Добірка наукової літератури з теми "Deformed materials"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Deformed materials".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Deformed materials"

1

Destrade, M. "Surface waves in deformed Bell materials." International Journal of Non-Linear Mechanics 38, no. 6 (September 2003): 809–14. http://dx.doi.org/10.1016/s0020-7462(01)00125-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Embury, J. D. "Micromechanical descriptions of heavily deformed materials." Scripta Metallurgica et Materialia 27, no. 8 (October 1992): 981–86. http://dx.doi.org/10.1016/0956-716x(92)90460-v.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Klimanek, P., V. Klemm, A. E. Romanov, and M. Seefeldt. "Disclinations in Plastically Deformed Metallic Materials." Advanced Engineering Materials 3, no. 11 (November 2001): 877. http://dx.doi.org/10.1002/1527-2648(200111)3:11<877::aid-adem877>3.0.co;2-l.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Sauvage, Xavier, Amandine Duchaussoy, and Ghenwa Zaher. "Strain Induced Segregations in Severely Deformed Materials." MATERIALS TRANSACTIONS 60, no. 7 (July 1, 2019): 1151–58. http://dx.doi.org/10.2320/matertrans.mf201919.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Delsanto, P. P., and A. V. Clark. "Rayleigh wave propagation in deformed orthotropic materials." Journal of the Acoustical Society of America 81, no. 4 (April 1987): 952–60. http://dx.doi.org/10.1121/1.394575.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Field, D. P. "Analysis of Grain Fragmentation in Deformed Materials." Microscopy and Microanalysis 9, S02 (July 28, 2003): 76–77. http://dx.doi.org/10.1017/s1431927603440993.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Ivlev, Y. "Vibrational compaction of hard deformed powder materials." Metal Powder Report 52, no. 7-8 (July 1997): 38. http://dx.doi.org/10.1016/s0026-0657(97)80176-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Ivlev, Y. "Vibrational compaction of hard deformed powder materials." Metal Powder Report 53, no. 7-8 (July 8, 1997): 38. http://dx.doi.org/10.1016/s0026-0657(97)84682-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Merala, T. B., H. W. Chan, D. G. Howitt, P. V. Kelsey, G. E. Korth, and R. L. Williamson. "Dislocation microstructures in explosively deformed hard materials." Materials Science and Engineering: A 105-106 (November 1988): 293–98. http://dx.doi.org/10.1016/0025-5416(88)90510-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Baranov, V. L., and A. V. Kanunnikov. "Response of deformed materials in dynamic contact." Russian Engineering Research 28, no. 11 (November 2008): 1058–62. http://dx.doi.org/10.3103/s1068798x08110075.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Deformed materials"

1

Rodrigues, Ferreira Elizabete. "Finite-amplitude waves in deformed elastic materials." Doctoral thesis, Universite Libre de Bruxelles, 2008. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210464.

Повний текст джерела
Анотація:
Le contexte de cette thèse est la théorie de l'élasticité non linéaire, appelée également "élasticité finie". On y présente des résultats concernant la propagation d'ondes d'amplitude finie dans des matériaux élastiques non linéaires soumis à une grande déformation statique homogène. Bien que les matériaux considérés soient isotropes, lors de la propagation d'ondes un comportement anisotrope dû à la déformation statique se manifeste.

Après un rappel des équations de base de l'élasticité non linéaire (Chapitre 1), on considère tout d'abord la classe générale des matériaux incompressibles. Pour ces matériaux, on montre que la propagation d'ondes transversales polarisées linéairement est possible pour des choix appropriés des directions de polarisation et de propagation. De plus, on propose des généralisations des modèles classiques de "Mooney-Rivlin" et "néo-Hookéen" qui conduisent à de nouvelles solutions. Bien que le contexte soit tri-dimensionnel, il s'avère que toutes ces ondes sont régies par des équations d'ondes scalaires non linéaires uni-dimensionelles. Dans le cas de solutions du type ondes simples, on met en évidence une propriété remarquable du flux et de la densité d'énergie.

Dans les Chapitres 3 et 4, on se limite à un modèle particulier de matériaux compressibles appelé "modèle restreint de Blatz-Ko", qui est une version compressible du modèle néo-Hookéen.

En milieu infini (Chapitre 3), on montre que des ondes transversales polarisées linéairement, faisant intervenir deux variables spatiales, peuvent se propager. Bien que la théorie soit non linéaire, le champ de déplacement de ces ondes est régi par une version anisotrope de l'équation d'onde bi-dimensionnelle classique. En particulier, on présente des solutions à symétrie "cylindrique elliptique" analogues aux ondes cylindriques. Comme cas particulier, on obtient aussi des ondes planes inhomogènes atténuées à la fois dans l'espace et dans le temps. De plus, on montre que diverses superpositions appropriées de solutions sont possibles. Dans chaque cas, on étudie les propriétés du flux et de la densité d'énergie. En particulier, dans le cas de superpositions il s'avère que des termes d'interactions interviennent dans les expressions de la densité et du flux d'énergie.

Finalement (Chapitre 4), on présente une solution exacte qui constitue une généralisation non linéaire de l'onde de Love classique. On considère ici un espace semi-infini, appelé "substrat" recouvert par une couche. Le substrat et la couche sont constitués de deux matériaux restreints de Blatz-Ko pré-déformés. L'onde non linéaire de Love est constituée d'un mouvement non atténué dans la couche et d'une onde plane inhomogène dans le substrat, choisies de manière à satisfaire aux conditions aux limites. La relation de dispersion qui en résulte est analysée en détail. On présente de plus des propriétés générales du flux et de la densité d'énergie dans le substrat et dans la couche.

The context of this thesis is the non linear elasticity theory, also called "finite elasticity".

Results are obtained for finite-amplitude waves in non linear elastic materials which are first subjected to a large homogeneous static deformation. Although the materials are assumed to be isotropic, anisotropic behaviour for wave propagation is induced by the static deformation.

After recalling the basic equations of the non linear elasticity theory (Chapter 1), we first consider general incompressible materials. For such materials, linearly polarized transverse plane waves solutions are obtained for adequate choices of the polarization and propagation directions (Chapter 2). Also, extensions of the classical Mooney-Rivlin and neo-Hookean models are introduced, for which more solutions are obtained. Although we use the full three dimensional elasticity theory, it turns out that all these waves are governed by scalar one-dimensional non linear wave equations. In the case of simple wave solutions of these equations, a remarkable property of the energy flux and energy density is exhibited.

In Chapter 3 and 4, a special model of compressible material is considered: the special Blatz-Ko model, which is a compressible counterpart of the incompressible neo-Hookean model.

In unbounded media (Chapter 3), linearly polarized two-dimensional transverse waves are obtained. Although the theory is non linear, the displacement field of these waves is governed by a linear equation which may be seen as an anisotropic version of the classical two-dimensional wave equation. In particular, solutions analogous to cylindrical waves, but with an "elliptic cylindrical symmetry" are presented. Special solutions representing "damped inhomogeneous plane waves" are also derived: such waves are attenuated both in space and time. Moreover, various appropriate superpositions of solutions are shown to be possible. In each case, the properties of the energy density and the energy flux are investigated. In particular, in the case of superpositions, it is seen that interaction terms enter the expressions for the energy density and the energy flux.

Finally (Chapter 4), an exact finite-amplitude Love wave solution is presented. Here, an half-space, called "substrate", is assumed to be covered by a layer, both made of different prestrained special Blatz-Ko materials. The Love surface wave solution consists of an unattenuated wave motion in the layer and an inhomogeneous plane wave in the substrate, which are combined to satisfy the exact boundary conditions. A dispersion relation is obtained and analysed. General properties of the energy flux and the energy density in the substrate and the layer are exhibited.


Doctorat en Sciences
info:eu-repo/semantics/nonPublished

Стилі APA, Harvard, Vancouver, ISO та ін.
2

Divinski, Sergiy V., Jens Ribbe, Gerrit Reglitz, Yuri Estrin, and Gerhard Wilde. "Ultra-fast diffusion in severely deformed materials." Universitätsbibliothek Leipzig, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-190057.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Divinski, Sergiy V., Jens Ribbe, Gerrit Reglitz, Yuri Estrin, and Gerhard Wilde. "Ultra-fast diffusion in severely deformed materials." Diffusion fundamentals 11 (2009) 45, S. 1-2, 2009. https://ul.qucosa.de/id/qucosa%3A14008.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Stojakovic, Dejan Doherty R. D. Kalidindi Surya. "Microstructure evolution in deformed and recrystallized electrical steel /." Philadelphia, Pa. : Drexel University, 2008. http://hdl.handle.net/1860/2728.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Dalai, Biswajit. "Material characterization of AA7075-T651 deformed at different temperatures and strain rates." Licentiate thesis, Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-84325.

Повний текст джерела
Анотація:
In this licentiate thesis, the mechanical response and the microstructure evolution in aluminum alloy (AA) 7075 in its T651 heat treated state have been studied through mechanical tests at varied conditions of strain rate and temperature. First, compression tests were performed on AA7075-T651 samples at room temperature (RT), 100, 200, 300, 400 and 500 °C (melting temperature of AA7075 is ~635 °C) with two comparatively low strain rates of 0.01 and 1 s-1 using a Gleeble thermo-mechanical simulator. The effects of softening mechanisms, such as adiabatic heating, dynamic recovery (DRV) and dynamic recrystallization (DRX), on the flow stress level, strain rate sensitivity (SRS) and temperature sensitivity were analyzed over the entire range of deformation temperatures. Additionally, the extent of DRX with respect to temperature, strain rate and local strain was demonstrated and explained through electron back-scattered diffraction (EBSD) analysis. The deformation behavior of AA7075-T651 was then studied at high strain rates in the order of 102-103 s-1 at RT, 200, 300 and 400 °C using a Split-Hopkinson pressure bar (SHPB) setup complemented with an induction coil. Unlike in case of deformation at low strain rates, the unavailability of sufficient time for the dissipation of heat energy during deformation at high strain rates resulted in the formation of adiabatic shear bands (ASBs). Two types of ASB, namely distorted shear band (DSB) and transformed shear band (TSB) were characterized by their distorted-elongated and ultra-fine grain structures, respectively. A deformation path was established following the evolution of ASBs, micro-voids and micro-cracks leading to the fracture of the material. The effects of strain, strain rate and deformation temperature on the formation of ASBs and cracks were also discussed.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Zhai, Dawei. "Studies on Electron Dynamics in Deformed Graphene." Ohio University / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1540985604827894.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Vachhani, Shraddha J. "Stored energy maps in deformed metals using spherical nanoindentation." Diss., Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/51813.

Повний текст джерела
Анотація:
Microstructure changes that occur during the deformation and heat treatments involved in wrought processing of metals are of central importance in achieving the desired properties or performance characteristics in the finished products. However, thorough understanding of the evolution of microstructure during thermo-mechanical processing of metallic materials is largely hampered by lack of methods for characterizing reliably their local (anisotropic) properties at the sub-micron length scales. Recently, remarkable advances in nanoindentation data analysis techniques have been made which now make it possible to obtain quantitative information about the local mechanical properties of constituent individual grains in polycrystalline metallic samples. In this work, a novel approach that combines mechanical property information obtained from spherical nanoindentation with the complementary structure information measured locally at the indentation site, using Electron Backscattered Diffraction (EBSD), is used to systematically investigate the local structure-property relationships in fcc metals. This work is focused on obtaining insights into the changes in local stored energies of polycrystalline metallic samples as a function of their crystal orientation at increasing deformation levels. Furthermore, using the same approach, the evolution of mechanical properties in the grain boundary regions in these samples is studied in order to better understand the role of such interfaces during deformation and recrystallization processes. The findings provide valuable information regarding development of stored energy gradients in polycrystalline materials during macroscopic deformation.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Guo, Shuo. "Evaluation of deformed MnS in different industrial steels by using electrolytic extraction." Thesis, KTH, Materialvetenskap, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-217880.

Повний текст джерела
Анотація:
The inclusions have a different chemical composition and give the steel different mechanical properties. These inclusions affect several properties of steel. In order to understand how the inclusions will affect the steel properties, the electrolytic extraction of 3D investigate method is applied on the steel grade of 42CrMo4. Then follow with Scanning Electron Microscope (SEM) observation. Steel samples from both ingot and rolling with and without heat treatment are observed and compared with different ratios. The result shown that, heat treatment can be applied for removing carbides successfully. And most inclusions are belonging to Type RS which is rod like MnS. The percentage of broken particles can be up to 80%, which means that the reason for the inclusions broken should be find. And heat treatment can affect the characteristics of elongated MnS.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Patra, Anirban. "Modeling the mechanical behavior and deformed microstructure of irradiated BCC materials using continuum crystal plasticity." Diss., Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/50366.

Повний текст джерела
Анотація:
The mechanical behavior of structural materials used in nuclear applications is significantly degraded as a result of irradiation, typically characterized by an increase in yield stress, localization of inelastic deformation along narrow dislocation channels, and considerably reduced strains to failure. Further, creep rates are accelerated under irradiation. These changes in mechanical properties can be traced back to the irradiated microstructure which shows the formation of a large number of material defects, e.g., point defect clusters, dislocation loops, and complex dislocation networks. Interaction of dislocations with the irradiation-induced defects governs the mechanical behavior of irradiated metals. However, the mechanical properties are seldom systematically correlated to the underlying irradiated microstructure. Further, the current state of modeling of deformation behavior is mostly phenomenological and typically does not incorporate the effects of microstructure or defect densities. The present research develops a continuum constitutive crystal plasticity framework to model the mechanical behavior and deformed microstructure of bcc ferritic/martensitic steels exposed to irradiation. Physically-based constitutive models for various plasticity-induced dislocation migration processes such as climb and cross-slip are developed. We have also developed models for the interaction of dislocations with the irradiation-induced defects. A rate theory based approach is used to model the evolution of point defects generated due to irradiation, and coupled to the mechanical behavior. A void nucleation and growth based damage framework is also developed to model failure initiation in these irradiated materials. The framework is used to simulate the following major features of inelastic deformation in bcc ferritic/martensitic steels: irradiation hardening, flow localization due to dislocation channel formation, failure initiation at the interfaces of these dislocation channels and grain boundaries, irradiation creep deformation, and temperature-dependent non-Schmid yield behavior. Model results are compared to available experimental data. This framework represents the state-of-the-art in constitutive modeling of the deformation behavior of irradiated materials.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Wang, Lei. "Study of the microstructure and mechanical properties of TWIP steels deformed by ECAP." Doctoral thesis, Universitat Politècnica de Catalunya, 2016. http://hdl.handle.net/10803/458883.

Повний текст джерела
Анотація:
In the current thesis, two TWIP steels with different chemical composition were successfully subjected to Severe Plastic Deformation with Equal Channel Angular Pressing (ECAP) at warm temperature (300°C), using a die with internal angle Ф= 90°, and an outer arc of curvature Ф=37°. The maximum strain around 4 (i.e. four pass of ECAP) and a ultra-fine grain size microstructure was obtained. Additionally, one pass of ECAP at room temperature was also tried for one of investigated TWIP steel. The microstructure was detected through different techniques, more specifically, Optical microscope (OM), Electron backscatter diffraction (EBSD), and Transmission electron microscopy (TEM). In the mean time, the mechanical properties before and after ECAP procedure with respect to micro-hardness and micro-tensile test were performed as well. Furthermore, in order to better understand the corresponding tensile mechanical property, as well as the effect of microstructure on twinning capability, the strain hardening behavior was analyzed and well associated with the corresponding microstructure obtained by EBSD and TEM. Microstructure detection reveled that both two investigated TWIP steels in heat treated condition exhibit a relatively homogeneous microstructure composed of equiaxed grain. After ECAP procedure at 300°C, for both two TWIP steels, the grains are elongated and the grain size decrease sharply, especially after the first pass. The microstructure of each pass sample consists of three different features: new formed grain, twin boundaries and subgrains. The fraction of twin boundaries reduce with increase number of passes, as well as low angle grain boundaries. It can be concluded that the subgrains gradually form the new grains. The twin thickness also showed a reducing trend. The TEM micrographs demonstrated the exist of twins in ECAPed condition. More specifically, in heat treated samples, straight and not tangled dislocations can be found. After one pass, relatively wide twins with low fraction of second twin system is the main feature; after two passes of ECAP, the second twin system is more abundant while the twin thickness is lower; after four passes, extremely thin twins and subgrains were formed. The texture detected by EBSD showed in the heat treated condition that both two TWIP steels exhibit Brass and Goss as dominant component. After ECAP process, the dominant component move gradually from A1* to B . In terms of mechanical properties, the micro-hardness, the yield strength and the ultimate tensile strength increase significantly while the ductility and tensile toughness show a downward trend during ECAP procedure for both two TWIP steels. The strain hardening capability in heat treated condition is much higher than the ECAPed sample and the reasons are analyzed.
En la presente tesis, se sometió a dos aceros TWIP de composición diferente a procesos de Severa Deformación Plástica (SPD) por presión en canal angular de sección constante (ECAP), a 300oC. Para ello, se utilizó una matriz con un angulo interno Ф=90° y un arco exterior con un curvatura Ф=37°. Se llegó a aplicar una deformación alrededor de 4, correspodiente a 4 pases de ECAP, consiguiendo microestructuras de grano ultrafino. Además, se consiguió deformar a temperatura ambiente uno de los aceros mediante la aplicación de un pase de ECAP. Las microestructuras fueron caracterizadas mediante la aplicación de diferentes técnicas, más concretamente microscopía óptica (OM), difracción de electrones retrodispersados (EBSD) y microscopía electrónica de transmisión (TEM). Asmismo, las propiedades mecánicas previas y posteriores a la deformación por ECAP fueron determinadas por microdureza y ensayos de microtracción. Con el fin de comprender la interrelación entre las propiedades mecánicas, la microstructura y la capacidad de maclar del material, el comportamiento de endurecimiento por deformación se analizó en base a las microestructuras obtenidas por EBSD y TEM. La caracterización microestructural reveló que los dos aceros TWIP investigados presentaban una microestructura homogénea de granos equiáxicos en su condition de recocido. Tras la deformación por ECAP a 300ºC, ambos aceros presentaron granos alargados con un afino de grano pronunciado, sobretodo después del primer pase. La microestructura tras cada uno de los pases se caracteriza por la presencia de nuevos granos, subgranos y maclas. La fracción de los límites de macla se reduce con un aumento del número de pases, de la misma manera que la fracción de límites de grano de ángulo bajo, concluyéndose que los subgranos se transforman gradualmente en nuevos granos. It can be concluded that the subgrains gradually form the new grains. El espesor de la maclas también mostró una tendencia decreciente con el número de pases. Las micrografías por TEM demostraron la presencia de maclas para las probetas deformadas por ECAP, a pesar de la temperatura a la que se llevó a cabo el proceso. En particular, las probetas recocidas se detectaron dislocaciones rectas y sin enmarañamiento. Después de un pase, las maclas que aparecían eran relativamente anchas con poco maclado secundario. Tras dos pases, el maclado secundario aumenta, con una reducción del espesor de las maclas. Después de cuatro pases, se observan maclas extremadamente finas y gran formación de subgranos. La textura, caracterizada por EBSD mostró que en la condición de recocido ambos aceros mostraban componentes Brass y Goss dominantes. Tras la deformación por ECAP, el componente dominante se movió gradualmente de A1* a B. En lo relativo a las propiedades mecánicas, tanto la microdureza, como el límite elástico y resistencia máxica aumentaron con el número de pases, a la vez que la ductilidad y tenacidad disminuían. Por otro lado, el enduremiento por deformación era máximo para la condición de recocido, aunque dada la gran deformación aplicada en cada pase, el material seguía reteniendo capacidad de endurecer después de uno y dos pases de deformación por ECAP.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Deformed materials"

1

Miyoshi, Kazuhisa. Abrasion and deformed layer formation of manganese-zinc ferrite in sliding contact with lapping tapes. [Cleveland, Ohio: National Aeronautics and Space Administration, Lewis Research Center, 1986.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Knorr, D. B. Proceedings From the Symposia Textures in Non-Metallic Materials and Microstructure and Texture Evolution During Annealing of Deformed Materials: A special ... Microstructures (Textures & Microstructures). Routledge, 1991.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Bauser, M., G. Sauer, and K. Siegert, eds. Extrusion. Translated by A. F. Castle. 2nd ed. ASM International, 2006. http://dx.doi.org/10.31399/asm.tb.ex2.9781627083423.

Повний текст джерела
Анотація:
Extrusion, Second Edition provides a complete and thorough overview of the processes, equipment, and tooling used to extrude metals into desired shapes and forms. It covers all types of processes, including direct, indirect, and hydrostatic extrusion, cable sheathing, continuous extrusion, and the extrusion of powder metals. It describes each process in detail, explaining how the associated forces, stresses, displacements, and heat cause metals to deform and flow and how it affects the microstructure and properties of the resulting products. It discusses the design, setup, and control of extrusion equipment, the use of lubricants and shells, the effect of tooling materials and geometries, and the practical implications of material flow, friction, discard length, and exit temperature. It describes the deformation and extrusion behaviors of many materials, the product forms into which they can be made, and related processing requirements. The book also provides detailed application examples, an introduction to quality management, a review of the basics of metallurgy, and experimentally measured extrusion data. For information on the print version, ISBN 978-0-87170-837-3, follow this link.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Transferencia del conocimiento e investigación educativa. Editorial Octaedro, 2022. http://dx.doi.org/10.36006/09503.

Повний текст джерела
Анотація:
La transferencia de conocimiento de la Universidad a la sociedad es uno de los ejes sobre los cuales pivota la labor de esta institución en el siglo XXI. Se trata de un término que ha cambiado significativamente su quehacer diario, por lo que merece una detenida reflexión en la que se definan sus objetivos, contenidos y las ya visibles consecuencias de su aplicación, aportando elementos para el debate educativo a partir de la experiencia docente e investigadora de docentes del área de Teoría e Historia de la Educación de la Universidad de Málaga, con una procedencia y trayectoria académica diversa pero complementaria. De forma coordinada, los autores y autoras cuestionan los efectos del sobredimensionamiento o interpretaciones tergiversadas de ese nuevo encargo a la Universidad. En los diferentes capítulos, plantean aspectos de calado como los relacionados con cómo, mediante la transferencia, se puede lograr distorsionar y deformar las prácticas neoliberales de desigualdad y pérdida de derechos con procesos pedagógicos. También con la importancia del conocimiento teórico y su potencialidad en la propia transferencia en el ámbito educativo, el sentido social y comunitario que debe presidirla, la necesidad de que se convierta en una oportunidad para trasladar hacia la formación del docente de hoy valores y contenidos, y para promover actitudes fortalecedoras y cómplices con la eliminación cualquier tipo de discriminación, el análisis de las políticas universitarias dirigidas al planeamiento, gestión, formación y desarrollo en esta materia o el desarrollo de ejemplos de transferencia desde la historia de la educación. Por todo ello, estamos ante una obra pionera que ofrece unos contenidos que profundizan y que abren nuevas rutas interpretativas hacia la mejor comprensión de este poderoso concepto.
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Deformed materials"

1

Field, David P., and Hasso Weiland. "Characterization of Deformed Microstructures." In Electron Backscatter Diffraction in Materials Science, 199–212. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/978-1-4757-3205-4_17.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Fábián, Enikö Réka, and László Dévényi. "Hydrogen in the Plastic Deformed Steel." In Materials Science Forum, 33–40. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-426-x.33.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Lvov, Gennadiy, and Olga Kostromitskaya. "Residual Stresses in Plastic Deformed Composites." In Advanced Structured Materials, 75–90. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-75890-5_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Klöden, Burghardt, Werner Skrotzki, C. G. Oertel, and E. Rybacki. "Dynamic Recrystallization of Torsion Deformed NiAl." In Materials Science Forum, 743–48. Stafa: Trans Tech Publications Ltd., 2005. http://dx.doi.org/10.4028/0-87849-975-x.743.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Pipkin, A. C., and R. S. Rivlin. "Electrical Conduction in Deformed Isotropic Materials." In Collected Papers of R.S. Rivlin, 2349–52. New York, NY: Springer New York, 1997. http://dx.doi.org/10.1007/978-1-4612-2416-7_157.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Hayes, M., and R. S. Rivlin. "Surface Waves in Deformed Elastic Materials." In Collected Papers of R.S. Rivlin, 625–48. New York, NY: Springer New York, 1997. http://dx.doi.org/10.1007/978-1-4612-2416-7_42.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Tsuzaki, Kaneaki, Andrey Belyakov, and Fu Xing Yin. "Texture Invariant Annealing in Severely Deformed Steel." In Materials Science Forum, 101–6. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-443-x.101.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Bernardi, Heide H., Hugo Ricardo Zschommler Sandim, Bert Verlinden, and Dierk Raabe. "Recrystallization of Niobium Single Crystals Deformed by ECAE." In Materials Science Forum, 125–30. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-443-x.125.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Peng, Jian, Ding Fei Zhang, Pei Dao Ding, Fu Sheng Pan, and Xiang Yu. "Dynamic Analysis on Thermal Deformed AZ61B Magnesium Alloy." In Materials Science Forum, 551–54. Stafa: Trans Tech Publications Ltd., 2005. http://dx.doi.org/10.4028/0-87849-968-7.551.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Kuśnierz, Jan, Marie Helene Mathon, Thierry Baudin, Zdzislaw Jasieński, and Richard Penelle. "Texture of Al-Cu Alloys Deformed by ECAP." In Materials Science Forum, 851–56. Stafa: Trans Tech Publications Ltd., 2005. http://dx.doi.org/10.4028/0-87849-975-x.851.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Deformed materials"

1

Sim, H. S. "Resonances in deformed carbon nanotubes." In NANONETWORK MATERIALS: Fullerenes, Nanotubes, and Related Systems. AIP, 2001. http://dx.doi.org/10.1063/1.1420100.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Pu, Xiao-Yun, and Wing-Kee Lee. "Lasing characteristics of a deformed pendant drop." In Nonlinear Optics: Materials, Fundamentals and Applications. Washington, D.C.: OSA, 2000. http://dx.doi.org/10.1364/nlo.2000.wb26.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

László, István. "Topological coordinates for deformed nanotubes." In MOLECULAR NANOSTRUCTURES: XVII International Winterschool Euroconference on Electronic Properties of Novel Materials. AIP, 2003. http://dx.doi.org/10.1063/1.1628063.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Orekhov, Andrey V. "Criterion for estimation of stress-deformed state of SD-materials." In THE EIGHTH POLYAKHOV’S READING: Proceedings of the International Scientific Conference on Mechanics. Author(s), 2018. http://dx.doi.org/10.1063/1.5034703.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Sinyakin, M. P., D. V. Sergeev, and A. N. Anikeev. "Study of structure of dispersive-strengthened deformed workpieces." In 3RD ELECTRONIC AND GREEN MATERIALS INTERNATIONAL CONFERENCE 2017 (EGM 2017). Author(s), 2017. http://dx.doi.org/10.1063/1.5002947.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Kubis, Michael, Jing Jin, Steven E. Steen, Johan Beckers, Fayaz Shaikh, and Bart van Schravendijk. "How to improve overlay of highly deformed 3D NAND wafers." In Advances in Patterning Materials and Processes XXXVII, edited by Roel Gronheid and Daniel P. Sanders. SPIE, 2020. http://dx.doi.org/10.1117/12.2552042.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Masaki Orihashi, Yasutoshi Noda, and Kazuhiro Hasezaki. "Surface texture of Bi2Te3-based materials deformed under pressure-current heating." In 2007 26th International Conference on Thermoelectrics (ICT 2007). IEEE, 2007. http://dx.doi.org/10.1109/ict.2007.4569430.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Kuc, Dariusz, Jerzy Gawad, Francisco Chinesta, Yvan Chastel, and Mohamed El Mansori. "Modelling of Microstructure Changes in Hot Deformed Materials Using Cellular Automata." In INTERNATIONAL CONFERENCE ON ADVANCES IN MATERIALS AND PROCESSING TECHNOLOGIES (AMPT2010). AIP, 2011. http://dx.doi.org/10.1063/1.3552396.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Perovskaya, M. V., G. V. Shlyakhova, S. A. Barannikova, and L. B. Zuev. "STRUCTURAL INVESTIGATIONS OF DEFORMED COPPER-NICKEL ALLOYS." In Physical Mesomechanics of Materials. Physical Principles of Multi-Layer Structure Forming and Mechanisms of Non-Linear Behavior. Novosibirsk State University, 2022. http://dx.doi.org/10.25205/978-5-4437-1353-3-111.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Barzi, E., D. Turrioni, M. Alsharo'a, M. Field, S. Hong, J. Parrell, R. Yamada, et al. "EFFECT OF SUBELEMENT SPACING IN RRP Nb[sub 3]Sn DEFORMED STRANDS." In ADVANCES IN CRYOGENIC ENGINEERING MATERIALS: Transactions of the International Cryogenic Materials Conference - ICMC, Vol. 54. AIP, 2008. http://dx.doi.org/10.1063/1.2900360.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Deformed materials"

1

Sethna, James P. Deformed Materials: Towards a Theory of Materials Morphology Dynamics. Office of Scientific and Technical Information (OSTI), June 2017. http://dx.doi.org/10.2172/1366763.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Real Fernández, Elena. ¿PUEDE HABER 5 FASES DE DEFORMACIÓN HERCÍNICA EN LA ZONA DE VALDEMORILLO (MADRID)? Ilustre Colegio Oficial de Geólogos, October 2020. http://dx.doi.org/10.21028/erf.2020.10.27.

Повний текст джерела
Анотація:
This work aims to understand the processes that have taken part in the deformation, both on a small and large scale, of metamorphic materials in Valdemorillo area, located in the west of the Community of Madrid and within the Spanish Central System. The objective is to understand the kinematic evolution and the specific mechanical behaviour of igneous-metamorphic materials from the area, deformed by certain efforts developed throughout the Hercynian Orogeny. Therefore, a structural analysis has been carried out throughout a geological mapping scaled 1: 25000 and the analysis of various petrographic studies by microscope. Thus, a total of 5 different deformations have been identified, which have allowed us to better understand the reconstruction of the processes generated in these materials and that we see today.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Claus, Ana, Borzooye Jafarizadeh, Azmal Huda Chowdhury, Neziah Pala, and Chunlei Wang. Testbed for Pressure Sensors. Florida International University, October 2021. http://dx.doi.org/10.25148/mmeurs.009771.

Повний текст джерела
Анотація:
Currently, several studies and experiments are being done to create a new generation of ultra-low-power wearable sensors. For instance, our group is currently working towards the development of a high-performance flexible pressure sensor. However, with the creation of new sensors, a need for a standard test method is necessary. Therefore, we opted to create a standardized testbed to evaluate the pressure applied to sensors. A pulse wave is generated when the heart pumps blood causing a change in the volume of the blood vessel. In order to eliminate the need of human subjects when testing pressure sensors, we utilized polymeric material, which mimics human flesh. The goal is to simulate human pulse by pumping air into a polymeric pocket which s deformed. The project is realized by stepper motor and controlled with an Arduino board. Furthermore, this device has the ability to simulate pulse wave form with different frequencies. This in turn allows us to simulate conditions such as bradycardia, tachycardia, systolic pressure, and diastolic pressure.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Tiku, Sanjay, Aaron Dinovitzer, Vlad Semiga, and Binoy John. PR-214-073510-Z01 FS Fatigue Testing Plain Dents+Dents Interacting with Welds and Metal Loss with Data. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), August 2018. http://dx.doi.org/10.55274/r0011514.

Повний текст джерела
Анотація:
Dents in buried pipelines occur due to a number of potential causes; the pipe resting on rock, third party machinery strike, rock strikes during backfilling, amongst others. The long-term integrity of a dented pipeline segment is a complex function of a variety of parameters, including pipe geom-etry, indenter shape, dent depth, indenter support, pressure history at and following indentation. In order to estimate the safe remaining operational life of a dented pipeline, all of these factors must be accounted for in the analysis. In order to characterize the severity of a dent on the integrity of a pipeline system, there must first be sufficient information available describing the behavior of the deformed pipe when subjected to typical loading scenarios. While there have been a number of full scale test programs that have been used to develop general trends in the behavior of dented pipe subjected to cyclic pressure loads, these programs have not produced sufficiently detailed information in terms of material properties, dent and pipe response to pressure loading, to form the basis of a severity assessment criterion. The objective of the current project was to generate full scale dent fatigue test data necessary to develop, validate and/or evaluate dent models capable of predicting cyclic internal pressure related failures of a pipe segment. The data generated included: detailed material characterization of the pipes involved in full scale test program, dent profile measurement, dent strains during dent for-mation and cyclic loading and recording of the details of fatigue crack location and orientation within a dent. The test program developed detailed experimental data for: - Unrestrained plain dents, - Restrained plain dents, - Dents interacting with welds and - Dents interacting with metal loss.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Hart, James, Nasir Zulfiqar, and Carl Popelar. L52289 Use of Pipeline Geometry Monitoring to Assess Pipeline Condition. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), December 2008. http://dx.doi.org/10.55274/r0010254.

Повний текст джерела
Анотація:
Describes an algorithm is developed for deducing the longitudinal or axial strain from geometry pig measurements of a laterally displaced pipeline; often caused by geohazards. The development is limited to those lateral displacements of the pipeline that results in a predominantly transverse loading; i.e., the induced transverse component of the loading is much greater than its axial component. The emphasis is upon evaluating inelastic straining that accompanies large lateral displacement of the pipeline. The induced extensional strain is found to vary linearly with the change in curvature of the pipeline. The validity of the approach is established through favorable comparisons of the predictions for the extensional strains with those determined from buried pipeline finite element simulations of various displaced pipe configurations, pipe geometries, and loading amplitudes. Since the algorithm relies only upon measurements of the geometry of the displaced pipeline, it is independent of the pipe's and soil's material properties, pipe-soil interaction, and the loading conditions. Benefit: The efficacy of the algorithm is demonstrated by performing a large matrix of finite element simulations of displaced pipelines of different geometries subjected to block subsidence, landslides intersecting the pipeline at varying angles, fault crossings at different angles and different loading states, and comparing the analytical strains with the strains deduced from digital pig measurements of the curvature of the deformed pipeline. In this regard, the finite element simulations serve the role of surrogate geometry pig measurements. These comparisons are used to establish the resolution of the change in curvature measurement required of a geometry pig to produce a reliable estimate for the longitudinal strain in a displaced pipeline. An error analysis is also performed to establish the relative error as a function of the curvature measurement gage length, a characteristic feature-length, and the abruptness of the displaced shape of the pipeline.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії