Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Defect Conformal Field Theories.

Статті в журналах з теми "Defect Conformal Field Theories"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Defect Conformal Field Theories".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Lauria, Edoardo. "Exact results in defect conformal field theories**." Fortschritte der Physik 64, no. 4-5 (March 14, 2016): 333–35. http://dx.doi.org/10.1002/prop.201500090.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Penati, Silvia. "Superconformal Line Defects in 3D." Universe 7, no. 9 (September 15, 2021): 348. http://dx.doi.org/10.3390/universe7090348.

Повний текст джерела
Анотація:
We review the recent progress in the study of line defects in three-dimensional Chern–Simons-matter superconformal field theories, notably the ABJM theory. The first part is focused on kinematical defects, supporting a topological sector of the theory. After reviewing the construction of this sector, we concentrate on the evaluation of topological correlators from the partition function of the mass-deformed ABJM theory and provide evidence on the existence of topological quantum mechanics living on the line. In the second part, we consider the dynamical defects realized as latitude BPS Wilson loops for which an exact evaluation is available in terms of a latitude Matrix Model. We discuss the fundamental relation between these operators, the defect superconformal field theory and bulk physical quantities, such as the Bremsstrahlung function. This relation assigns a privileged role to BPS Wilson operators, which become the meeting point for three exact approaches: localization, integrability and conformal bootstrap.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

SARKISSIAN, GOR. "SOME REMARKS ON D-BRANES AND DEFECTS IN LIOUVILLE AND TODA FIELD THEORIES." International Journal of Modern Physics A 27, no. 31 (December 13, 2012): 1250181. http://dx.doi.org/10.1142/s0217751x12501813.

Повний текст джерела
Анотація:
In this paper, we analyze the Cardy–Lewellen equation in general diagonal model. We show that in these models it takes a simple form due to some general properties of conformal field theories, like pentagon equations and OPE associativity. This implies that the Cardy–Lewellen equation has a simple form also in nonrational diagonal models. We specialize our finding to the Liouville and Toda field theories. In particular, we prove that recently conjectured defects in Toda field theory indeed satisfy the cluster equation. We also derive the Cardy–Lewellen equation in all sl(n) Toda field theories and prove that the form of boundary states found recently in sl(3) Toda field theory holds in all sl(n) theories as well.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

IACOMINO, PATRIZIA, VINCENZO MAROTTA, and ADELE NADDEO. "DISSIPATIVE QUANTUM MECHANICS AND KONDO-LIKE IMPURITIES ON NONCOMMUTATIVE TWO-TORI." International Journal of Modern Physics A 27, no. 02 (January 20, 2012): 1250007. http://dx.doi.org/10.1142/s0217751x12500078.

Повний текст джерела
Анотація:
In a recent paper, by exploiting the notion of Morita equivalence for field theories on noncommutative tori and choosing rational values of the noncommutativity parameter θ (in appropriate units), a general one-to-one correspondence between the m-reduced conformal field theory (CFT) describing a quantum Hall fluid (QHF) at paired states fillings1,2[Formula: see text] and an Abelian noncommutative field theory (NCFT) has been established.3 That allowed us to add new evidence to the relationship between noncommutativity and quantum Hall fluids.4 On the other hand, the m-reduced CFT is equivalent to a system of two massless scalar bosons with a magnetic boundary interaction as introduced in Ref. 5, at the so-called "magic" points. We are then able to describe, within such a framework, the dissipative quantum mechanics of a particle confined to a plane and subject to an external magnetic field normal to it. Here we develop such a point of view by focusing on the case m=2 which corresponds to a quantum Hall bilayer. The key role of a localized impurity which couples the two layers is emphasized and the effect of noncommutativity in terms of generalized magnetic translations (GMT) is fully exploited. As a result, general GMT operators are introduced, in the form of a tensor product, which act on the QHF and defect space respectively, and a comprehensive study of their rich structure is performed.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

MAVROMATOS, NICK E., and ELIZABETH WINSTANLEY. "D-PARTICLE RECOIL SPACE–TIMES AND "GLUEBALL" MASSES." International Journal of Modern Physics A 16, no. 02 (January 20, 2001): 251–65. http://dx.doi.org/10.1142/s0217751x01002336.

Повний текст джерела
Анотація:
We discuss the properties of matter in a D-dimensional anti-de Sitter-type space–time induced dynamically by the recoil of a very heavy D(irichlet)-particle defect embedded in it. The particular form of the recoil geometry, which from a world sheet view point follows from logarithmic conformal field theory deformations of the pertinent sigma-models, results in the presence of both infrared and ultraviolet (spatial) cutoffs. These are crucial in ensuring the presence of mass gaps in scalar matter propagating in the D-particle recoil space–time. The analogy of this problem with the Liouville-string approach to QCD, suggested earlier by John Ellis and one of the present authors, prompts us to identify the resulting scalar masses with those obtained in the supergravity approach based on the Maldacena's conjecture, but without the imposition of any supersymmetry in our case. Within reasonable numerical uncertainties, we observe that agreement is obtained between the two approaches for a particular value of the ratio of the two cutoffs of the recoil geometry. Notably, our approach does not suffer from the ambiguities of the supergravity approach as regards the validity of the comparison of the glueball masses computed there with those obtained in the continuum limit of lattice gauge theories.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Syromyatnikov, A. G. "Electro-gravity spin density waves." International Journal of Geometric Methods in Modern Physics 14, no. 10 (September 13, 2017): 1750146. http://dx.doi.org/10.1142/s0219887817501468.

Повний текст джерела
Анотація:
It is known that some string models predict that strong bursts of gravitational radiation which should be detectable by LIGO, VIRGO and LISA detectors are accompanied by cosmologic gamma-ray bursts (GRBs). GRBs of low-energy gamma ray are associated with core-collapse supernovae (SN). However, measurements of the X-ray afterglow of very intense GRBs (allow a critical test of GRB theories) disagree with that predicted by widely accepted fireball internal–external shocks models of GRBs. It is also known that in a system of a large number of fermions, pairs of gravitational interaction occur on spontaneous breaking of the vacuum spatial symmetry, accompanied by gravitational mass defect. In another side, the space rays generation mechanism on a method of direct transformation of intergalactic gamma-rays to the proton current on spin shock-waves ensures precise agreement between generated proton currents (spin shock waves theory) with the angular distribution data of Galactic gamma-rays as well as for the individual pulses of gamma-/X-ray bursts. There is a precise confirmation of the generated currents (theory) with the burst radiation data characterized by the standard deviation of [Formula: see text] in intensity in relative units within the sensitivity of the equipment. Thus, it was found that the spin angular momentum conservation law (equation of dynamics of spin shock waves) in the X-ray/gamma ranges is fulfilled exactly in real time. The nature of gamma bursts is largely determined by the influence of powerful external sources. The angular distributions anisotropy of Galactic gamma rays and pulsars are determined by the paradoxes way, so this can only take place under conditions of the isotropy of space–time. In this regard, promising gravity in a Finsler space can have the selected direction in flat Minkowski space metric with torsion as in the Einstein–Cartan theory. Considering the induction of torsion in conformal transformations of tetrades (N-ades in arbitrary dimension N) under the Conformal Gauge Theory of Gravity (CGTG), here is considered an exact cosmological solution with Friedman’s asymptotic in the form of conformal flat Fock’s metrics at large times, describing the stage of decay on a cold dust-like medium of do-not-interacting-among-themselves particles and a light-like isotropic radiation. It is shown that at high times, indeed, the process of enlarging the space–time in the model metrics Friedman conformal is equivalent to Minkowski space with a gradient torsion trace in the CGTG Newtonian limit, accompanied by a polarization effect separation of electric charges induced by an electric field [Formula: see text] is manifested in the formation of plasma-like medium with a zero complete electric charge, that in the later stages of evolution is identical to the Fock’s model of a cold dust-like medium of do-not-interacting-among-themselves particles moving here with the same speed. The trace of torsion on the CGTG formula is freezing into an electromagnetic field spin tensor trace density and [Formula: see text] defined inside a spherical surface, moving at the speed of light, on which experiencing a gap. Therefore, this decision takes the form of an electro-gravity spin density wave, as performed in kinematic and dynamic close connection conditions for theorems on spin shock waves with spin flip at the front of the wave, moving at the speed of light in a vacuum. The theoretical dependence of electro-gravity wave energy output from the size of the emitting object is received. When applied to GRBs, this can give a new mechanism of nonthermal gamma rays production.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

MELZER, EZER. "NONARCHIMEDEAN CONFORMAL FIELD THEORIES." International Journal of Modern Physics A 04, no. 18 (November 10, 1989): 4877–908. http://dx.doi.org/10.1142/s0217751x89002065.

Повний текст джерела
Анотація:
We present a general formalism for conformal field theories defined on a non-Archimedean field. Such theories are defined by complex-valued correlation functions of fields of a [Formula: see text]-adic variable. Conformal invariance is imposed by requiring the correlation functions to be unchanged under fractional linear transformations, the latter forming the full analogue of the conformal group in two-dimensional, euclidean space-time. All fields in the theory can be taken to be "primary", under the "non-Archimedean conformal group". The conformal symmetry fixes completely the form of all correlation functions, once we are given the weight-spectrum of the theory and the OPE coefficients (which must be the structure constants of certain commutative, associative algebras). We explicitly construct non-Archimedean CFT's having the same weight spectrum as that of Archimedean models of central charge c < 1. The OPE coefficients of these "local" Archimedean and non-Archimedean models are related by adelic formulae.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Ferrari, Franco. "Biharmonic conformal field theories." Physics Letters B 382, no. 4 (August 1996): 349–55. http://dx.doi.org/10.1016/0370-2693(96)00677-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Taormina, Anne. "Extended conformal field theories." Nuclear Physics B - Proceedings Supplements 16 (August 1990): 612–14. http://dx.doi.org/10.1016/0920-5632(90)90616-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Costello, Kevin. "Topological conformal field theories and gauge theories." Geometry & Topology 11, no. 3 (July 23, 2007): 1539–79. http://dx.doi.org/10.2140/gt.2007.11.1539.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Xu, F. "Algebraic orbifold conformal field theories." Proceedings of the National Academy of Sciences 97, no. 26 (December 5, 2000): 14069–73. http://dx.doi.org/10.1073/pnas.260375597.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Rahimi Tabar, M. R., A. Aghamohammadi, and M. Khorrami. "The logarithmic conformal field theories." Nuclear Physics B 497, no. 1-2 (July 1997): 555–66. http://dx.doi.org/10.1016/s0550-3213(97)00230-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Xu, Feng. "Algebraic Coset Conformal Field Theories." Communications in Mathematical Physics 211, no. 1 (April 1, 2000): 1–43. http://dx.doi.org/10.1007/s002200050800.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

BONORA, L. "CONFORMAL AFFINE TODA FIELD THEORIES." International Journal of Modern Physics B 06, no. 11n12 (June 1992): 2015–40. http://dx.doi.org/10.1142/s0217979292000992.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Sonoda, Hidenori. "Sewing conformal field theories I." Nuclear Physics B 311, no. 2 (December 1988): 401–16. http://dx.doi.org/10.1016/0550-3213(88)90066-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Sonoda, Hidenori. "Sewing conformal field theories II." Nuclear Physics B 311, no. 2 (December 1988): 417–32. http://dx.doi.org/10.1016/0550-3213(88)90067-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Gawȩdzki, Krzysztof. "Quadrature of conformal field theories." Nuclear Physics B 328, no. 3 (December 1989): 733–52. http://dx.doi.org/10.1016/0550-3213(89)90228-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Degiovanni, P. "Z/NZ Conformal Field Theories." Communications in Mathematical Physics 127, no. 1 (January 1990): 71–99. http://dx.doi.org/10.1007/bf02096494.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Schellekens, A. N. "Meromorphicc=24 conformal field theories." Communications in Mathematical Physics 153, no. 1 (April 1993): 159–85. http://dx.doi.org/10.1007/bf02099044.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Gepner, Doron. "Field identification in coset conformal field theories." Physics Letters B 222, no. 2 (May 1989): 207–12. http://dx.doi.org/10.1016/0370-2693(89)91253-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Constable, N., J. Erdmenger, Z. Guralnik, and I. Kirsch. "Intersecting branes, defect conformal theories and tensionless strings." Fortschritte der Physik 51, no. 78 (July 7, 2003): 732–37. http://dx.doi.org/10.1002/prop.200310090.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

BRATCHIKOV, A. V. "GENERALIZED ABELIAN COSET CONFORMAL FIELD THEORIES." Modern Physics Letters A 15, no. 11n12 (April 20, 2000): 809–14. http://dx.doi.org/10.1142/s0217732300000797.

Повний текст джерела
Анотація:
The reductions of conformal field theories which lead to generalized Abelian cosets are studied. Primary fields and correlation functions of arbitrary Abelian coset conformal field theory are explicitly expressed in terms of those of the original theory. The coset theory has global Abelian symmetry.
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Fredenhagen, Stefan, Matthias R. Gaberdiel, and Christoph A. Keller. "Symmetries of perturbed conformal field theories." Journal of Physics A: Mathematical and Theoretical 40, no. 45 (October 23, 2007): 13685–709. http://dx.doi.org/10.1088/1751-8113/40/45/012.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Rajabpour, M. A. "Loop models for conformal field theories." Journal of Physics A: Mathematical and Theoretical 41, no. 40 (September 9, 2008): 405001. http://dx.doi.org/10.1088/1751-8113/41/40/405001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Gannon, Terry. "Comments on nonunitary conformal field theories." Nuclear Physics B 670, no. 3 (October 2003): 335–58. http://dx.doi.org/10.1016/j.nuclphysb.2003.07.030.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Montague, P. S. "Intertwiners in orbifold conformal field theories." Nuclear Physics B 486, no. 3 (February 1997): 546–64. http://dx.doi.org/10.1016/s0550-3213(96)00667-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Dijkgraaf, Robbert. "Chiral deformations of conformal field theories." Nuclear Physics B 493, no. 3 (June 1997): 588–612. http://dx.doi.org/10.1016/s0550-3213(97)00153-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

LeClair, A., A. W. W. Ludwig, and G. Mussardo. "Integrability of coupled conformal field theories." Nuclear Physics B 512, no. 3 (February 1998): 523–42. http://dx.doi.org/10.1016/s0550-3213(97)00724-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Behrndt, Klaus, Ilka Brunner, and Ingo Gaida. "AdS3 gravity and conformal field theories." Nuclear Physics B 546, no. 1-2 (April 1999): 65–95. http://dx.doi.org/10.1016/s0550-3213(99)00040-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Saleur, H. "Lattice models and conformal field theories." Physics Reports 184, no. 2-4 (December 1989): 177–91. http://dx.doi.org/10.1016/0370-1573(89)90037-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Gervais, Jean-Loup. "Systematic approach to conformal field theories." Nuclear Physics B - Proceedings Supplements 5, no. 2 (December 1988): 119–36. http://dx.doi.org/10.1016/0920-5632(88)90375-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Labastida, J. M. F., and A. V. Ramallo. "Chern-Simons and conformal field theories." Nuclear Physics B - Proceedings Supplements 16 (August 1990): 594–96. http://dx.doi.org/10.1016/0920-5632(90)90609-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

ANSELMI, DAMIANO, MARCO BILLÓ, PIETRO FRÉ, ALBERTO ZAFFARONI, and LUCIANO GIRARDELLO. "ALE MANIFOLDS AND CONFORMAL FIELD THEORIES." International Journal of Modern Physics A 09, no. 17 (July 10, 1994): 3007–57. http://dx.doi.org/10.1142/s0217751x94001199.

Повний текст джерела
Анотація:
We address the problem of constructing the family of (4,4) theories associated with the σ model on a parametrized family ℳζ of asymptotically locally Euclidean (ALE) manifolds. We rely on the ADE classification of these manifolds and on their construction as hyper-Kähler quotients, due to Kronheimer. By so doing we are able to define the family of (4,4) theories corresponding to a ℳζ family of ALE manifolds as the deformation of a solvable orbifold C2/Γ conformal field theory, Γ being a Kleinian group. We discuss the relation between the algebraic structure underlying the topological and metric properties of self-dual four-manifolds and the algebraic properties of nonrational (4,4) theories admitting an infinite spectrum of primary fields. In particular, we identify the Hirzebruch signature τ with the dimension of the local polynomial ring [Formula: see text] associated with the ADE singularity, with the number of nontrivial conjugacy classes in the corresponding Kleinian group and with the number of short representations of the (4,4) theory minus four.
Стилі APA, Harvard, Vancouver, ISO та ін.
34

CAREY, A. L., and K. C. HANNABUSS. "SIMPLE EXAMPLES OF CONFORMAL FIELD THEORIES." International Journal of Modern Physics B 04, no. 05 (April 1990): 1059–68. http://dx.doi.org/10.1142/s021797929000053x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Xu, Feng. "Algebraic coset conformal field theories. II." Publications of the Research Institute for Mathematical Sciences 35, no. 5 (1999): 795–824. http://dx.doi.org/10.2977/prims/1195143424.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Freidel, Laurent, and Kirill Krasnov. "2D conformal field theories and holography." Journal of Mathematical Physics 45, no. 6 (June 2004): 2378–404. http://dx.doi.org/10.1063/1.1745127.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Callan, Curtis G., and Igor R. Klebanov. "Exactc=1 boundary conformal field theories." Physical Review Letters 72, no. 13 (March 28, 1994): 1968–71. http://dx.doi.org/10.1103/physrevlett.72.1968.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

JATKAR, DILEEP P., and SUMATHI RAO. "ANYONS AND GAUSSIAN CONFORMAL FIELD THEORIES." Modern Physics Letters A 06, no. 04 (February 10, 1991): 289–94. http://dx.doi.org/10.1142/s0217732391000257.

Повний текст джерела
Анотація:
We identify the spin of the anyons with the holomorphic dimension of the primary fields of a Gaussian conformal field theory. The angular momentum addition rules for anyons go over to the fusion rules for the primary fields and the r↔1/2r duality of the Gaussian CFT is reproduced by a charge-flux duality of the anyons. For a U(1) Chern-Simons theory with topological mass parameter k=2n, N-anyon states on the torus have 2n components, which correspond to the 2n conformal blocks of an N-point function in the Gaussian conformal field theory.
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Ding, Xiang-Mao, Mark D. Gould, Courtney J. Mewton, and Yao-Zhong Zhang. "Onosp(2 2) conformal field theories." Journal of Physics A: Mathematical and General 36, no. 27 (June 24, 2003): 7649–65. http://dx.doi.org/10.1088/0305-4470/36/27/316.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Dunne, Gerald, Ian Halliday, and Peter Suranyi. "Bosonization of parafermionic conformal field theories." Nuclear Physics B 325, no. 2 (October 1989): 526–56. http://dx.doi.org/10.1016/0550-3213(89)90465-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Bershadsky, Michael. "Conformal field theories via Hamiltonian reduction." Communications in Mathematical Physics 139, no. 1 (July 1991): 71–82. http://dx.doi.org/10.1007/bf02102729.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Nahm, Werner. "On quasi-rational conformal field theories." Nuclear Physics B - Proceedings Supplements 49, no. 1-3 (June 1996): 107–14. http://dx.doi.org/10.1016/0920-5632(96)00323-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Kumar, Alok. "Construction of topological conformal field theories." Pramana 41, S1 (July 1993): 503–8. http://dx.doi.org/10.1007/bf02908106.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Xu, Bo-wei. "Conformal field theories and critical phenomena." Foundations of Physics 23, no. 2 (February 1993): 329–39. http://dx.doi.org/10.1007/bf01883633.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Kuwahara, Masanori, Nobuyoshi Ohta, and Hisao Suzuki. "Free field realization of coset conformal field theories." Physics Letters B 235, no. 1-2 (January 1990): 57–62. http://dx.doi.org/10.1016/0370-2693(90)90097-p.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

GHEZELBASH, A. M., M. KHORRAMI, and A. AGHAMOHAMMADI. "LOGARITHMIC CONFORMAL FIELD THEORIES AND AdS CORRESPONDENCE." International Journal of Modern Physics A 14, no. 16 (June 30, 1999): 2581–91. http://dx.doi.org/10.1142/s0217751x99001287.

Повний текст джерела
Анотація:
We generalize the Maldacena correspondence to the logarithmic conformal field theories. We study the correspondence between field theories in (d+1)-dimensional AdS space and the d-dimensional logarithmic conformal field theories in the boundary of AdS d+1. Using this correspondence, we get the n-point functions of the corresponding logarithmic conformal field theory in d-dimensions.
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Fring, Andreas, and Samuel Whittington. "Lorentzian Toda field theories." Reviews in Mathematical Physics 33, no. 06 (February 18, 2021): 2150017. http://dx.doi.org/10.1142/s0129055x21500173.

Повний текст джерела
Анотація:
We propose several different types of construction principles for new classes of Toda field theories based on root systems defined on Lorentzian lattices. In analogy to conformal and affine Toda theories based on root systems of semi-simple Lie algebras, also their Lorentzian extensions come about in conformal and massive variants. We carry out the Painlevé integrability test for the proposed theories, finding in general only one integer valued resonance corresponding to the energy-momentum tensor. Thus most of the Lorentzian Toda field theories are not integrable, as the remaining resonances, that grade the spins of the W-algebras in the semi-simple cases, are either non-integer or complex valued. We analyze in detail the classical mass spectra of several massive variants. Lorentzian Toda field theories may be viewed as perturbed versions of integrable theories equipped with an algebraic framework.
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Konik, Robert, and André LeClair. "Purely transmitting defect field theories." Nuclear Physics B 538, no. 3 (January 1999): 587–611. http://dx.doi.org/10.1016/s0550-3213(98)00712-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

DE BOER, J., and M. B. HALPERN. "NEW SPIN-2 GAUGED SIGMA MODELS AND GENERAL CONFORMAL FIELD THEORY." International Journal of Modern Physics A 13, no. 26 (October 20, 1998): 4487–512. http://dx.doi.org/10.1142/s0217751x9800216x.

Повний текст джерела
Анотація:
Recently, we have studied the general Virasoro construction at one loop in the background of the general nonlinear sigma model. Here, we find the action formulation of these new conformal field theories when the background sigma model is itself conformal. In this case, the new conformal field theories are described by a large class of new spin-2 gauged sigma models. As examples of the new actions, we discuss the spin-2 gauged WZW actions, which describe the conformal field theories of the generic affine-Virasoro construction, and the spin-2 gauged g/h coset constructions. We are able to identify the latter as the actions of the local Lie h-invariant conformal field theories, a large class of generically irrational conformal field theories with a local gauge symmetry.
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Nam, Soonkeon. "Perturbed c > 1 conformal field theories and generalized Toda field theories." Physics Letters B 243, no. 3 (June 1990): 231–36. http://dx.doi.org/10.1016/0370-2693(90)90844-v.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії