Статті в журналах з теми "De Broglie waves"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: De Broglie waves.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "De Broglie waves".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

López, Carlos. "De Broglie Waves." OALib 07, no. 02 (2020): 1–8. http://dx.doi.org/10.4236/oalib.1106100.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Shuler, Robert L. "Common Pedagogical Issues with De Broglie Waves: Moving Double Slits, Composite Mass, and Clock Synchronization." Physics Research International 2015 (December 1, 2015): 1–8. http://dx.doi.org/10.1155/2015/895134.

Повний текст джерела
Анотація:
This paper addresses gaps identified in pedagogical studies of how misunderstanding of De Broglie waves affects later coursework and presents a heuristic for understanding the De Broglie frequency of composite. De Broglie’s little known derivation is reviewed with a new illustration based on his description. Simple techniques for reference frame independent analysis of a moving double slit electron interference experiment are not previously found in any literature and cement the concepts. Points of similarity and difference between De Broglie and Schrödinger waves are explained. The necessity of momentum, energy, and wavelength changes in the electrons in order for them to be vertically displaced in their own reference frame is shown to be required to make the double slit analysis work. A relativistic kinematic analysis of De Broglie frequency is provided showing how the higher De Broglie frequency of moving particles is consistent with Special Relativity and time dilation and that it demonstrates a natural system which obeys Einstein’s clock synchronization convention of simultaneity and no other. Students will be better prepared to identify practical approaches to solving problems and to think about fundamental questions.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Jacobson, Joseph, Gunnar Björk, Isaac Chuang, and Yoshihisa Yamamoto. "Photonic de Broglie Waves." Physical Review Letters 74, no. 24 (June 12, 1995): 4835–38. http://dx.doi.org/10.1103/physrevlett.74.4835.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Sato, Masanori. "De Broglie waves, the Schrödinger equation, and relativity. I. Exclusion of the rest mass energy in the dispersion relation." Physics Essays 33, no. 1 (March 4, 2020): 96–98. http://dx.doi.org/10.4006/0836-1398-33.1.96.

Повний текст джерела
Анотація:
The difference between de Broglie waves and the Schrödinger equation is the rest mass. The dispersion relation of de Broglie waves includes the rest mass, but the Schrödinger equation does not. Synchrotron radiation is when de Broglie waves shake off virtual photons and emit real photons. It also shows that synchrotron radiation is not compatible with relativity.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Zhao, Bum Suk, Weiqing Zhang, and Wieland Schöllkopf. "Universal diffraction of atoms and molecules from a quantum reflection grating." Science Advances 2, no. 3 (March 2016): e1500901. http://dx.doi.org/10.1126/sciadv.1500901.

Повний текст джерела
Анотація:
Since de Broglie’s work on the wave nature of particles, various optical phenomena have been observed with matter waves of atoms and molecules. However, the analogy between classical and atom/molecule optics is not exact because of different dispersion relations. In addition, according to de Broglie’s formula, different combinations of particle mass and velocity can give the same de Broglie wavelength. As a result, even for identical wavelengths, different molecular properties such as electric polarizabilities, Casimir-Polder forces, and dissociation energies modify (and potentially suppress) the resulting matter-wave optical phenomena such as diffraction intensities or interference effects. We report on the universal behavior observed in matter-wave diffraction of He atoms and He2 and D2 molecules from a ruled grating. Clear evidence for emerging beam resonances is observed in the diffraction patterns, which are quantitatively the same for all three particles and only depend on the de Broglie wavelength. A model, combining secondary scattering and quantum reflection, permits us to trace the observed universal behavior back to the peculiar principles of quantum reflection.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Strnad, J., and W. Kuhn. "On the de Broglie waves." European Journal of Physics 6, no. 3 (July 1, 1985): 176–79. http://dx.doi.org/10.1088/0143-0807/6/3/009.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Baranov, M. I. "Calculation of Basic Average Drift Characteristics of Free Electrons in a Metallic Conductor with Electric Current." Elektronnaya Obrabotka Materialov 58, no. 1 (February 2022): 79–84. http://dx.doi.org/10.52577/eom.2022.58.1.79.

Повний текст джерела
Анотація:
The results of an approximate calculation of theaveraged values of speeds of vmz of a longi-tudinal drift of lone electrons, and of circular frequencies of ωmz change of longitudinal elec-tronic waves de Broglie and of lengths of λmz of longitudinal electronic waves de Broglie in the metal of round cylindrical conductor with an electric axial-flow current of conductivity of i0(t) of different kinds (permanent, variable, and impulsive) and amplitude-time parameters (ATP). The results of verification of the obtained calculation correlations for speeds of vmz drift of lone electrons and lengths of λmz of electronic de Broglie waves in the examined con-ductor demonstrate their validity and working capacity. The obtained data confirm the quan-tum-wave nature of the electric current of conductivity of the indicated kinds of i0(t) and of ATP in a metallic conductor.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Baylis, William E. "De Broglie waves as an effect of clock desynchronization." Canadian Journal of Physics 85, no. 12 (December 1, 2007): 1317–23. http://dx.doi.org/10.1139/p07-121.

Повний текст джерела
Анотація:
De Broglie waves are a simple consequence of special relativity applied to the complex-phase oscillations of stationary states. As de Broglie showed in his doctoral thesis, the synchronized oscillations of an extended system at rest, even a classical one, become de Broglie-like waves when boosted to finite velocity. The waves illustrate the well-known but seldom demonstrated relativistic effect of clock desynchroniation (or dephasing) in moving frames. Although common manifestations of stationary-state oscillations in interference experiments are sensitive only to energy differences, de Broglie wavelengths are inversely proportional to rest-frame oscillation frequency, and their observed values require that the oscillation frequencies are proportional to the the total absolute energy, including the rest component mc2. PACS Nos.: 03.65.Ta, 03.30.+p, 01.65.+g
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Brill, Michael H. "De Broglie waves meet Schrödinger's equation." Physics Essays 26, no. 4 (December 30, 2013): 574–76. http://dx.doi.org/10.4006/0836-1398-26.4.574.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Lepore, Vito Luigi. "Homodyne detection of de Broglie waves." Foundations of Physics Letters 5, no. 5 (October 1992): 469–78. http://dx.doi.org/10.1007/bf00690427.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Holland, P. R. "Geometry of dislocated de Broglie waves." Foundations of Physics 17, no. 4 (April 1987): 345–63. http://dx.doi.org/10.1007/bf00733373.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

FEOLI, ANTONIO, and SREERAM VALLURI. "A STUDY OF THE DE BROGLIE GRAVITATIONAL WAVES." International Journal of Modern Physics D 13, no. 05 (May 2004): 907–21. http://dx.doi.org/10.1142/s0218271804005006.

Повний текст джерела
Анотація:
We study some interesting properties of the de Broglie gravitational waves. In particular, we investigate the properties of the polarization and the energy momentum tensor and the geodesic deviation associated with these waves. We observe that the polarization tensor has both transverse and longitudinal components and depends on the wave number. We find a new effect which does not occur in the standard gravitational waves. Our waves are responsible of a longitudinal shift of test particles placed along the direction of propagation. The amplitude of the shift decreases when the velocity of the source becomes closer to the speed of light; so slow massive particles must be used for an experimental test of the theory.
Стилі APA, Harvard, Vancouver, ISO та ін.
13

FEOLI, ANTONIO. "THE AMPLITUDE OF THE DE BROGLIE GRAVITATIONAL WAVES." Modern Physics Letters A 24, no. 31 (October 10, 2009): 2497–505. http://dx.doi.org/10.1142/s0217732309031685.

Повний текст джерела
Анотація:
We calculate the amplitude of the de Broglie gravitational waves using the standard Einstein General Relativity. We find that these waves disappear in the limit ℏ→0 and when their source has a large mass and volume. From the experimental point of view, the knowledge of the amplitude allows to estimate the magnitude of the effect of the wave on a sphere of test particles. We propose also to measure a very special shift angle that does not change with time.
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Lee, Chang Jae. "Atomic de Broglie waves in multiple optical standing waves." Physical Review A 53, no. 6 (June 1, 1996): 4238–44. http://dx.doi.org/10.1103/physreva.53.4238.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

López, Carlos. "How to Detect Quantum (de Broglie) Waves." OALib 07, no. 09 (2020): 1–5. http://dx.doi.org/10.4236/oalib.1106741.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Fujita, J., and F. Shimizu. "Atom manipulation using atomic de Broglie waves." Materials Science and Engineering: B 96, no. 2 (November 2002): 159–63. http://dx.doi.org/10.1016/s0921-5107(02)00310-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Steane, A., P. Szriftgiser, P. Desbiolles, and J. Dalibard. "Phase Modulation of Atomic de Broglie Waves." Physical Review Letters 74, no. 25 (June 19, 1995): 4972–75. http://dx.doi.org/10.1103/physrevlett.74.4972.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Elbaz, Claude. "On de Broglie waves and Compton waves of massive particles." Physics Letters A 109, no. 1-2 (May 1985): 7–8. http://dx.doi.org/10.1016/0375-9601(85)90379-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Hill, James M. "A review of de Broglie particle–wave mechanical systems." Mathematics and Mechanics of Solids 25, no. 10 (June 7, 2020): 1763–77. http://dx.doi.org/10.1177/1081286520917201.

Повний текст джерела
Анотація:
The existence of the so-called ‘dark’ issues of mechanics implies that our present accounting for mass and energy is incorrect in terms of applicability on a cosmological scale, and the question arises as to where the difficulty might lie. The phenomenon of quantum entanglement indicates that systems of particles exist that individually display certain characteristics, while collectively the same characteristic is absent simply because it has cancelled out between individual particles. It may therefore be necessary to develop theoretical frameworks in which long-held conservation beliefs do not necessarily always apply. The present paper summarises the formulation described in earlier papers (Hill, JM. On the formal origin of dark energy. Z Angew Math Phys 2018; 69:133-145; Hill, JM. Some further comments on special relativity and dark energy. Z Angew Math Phys 2019; 70: 5–14; Hill, JM. Special relativity, de Broglie waves, dark energy and quantum mechanics. Z Angew Math Phys 2019; 70: 131–153.), which provides a framework that allows exceptions to the law that matter cannot be created or destroyed. In these papers, it is proposed that dark energy arises from conventional mechanical theory, neglecting the work done in the direction of time and consequently neglecting the de Broglie wave energy [Formula: see text]. These papers develop expressions for the de Broglie wave energy [Formula: see text] by making a distinction between particle energy [Formula: see text] and the total work done by the particle [Formula: see text], that which accumulates from both a spatial physical force [Formula: see text] and a force [Formula: see text] in the direction of time. In any experiment, either particles or de Broglie waves are reported, so that only one of [Formula: see text] or [Formula: see text] is physically measured, and particles appear for [Formula: see text] and de Broglie waves occur for [Formula: see text], but in either event both a measurable and an immeasurable energy exists. Conventional quantum mechanics operates under circumstances such that [Formula: see text] vanishes and [Formula: see text] becomes purely imaginary. If both [Formula: see text] and [Formula: see text] are generated as the gradient of a potential, the total particle energy is necessarily conserved in the conventional manner.
Стилі APA, Harvard, Vancouver, ISO та ін.
20

George, Thomas F. "Diffractive multifocal focusing of de Broglie matter waves." Journal of Nanophotonics 1, no. 1 (July 1, 2007): 013553. http://dx.doi.org/10.1117/1.2772888.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Balykin, V. I. "Atomic diffraction microscope of the de Broglie waves." Laser Physics 20, no. 1 (January 2010): 47–51. http://dx.doi.org/10.1134/s1054660x09180030.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Sinha, K. P., E. C. G. Sudarshan, and J. P. Vigier. "Superfluid vacuum carrying real Einstein-de Broglie waves." Physics Letters A 114, no. 6 (March 1986): 298–300. http://dx.doi.org/10.1016/0375-9601(86)90562-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Wignall, J. W. G. "De Broglie waves and the nature of mass." Foundations of Physics 15, no. 2 (February 1985): 207–27. http://dx.doi.org/10.1007/bf00735293.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Hui, Lam. "Wave Dark Matter." Annual Review of Astronomy and Astrophysics 59, no. 1 (September 8, 2021): 247–89. http://dx.doi.org/10.1146/annurev-astro-120920-010024.

Повний текст джерела
Анотація:
We review the physics and phenomenology of wave dark matter: a bosonic dark matter candidate lighter than about 30 eV. Such particles have a de Broglie wavelength exceeding the average interparticle separation in a galaxy like the Milky Way and are, thus, well described as a set of classical waves. We outline the particle physics motivations for such particles, including the quantum chromodynamics axion as well as ultralight axion-like particles such as fuzzy dark matter. The wave nature of the dark matter implies a rich phenomenology: ▪ Wave interference gives rise to order unity density fluctuations on de Broglie scale in halos. One manifestation is vortices where the density vanishes and around which the velocity circulates. There is one vortex ring per de Broglie volume on average. ▪ For sufficiently low masses, soliton condensation occurs at centers of halos. The soliton oscillates and undergoes random walks, which is another manifestation of wave interference. The halo and subhalo abundance is expected to be suppressed at small masses, but the precise prediction from numerical wave simulations remains to be determined. ▪ For ultralight ∼10−22 eV dark matter, the wave interference substructures can be probed by tidal streams or gravitational lensing. The signal can be distinguished from that due to subhalos by the dependence on stream orbital radius or image separation. ▪ Axion detection experiments are sensitive to interference substructures for wave dark matter that is moderately light. The stochastic nature of the waves affects the interpretation of experimental constraints and motivates the measurement of correlation functions. Current constraints and open questions, covering detection experiments and cosmological, galactic, and black hole observations, are discussed.
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Varró, S., and Gy Farkas. "Attosecond electron pulses from interference of above-threshold de Broglie waves." Laser and Particle Beams 26, no. 1 (March 2008): 9–20. http://dx.doi.org/10.1017/s0263034608000037.

Повний текст джерела
Анотація:
AbstractIt is shown that the above-threshold electron de Broglie waves, generated by an intense laser pulse at a metal surface are interfering to yield attosecond electron pulses. This interference of the de Broglie waves is an analog on of the superposition of high harmonics generated from rare gas atoms, resulting in trains of attosecond light pulses. Our model is based on the Floquet analysis of the inelastic electron scattering on the oscillating double-layer potential, generated by the incoming laser field of long duration at the metal surface. Owing to the inherent kinematic dispersion, the propagation of attosecond de Broglie waves in vacuum is very different from that of attosecond light pulses, which propagate without changing shape. The clean attosecond structure of the current at the immediate vicinity of the metal surface is largely degraded due to the propagation, but it partially recovers at certain distances from the surface. Accordingly, above the metal surface, there exist “collapse bands,” where the electron current is erratic or noise-like, and there exist “revival layers,” where the electron current consist of ultrashort pulses of about 250 attosecond durations in the parameter range we considered. The maximum value of the current densities of such ultrashort electron pulses has been estimated to be on order of couple of tenth of mA/cm2. The attosecond structure of the electron photocurrent can perhaps be used for monitoring ultrafast relaxation processes in single atoms or in condensed matter.
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Wignall, J. W. G. "Frame dependence of the phase of de Broglie waves." American Journal of Physics 57, no. 5 (May 1989): 415–16. http://dx.doi.org/10.1119/1.16012.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Bernet, Stefan, Markus Oberthaler, Roland Abfalterer, Jörg Schmiedmayer, and Anton Zeilinger. "Modulation of atomic de Broglie waves using Bragg diffraction." Quantum and Semiclassical Optics: Journal of the European Optical Society Part B 8, no. 3 (June 1996): 497–509. http://dx.doi.org/10.1088/1355-5111/8/3/013.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Pu, Han, Chris Search, Weiping Zhang, and Pierre Meystre. "Atom Optics - From de Broglie Waves to Heisenberg Ferromagnets." Fortschritte der Physik 50, no. 5-7 (May 2002): 664–69. http://dx.doi.org/10.1002/1521-3978(200205)50:5/7<664::aid-prop664>3.0.co;2-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Ham, Byoung S. "A Nonclassical Sagnac Interferometer Using Coherence de Broglie Waves." Advanced Devices & Instrumentation 2021 (November 3, 2021): 1–7. http://dx.doi.org/10.34133/2021/9862831.

Повний текст джерела
Анотація:
A Sagnac interferometer has been a powerful tool for gyroscope, spectroscopy, and navigation based on the Sagnac effects between counterpropagating twin fields in a closed loop, whose difference phase is caused by Einstein’s special relativity. Here, a nonclassical version of a Sagnac interferometer is presented using completely different physics of coherence de Broglie waves (CBW) in a cavity, where CBW is a nonclassical feature overcoming the standard quantum limit governed by classical physics.
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Voronov, A. S., and B. S. Rivkin. "Gyroscope on de Broglie Waves: Intricate Things in Simple Words." Giroskopiya i Navigatsiya 29, no. 2 (2021): 126–39. http://dx.doi.org/10.17285/0869-7035.0067.

Повний текст джерела
Анотація:
The paper addresses the operating principles of a gyroscopic de-vice of a new type: a gyroscope on de Broglie waves. The sensitive element of such a gyroscope is an atomic interferometer, whose main components are described and the technical challenges of its development are discussed. The target audience of this paper is the readers who do not have a profound knowledge of the quantum physics.
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Fenech, C., and J. P. Vigier. "Thermodynamical properties/description of the de Broglie-Bohm pilot-waves." Physics Letters A 182, no. 1 (November 1993): 37–43. http://dx.doi.org/10.1016/0375-9601(93)90049-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Croca, J. R., M. Ferrero, A. Garuccio, and V. L. Lepore. "An experiment to test the reality of de Broglie waves." Foundations of Physics Letters 10, no. 5 (October 1997): 441–47. http://dx.doi.org/10.1007/bf02764021.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Yuen, Horace P. "Quantum amplication and the detection of empty de Broglie waves." Physics Letters A 113, no. 8 (January 1986): 401–4. http://dx.doi.org/10.1016/0375-9601(86)90659-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Mückenheim, W. "Can dispersion experiments teach us anything about de Broglie waves?" Physics Letters A 132, no. 2-3 (September 1988): 75–76. http://dx.doi.org/10.1016/0375-9601(88)90254-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Voronov, A. S., and B. S. Rivkin. "Gyroscope on de Broglie Waves: Intricate Things in Simple Words." Gyroscopy and Navigation 12, no. 2 (April 2021): 195–203. http://dx.doi.org/10.1134/s2075108721020097.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Nachbin, André. "Kuramoto-Like Synchronization Mediated through Faraday Surface Waves." Fluids 5, no. 4 (November 29, 2020): 226. http://dx.doi.org/10.3390/fluids5040226.

Повний текст джерела
Анотація:
A new class of problems in free surface hydrodynamics appeared after the groundbreaking discovery by Yves Couder and Emmanuel Fort. A bouncing droplet in association with Faraday surface waves gives rise to new nonlinear dynamics, in analogy with the pilot-wave proposed by de Broglie. The droplet and the underlying vibrating bath are of silicon oil. A weakly viscous potential theory model should be used. Numerical simulations are presented with one and two bouncing droplets oscillating while confined to their cavities. These oscillators are implicitly coupled by the underlying surface wave field. In certain regimes, the oscillators can spontaneously synchronize, even when placed at a distance. Cavity parameters are varied in order to highlight the sensitive wave-mediated coupling. The present nonlinear wave-mediated oscillator synchronization is more general than that displayed by the celebrated Kuramoto model and therefore of general interest.
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Feng, Xiao-Ping, NS Witte, Lloyd CL Hollenberg, and Geoffrey I Opat. "Reflection and Diffraction of Atomic de Broglie Waves by Evanescent Laser Waves - Bare-state Method." Australian Journal of Physics 49, no. 4 (1996): 765. http://dx.doi.org/10.1071/ph960765.

Повний текст джерела
Анотація:
We present two results in an investigation of reflection and diffraction of atoms by gratings formed either by standing or travelling evanescent laser waves. Both results use the bare-state rather than dressed-state picture. One is based on the Born series, whereas the other is based on the Laplace transformation of the coupled differential equations. The two solutions yield the same theoretical expressions for reflected and diffracted atomic waves in the whole space, including the interaction and the asymptotic regions.
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Zhang, Weiping, and Daniel F. Walls. "Quantum superpositions of atomic de Broglie waves by an atomic mirror." Physical Review Letters 68, no. 22 (June 1, 1992): 3287–90. http://dx.doi.org/10.1103/physrevlett.68.3287.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Jing, Hui, Ya-jing Jiang, and Yuan-gang Deng. "Quantum superchemistry of de Broglie waves: New wonderland at ultracold temperature." Frontiers of Physics 6, no. 1 (November 13, 2010): 15–45. http://dx.doi.org/10.1007/s11467-010-0155-y.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Dmitriyev, Valery P. "Mechanical analogy for the wave-particle: helix on a vortex filament." Journal of Applied Mathematics 2, no. 5 (2002): 241–63. http://dx.doi.org/10.1155/s1110757x02110199.

Повний текст джерела
Анотація:
The small amplitude-to-thread ratio helical configuration of a vortex filament in the ideal fluid behaves exactly as de Broglie wave. The complex-valued algebra of quantum mechanics finds a simple mechanical interpretation in terms of differential geometry of the space curve. The wave function takes the meaning of the velocity, with which the helix rotates about the screw axis. The helices differ in type of the screw—right- or left-handed. Two kinds of the helical waves deflect in the inhomogeneous fluid vorticity field in the same way as spin particles in the Stern-Gerlach experiment.
Стилі APA, Harvard, Vancouver, ISO та ін.
41

KOO, JE HUAN, and GUANGSUP CHO. "THE CONNECTION BETWEEN INTEGER QUANTUM HALL EFFECT AND FRACTIONAL QUANTUM HALL EFFECT." Modern Physics Letters B 21, no. 02n03 (January 30, 2007): 109–13. http://dx.doi.org/10.1142/s0217984907012530.

Повний текст джерела
Анотація:
We investigate the integer quantum Hall effect (IQHE) and the fractional quantum Hall effect (FQHE). We derive the quantized Hall resistance of IQHE in the presence of the high magnetic field using the scheme of standing waves by de Broglie matter wave of electron gas confined within a two-dimensional square-type quantum well. Without any modification of electrons and holes, it is shown that FQHE is only a decoupling mode of the Hall resistance by two-band-type of electrons and holes, which are governed by IQHE respectively.
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Kerslake, Anne A. "Could there be no wave-particle duality, but only waves?" Physics Essays 34, no. 2 (June 11, 2021): 97–103. http://dx.doi.org/10.4006/0836-1398-34.2.97.

Повний текст джерела
Анотація:
Here, the concept of a wave-particle duality is questioned. First, the experimental proofs existing, respectively, for particles and waves are examined. In the case of particles, no experimental evidence can be found which establishes them; it seems that particles have always been taken for granted. In the case of waves, considerable evidence has accumulated with results on diffraction, interference, and self-interference of larger and larger objects. Then an important remark is made concerning the fact that unlike particles, waves are not observation-dependent: waves existed before observation otherwise the patterns of diffraction or interference would not have been appearing; the wave nature does not depend on the making of a measurement, there is no measurement problem for waves. Consequently, since waves are not observation-dependent, if the objects are demonstrated to be waves, they are only waves. This fact, along with some other evidence, disagrees with the current interpretation of the Wheeler-type delayed-choice experiments, where the absence of interference is interpreted as a particle behavior. Finally, recent works regarding the de Broglie‐Bohm theory are presented, which lead to suggest a new wave-only version of this theory. It is concluded that a wave-only view might be worth considering instead of the wave-particle duality view which has prevailed so far.
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Wagner, Dan. "Doppler Shifted “In” and “Out” Longitudinal Matter Waves as the Carriers of Particle Relativistic Momentum and Energy." Applied Physics Research 12, no. 3 (May 27, 2020): 11. http://dx.doi.org/10.5539/apr.v12n3p11.

Повний текст джерела
Анотація:
Momentum and Kinetic Energy equations are developed from the hypothesis that oppositely directed components of harmonically oscillating pseudo standing waves pass through a quantum particle center and can be represented by Longitudinal Matter Waves that carry the particle&rsquo;s momentum and energy. The Doppler effect on the component wave lengths allows the net forward momentum and kinetic energy to increase with speed well beyond classical values. De Broglie (1925) issues with stationary wavelength and moving pulse rate are resolved in a different manner. Because a quantum particle is considered to be nothing more than the sum of &ldquo;in&rdquo; and &ldquo;out&rdquo; matter waves focused through its center, whatever happens to these matter waves determines the future location of that center. This opens the door to physical explanations for gravity, interference, and the slowdown of light in transparent mediums. Gravity, for example, is shown in section 6, to possibly be caused by the local gradient in matter wave speed near a large body like earth.
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Graham, R., and S. Miyazaki. "Dynamical localization of atomic de Broglie waves: The influence of spontaneous emission." Physical Review A 53, no. 4 (April 1, 1996): 2683–93. http://dx.doi.org/10.1103/physreva.53.2683.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Olszewski, Stanisław. "The de Broglie Waves of Matter and Properties of the Quantum Ensembles." Journal of Computational and Theoretical Nanoscience 15, no. 1 (January 1, 2018): 26–30. http://dx.doi.org/10.1166/jctn.2018.6803.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Croca, J. R. "De Broglie Tired Light Model and the Reality of the Quantum Waves." Foundations of Physics 34, no. 12 (December 2004): 1929–54. http://dx.doi.org/10.1007/s10701-004-1628-z.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Croca, J. R., A. Garuccio, V. L. Lepore, and R. N. Moreira. "Quantum-optical predictions for an experiment on the de Broglie waves detection." Foundations of Physics Letters 3, no. 6 (December 1990): 557–64. http://dx.doi.org/10.1007/bf00666024.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Баранов, М. И. "Особенности распространения стоячих электромагнитных и электронных волн в металлическом проводнике с электрическим переменным током проводимости". Elektronnaya Obrabotka Materialov 57, № 6 (грудень 2021): 72–78. http://dx.doi.org/10.52577/eom.2021.57.6.72.

Повний текст джерела
Анотація:
The paper demonstrates the results of approximate calculations on the establishment of basic features of the propagation of standing transversal electromagnetic waves (EMWs) and standing longitudinal de Broglie electronic waves in a homogeneous not massive non-magnetic metallic conductor of finite dimensions (the radius r0 and the length l0 >>r0) with the alternating axial-flow current of conductivity of i0(t) of different peak-temporal parameters. The correlation for the rated estimation of the average velocity of propagation of the standing transversal EMWs and standing longitudinal de Broglie electronic waves in a metal (alloy) of the indicated conductor is presented. It is shown that quantized standing transversal EMWs arising in a metallic conductor of finite dimensions substantially differ from ordinary transversal EMWs, propagated in the conducting environments of unlimited dimensions. An important feature of the standing transversal EMWs in the examined conductor is the fact that their tension of an axial-flow electric-field advances by a phase their tension of an azimuthal magnetic-field on the corner of π/2. It was established that in the standing transversal EMWs of the used conductor the energy of their electric field only passes into the energy of their magnetic field and vice versa. Therefore the standing transversal EMWs do not transfer the flows of the electromagnetic energy on the surface of the studied conductor.
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Stavek, Jiri. "Super-Elastic Double-Helix Model of Photon. Huygens-de Broglie Particle on the Helical Path Guided by the Newton-Bohm Entangled Helical Evolute. Quantum of Magnetic Flux Based on the Mathematical Beauty of Newton, Lorentz, Einstein, Dirac, Gell-Mann, Schw." Applied Physics Research 11, no. 4 (July 15, 2019): 40. http://dx.doi.org/10.5539/apr.v11n4p40.

Повний текст джерела
Анотація:
In our approach we have combined knowledge of Old Masters (working in this field before the year 1905), New Masters (working in this field after the year 1905) and Dissidents under the guidance of Louis de Broglie and David Bohm. In our model the photon is represented as the Huygens-de Broglie&rsquo;s particle on the helical path (full wave) guided by the Newton-Bohm entangled evolute (empty wave). We have formulated the concept of the Super-Elastic Photon WAVE based on the Great Works of Weber, Abbe, Voigt and Einstein. This model works with the longitudinal elasticity of that WAVE that was already very well tested experimentally. Newly, we propose to test the elastic amplitude of this WAVE for the case of the Doppler&rsquo;s redshift, the Doppler&rsquo;s blueshift, and the Zwicky&rsquo;s redshift. We have newly used the concept of the Lorentz&rsquo; force for the description of the photon acting force and the fermion reacting force. In this model the Lorentz&rsquo; factors &gamma; and &gamma;3 do not describe the &ldquo;transverse mass of fermions&rdquo; and longitudinal mass of fermions&rdquo; but the &ldquo;reacting transverse force of fermions&rdquo; and the &ldquo;reacting longitudinal force of fermions&rdquo;. (The mass of photons and fermions does not change with their speed). It is very well-known that the cylindrical helix observed from different angles forms shadows in the Plato&rsquo;s Cave as circle, sine, cosine, trochoid, cochleoid, hyperbolic spiral. Therefore, the resulting shape depends on the observer position in the Plato&rsquo;s Cave-this is the famous Rashomon effect between observers. Based on the Newton-Bohm helical evolute and the Huygens-de Broglie helical path of the particle we have derived interesting formula known as the quantum of the magnetic flux. When we work further with this concept based on the Mathematical Beauty developed by Dirac, Gell-Mann, Schwinger, Polchinski, Witten and many others, we will obtain possible properties of the magnetic monopole. This photon quantum of the magnetic flux can be experimentally evaluated in the known tests with superconductors and micro-WAVES and infrared-WAVES. Can it be that Nature cleverly works with the magnetic monopole hidden in plain sight? We want to pass this concept into the hands of Readers of this Journal better educated in the Mathematics and Physics.
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Pokotilovski, Yu N. "Quantum phase shift of spatially confined de Broglie waves in a gravitational field." Physics Letters A 248, no. 2-4 (November 1998): 114–16. http://dx.doi.org/10.1016/s0375-9601(98)00638-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії