering Materials 5, no. 5 (May 16, 2003): 301–7. http://dx.doi.org/10.1002/adem.200310087.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Benn, Douglas I., and David J. A. Evans. "The interpretation and classification of subglacially-deformed materials." Quaternary Science Reviews 15, no. 1 (January 1996): 23–52. http://dx.doi.org/10.1016/0277-3791(95)00082-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Sakai, Taku, and Hiromi Miura. "Annealing of Deformed Materials Developed by Continuous/Discontinuous Dynamic Recrystallization." Materials Science Forum 550 (July 2007): 327–32. http://dx.doi.org/10.4028/www.scientific.net/msf.550.327.

Повний текст джерела
Анотація:
Annealing behaviour was studied in deformed copper developed by continuous or discontinuous dynamic recrystallization (cDRX or dDRX). Pure copper was deformed to large strains by multi-directional forging at room temperature, resulting in an ultra-fine grained structure due to operation of cDRX. Subsequent annealing of such a fine-grained copper can be controlled mainly by grain growth accompanied with recovery and no texture change, that is continuous static recrystallization (cSRX). On the other hand, 4 kinds of static restoration processes operate during annealing of dDRXed copper, i.e. metadaynamic recovery and recystallization (mDRV and mDRX), and classical static recovery and recrystallization. The stable existence of mDRVed grains containing moderate dislocations leads to incomplete recrystallization even after a long period of annealing time. It is discussed how such various types of annealing processes, occurring in cDRXed or dDRXed matrices, can be connected with the characteristic nature of the deformed microstructures.
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Kramer, M. J., L. S. Chumbley, and R. W. McCallum. "Analysis of deformed YBa2Cu3O7??" Journal of Materials Science 25, no. 4 (April 1990): 1978–86. http://dx.doi.org/10.1007/bf01045752.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Zhang, Zhenglin, Yangyang Sun, Qinghua Zhang, Jianli Duan, and Lei Gao. "Applications of optical frequency-domain reflectometry technology in strain-deformed configuration conversion of structural surface deformed configuration measurement." International Journal of Distributed Sensor Networks 15, no. 11 (November 2019): 155014771989163. http://dx.doi.org/10.1177/1550147719891636.

Повний текст джерела
Анотація:
In this study, the conversion relation between deformed configuration and strain during structural monitoring was analyzed based on the basic mechanics principle of materials. A distributed fiber optic measurement system was used to measure the accurate values of structural surface strain, and then calculate the intensity of surface-deformed configuration further. An optical fiber was attached to the surface of a flexible steel ruler, and the generated strain data were used to precisely measure the endpoint-deformed configuration of the ruler. Furthermore, the calculated deformed configuration was calculated and compared with the actual deformed configuration. It was found that the curves of calculated deformed configuration basically coincided (with a relative error of less than 0.6%) with the curves of actual deformed configuration.
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Kassner, M. E., P. Geantil, L. E. Levine, and B. C. Larson. "Backstress, the Bauschinger Effect and Cyclic Deformation." Materials Science Forum 604-605 (October 2008): 39–51. http://dx.doi.org/10.4028/www.scientific.net/msf.604-605.39.

Повний текст джерела
Анотація:
Backstresses or long range internal stresses (LRIS) in the past have been suggested by many to exist in plastically deformed crystalline materials. Elevated stresses can be present in regions of elevated dislocation density or dislocation heterogeneities in the deformed microstructures. The heterogeneities include edge dislocation dipole bundles (veins) and the edge dipole walls of persistent slip bands (PSBs) in cyclically deformed materials and cell and subgrain walls in monotonically deformed materials. The existence of long range internal stress is especially important for the understanding of cyclic deformation and also monotonic deformation. X-ray microbeam diffraction experiments performed by the authors using synchrotron x-ray microbeams determined the elastic strains within the cell interiors. The studies were performed using, oriented, monotonically deformed Cu single crystals. The results demonstrate that small long-range internal stresses are present in cell interiors. These LRIS vary substantially from cell to cell as 0 % to 50 % of the applied stress. The results are related to the Bauschinger effect, often explained in terms of LRIS.
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Wilde, Gerhard, and Sergiy Divinski. "Grain Boundaries and Diffusion Phenomena in Severely Deformed Materials." MATERIALS TRANSACTIONS 60, no. 7 (July 1, 2019): 1302–15. http://dx.doi.org/10.2320/matertrans.mf201934.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Panin, V. E., N. S. Surikova, A. S. Smirnova, and Yu I. Pochivalov. "Mesoscopic Structural States in Plastically Deformed Nanostructured Metal Materials." Physical Mesomechanics 21, no. 5 (September 2018): 396–400. http://dx.doi.org/10.1134/s102995991805003x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Boulanger, Ph, M. Hayes, and C. Trimarco. "Finite-amplitude plane waves in deformed Hadamard elastic materials." Geophysical Journal International 118, no. 2 (August 1994): 447–58. http://dx.doi.org/10.1111/j.1365-246x.1994.tb03976.x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Petrov, A. I., and M. V. Razuvaeva. "Criterion for the pore-pore interaction in deformed materials." Technical Physics 60, no. 4 (April 2015): 607–9. http://dx.doi.org/10.1134/s1063784215040210.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Kratochvíl, Jan, Martin Kružík, and Radan Sedláček. "Instability origin of subgrain formation in plastically deformed materials." International Journal of Engineering Science 48, no. 11 (November 2010): 1401–12. http://dx.doi.org/10.1016/j.ijengsci.2010.09.017.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

WALGRAEF, D. "Reaction-transport dynamics and dislocation patterns in deformed materials." Earth-Science Reviews 29, no. 1-4 (October 1990): 299–308. http://dx.doi.org/10.1016/0012-8252(90)90044-v.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Leffers, T. "Long-range stresses associated with boundaries in deformed materials." Physica Status Solidi (a) 149, no. 1 (May 16, 1995): 69–84. http://dx.doi.org/10.1002/pssa.2211490105.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Yu, Tianbo, and Niels Hansen. "Coarsening kinetics of fine-scale microstructures in deformed materials." Acta Materialia 120 (November 2016): 40–45. http://dx.doi.org/10.1016/j.actamat.2016.08.032.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Martinkovič, Maroš, and Stefan Vaclav. "Estimation of Local Plastic Deformation of Polycrystalline Materials." Key Engineering Materials 586 (September 2013): 39–42. http://dx.doi.org/10.4028/www.scientific.net/kem.586.39.

Повний текст джерела
Анотація:
Final properties of formed steel or another alloy pieces are affected even by plastic deformation of material. Therefore it is needful to know detail structure changes of material under conditions of plastic deformation caused by forming, grinding, drilling etc. Estimation of the deformation based on its observable macroscopic effects doesn’t correspond fully with microscopic structural changes in whole volume of deformed parts and such estimation is quite impossible in case if only surface layers are deformed. It is possible to obtain value of strain by measurement of grain boundary deformation. Effect of grains boundaries self-orientation caused by grains deformation can be identified on metallographic cut. Stereological measurement of degree of grain boundary orientation is relatively simple if axes of orientation are known (as it is in most of deformation processes). Preferred direction of grains boundaries orientation is the same as direction of deformation; however orientation is not the same thing as deformation. Therefore model of conversion of degree of grain boundary orientation to deformation based on an idealized shape of grains has been proposed. This conversion model is independent on an initial grain size – strain depends only on the shape of the grain and does not depend on its dimension. It allows experimental estimation of local plastic deformation by means of measurement of grain boundary orientation in various areas of plastically deformed parts.
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Hao, Min, Cheng Wen Tan, Xu Dong Wang, Wei Wei He, and Bin Yang. "Impact of Peak Shock Stress on the Microstructure and Reloaded Mechanical Behavior of AZ31 Magnesium Alloy." Materials Science Forum 788 (April 2014): 64–67. http://dx.doi.org/10.4028/www.scientific.net/msf.788.64.

Повний текст джерела
Анотація:
Magnesium alloys can be utilized as potential aerospace materials due to their low density, high specific strength, good vibration and shock absorption ability. This paper deals with the mechanical behavior of hot-rolled AZ31 alloy that was shock-deformed to 2.3 and 3.3 GPa. The post shock microstructure and mechanical response have been determined via full one-dimensional recovery techniques. The microstructure of deformed sample was characterized by the transmission electron microscopy (TEM) and electron back scattered diffraction (EBSD) techniques. All the shock-deformed materials showed shock-strengthening effect that was greater at higher shock pressure. The reload yield stress of the shock-deformed 2.3 GPa sample was determined to be 238 MPa while 264 MPa for the sample which shock-deformed at 3.3 GPa. It was postulated that the shock-strengthening is ascribed to a greater dislocation density and the formation of deformation twins.
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Swamy, P. Narayana. "q-deformed Fermions." European Physical Journal B 50, no. 1-2 (February 16, 2006): 291–94. http://dx.doi.org/10.1140/epjb/e2006-00055-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Bartha, Kristína, Anna Terynková, Josef Stráský, Peter Minárik, Jozef Veselý, Veronika Polyakova, Irina Semenova та Miloš Janeček. "Inhomogeneous Precipitation of the α-Phase in Ti15Mo Alloy Deformed by ECAP". Materials Science Forum 941 (грудень 2018): 1183–88. http://dx.doi.org/10.4028/www.scientific.net/msf.941.1183.

Повний текст джерела
Анотація:
A metastable β-titanium alloy, Ti15Mo was subjected to equal channel angular pressing (ECAP). The resulting microstructure of the material is inhomogeneous consisting of micrometer size β-grains with deformed bands containing ultra-fine β-grains. The ECAP-deformed sample was subjected to thermal treatment in order to elucidate the difference in morphology of the α-phase precipitation in deformed and non-deformed materials. The α-phase formation is accelerated in areas with higher concentration of lattice defects. The detail investigation by transmission electron microscopy revealed equixed α-phase formation in deformed bands. In the transition area between deformed band and β-matrix grain boundary α-phase forms while in the interior of the β-grains the α-phase precipitation is suppressed.
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Zhang, Wenxue, Youping Yi, Shiquan Huang, Hailin He, and Fei Dong. "Effects of Deformation at High, Medium, and Cryogenic Temperatures on the Microstructures and Mechanical Properties of Al-Zn-Mg-Cu Alloys." Materials 15, no. 19 (October 7, 2022): 6955. http://dx.doi.org/10.3390/ma15196955.

Повний текст джерела
Анотація:
Thermomechanical treatment is an effective way to refine the coarse microstructures of aluminum alloys. In this work, multiaxial forging deformation at high, medium, and cryogenic temperatures (i.e., 450, 250, and −180 °C, respectively) was performed on 7085 Al-Zn-Mg-Cu alloys, and its effect on the microstructure evolution and mechanical properties during the subsequent T6 heat treatment process was studied. The results revealed that the coarse particles were broken into finer particles when deformed at cryogenic temperatures, promoting the dissolution of the material after solid solution treatment. Dynamic recrystallization occurred when deformed at 450 °C; however, more dislocations and substructures were found in the samples deformed at 250 and −180 °C, causing static recrystallization after solid solution treatment. The cryogenic deformed sample exhibited a more intense and homogeneous precipitation phase distribution. The strength of the sample deformed at high temperature was high, but its elongation was low, while the strength of the sample deformed at medium temperature was low. The microstructure refinement of the cryogenic deformed sample led to high comprehensive mechanical properties, with an ultimate tensile strength of 535 MPa, a yield strength of 506 MPa, and a fracture elongation of 11.1%.
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Gentot, Laetitia, Mathias Brieu, and Gérard Mesmacque. "Modeling of Stress-Softening for Elastomeric Materials." Rubber Chemistry and Technology 77, no. 4 (September 1, 2004): 759–75. http://dx.doi.org/10.5254/1.3547850.

Повний текст джерела
Анотація:
Abstract An experimental study of deformed reinforced elastomeric materials in uni-axial tension test has been carried out and brings to the fore a significant stress-softening during the first cycles. A new predicted stress-softening model is proposed and well adapted to many rubber-like materials.
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Venerus, David C., David Nieto Simavilla, and Jay D. Schieber. "THERMAL TRANSPORT IN CROSS-LINKED ELASTOMERS SUBJECTED TO ELONGATIONAL DEFORMATIONS." Rubber Chemistry and Technology 92, no. 4 (October 1, 2019): 639–52. http://dx.doi.org/10.5254/rct.19.80382.

Повний текст джерела
Анотація:
ABSTRACT Investigations on thermal transport in cross-linked elastomers subjected to elongational deformations are reviewed and discussed. The focus is on experimental research, in which the deformation-induced anisotropy of the thermal conductivity tensor in several common elastomeric materials is measured using novel optical techniques developed in our laboratory. These sensitive and noninvasive techniques allow for the reliable measurement of thermal conductivity (diffusivity) tensor components on samples in a deformed state. When combined with measurements of the stress in deformed samples, we are able to examine the validity of the stress–thermal rule, which predicts a linear relationship between the thermal conductivity and stress tensor in deformed polymeric materials. These results are used to shed light on possible underlying mechanisms for anisotropic thermal transport in elastomers. We also present results from a novel experimental technique that show evidence of a deformation dependence of the heat capacity, which implies that, in addition to the usual entropic contribution, there is an energetic contribution to the stress in deformed elastomers.
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Landau, P., R. Z. Shneck, G. Makov, and A. Venkert. "Microstructure evolution in deformed copper." Journal of Materials Science 42, no. 23 (August 20, 2007): 9775–82. http://dx.doi.org/10.1007/s10853-007-1999-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Zaefferer, S. "On-Line Semi-Automatic Measurement of Individual Crystal Orientations in Heavily Deformed Materials in the TEM." Microscopy and Microanalysis 5, S2 (August 1999): 202–3. http://dx.doi.org/10.1017/s1431927600014331.

Повний текст джерела
Анотація:
The measurement of individual crystal orientations in heavily deformed materials is of great importance especially for the study of recrystallization mechanisms. The electron backscattering diffraction (EBSD) technique which is frequently used nowadays in the SEM for these kind of studies has three important drawbacks: first, its spatial resolution is limited to about 0.5 μm, second, the sample deformation is limited to only about 60 %, and third, the dislocation microstructure cannot be observed. All these problems can be overcome using a micro beam diffraction technique in the TEM. Two techniques can be distinguished, the Kikuchi pattern technique and the spot pattern technique. With a spatial resolution of down to about 10 nm they arc well suited for orientation measurements in highly deformed material. Nevertheless, since spot patterns are less sensible to deformation the spot technique is the ultimate choice in the case a most highly deformed material. An automatic procedure for the evaluation of spot patterns has been developed and, together with the Kikuchi technique, implemented in a computer program for the on-line analysis of crystal orientations at the TEM. The new procedure and its applications to highly deformed materials is the subject of this presentation. Spot patterns are less sensitive to the sample deformation than Kikuchi patterns due to the differences in the diffraction geometry and due to the relaxation of the Bragg diffraction conditions for spot patterns.
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Scardi, Paolo, Matteo Leoni, and Mirco D'Incau. "Full Pattern Methods for the Analysis of Plastically Deformed Materials." Solid State Phenomena 130 (December 2007): 27–32. http://dx.doi.org/10.4028/www.scientific.net/ssp.130.27.

Повний текст джерела
Анотація:
The recent evolution of powder diffraction line profile analysis toward full pattern methods is discussed. Specific reference is made to the Whole Powder Pattern Modelling (WPPM), as applied to metals and ceramics subjected to strong plastic deformation. Examples concerning three different materials science studies are shown to illustrate features and potentialities of the WPPM approach.
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Miyamoto, Hiroyuki, Motohiro Yuasa, Muhammad Rifai, and Hiroshi Fujiwara. "Corrosion Behavior of Severely Deformed Pure and Single-Phase Materials." MATERIALS TRANSACTIONS 60, no. 7 (July 1, 2019): 1243–55. http://dx.doi.org/10.2320/matertrans.mf201935.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Leem, Juyoung. "A snapshot review on exciton engineering in deformed 2D materials." MRS Advances 5, no. 64 (2020): 3491–506. http://dx.doi.org/10.1557/adv.2020.350.

Повний текст джерела
Анотація:
AbstractMost optoelectronic characteristics of two-dimensional (2D) materials are associated with excitonic effects. Excitonic effects in 2D material have been intensively investigated, and various efforts to engineer exciton behavior in 2D materials have been reported for advanced nanophotonic and optoelectronic applications. Excitons in 2D semiconductors can be controlled by external stimuli, including mechanical, electrical, thermal, and magnetic stimuli. Mechanical stimuli applied to a 2D material can generate uniform or non-uniform deformation and strain gradient in the 2D lattice, which creates a strain-induced bandgap energy gradient in the 2D material. In an inhomogeneous bandgap energy gradient generated by a non-uniform strain gradient, excitons drift across the energy gradient. Exciton engineering in deformed 2D materials aims to control exciton movement by mechanical strain. In this snapshot review, we focus on exciton engineering in a mechanically deformed 2D material and their potential towards advanced optoelectronic and photonic applications.
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Biradar, A. M., S. S. Bawa, and W. Haase. "Goldstone mode behaviour in deformed helix ferroelectric liquid crystal materials." Ferroelectrics 256, no. 1 (January 2001): 201–10. http://dx.doi.org/10.1080/00150190108015984.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Henn, Tamás, and Róbert W. Pál. "Evaluation of desiccated and deformed diaspores from natural building materials." Ethnobiology Letters 6, no. 1 (March 27, 2015): 10–24. http://dx.doi.org/10.14237/ebl.6.1.2015.229.

Повний текст джерела
Анотація:
With the increasing sophistication of paleoethnobotanical methods, it is now possible to reconstruct new aspects of the day-to-day life of past peoples, and, ultimately, gain information about their cultivated plants, land-use practices, architecture, diet, and trade. Reliable identification of plant remains, however, remains essential to the study of paleoethnobotany, and there is still much to learn about precise identification. This paper describes and evaluates the most frequent types of deformed desiccated diaspores revealed from adobe bricks used in buildings in Southwestern Hungary that were built primarily between 1850 and 1950. A total of 24,634 diaspores were recovered from 333.05 kg adobe samples. These seeds and fruits belong to 303 taxa, and the majority were arable and ruderal weed species. A total of 98.97% of the diaspores were identified to species. In other cases, identification was possible only to genus or family (0.93% and 0.10% of diaspores, respectively). Difficulties in identification were caused mainly by morphological changes in the size, shape, color, and surface features of diaspores. Most diaspores were darker in color and significantly smaller than fresh or recently desiccated seeds and fruits. Surface features were often absent or fragmented. The most problematic seeds to identify were those of Centaurea cyanus, Consolida regalis, Scleranthus annuus and Daucus carota ssp. carota, which are discussed in detail. Our research aids archaeobotanists in the identification of desiccated and deformed diaspores.
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Rushchitsky, Jeremiah. "Self-switching of displacement waves in elastic nonlinearly deformed materials." Comptes Rendus Mécanique 330, no. 3 (January 2002): 175–80. http://dx.doi.org/10.1016/s1631-0721(02)01444-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії