Дисертації з теми "Data reduction and analysis"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-50 дисертацій для дослідження на тему "Data reduction and analysis".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.
Wehrhahn, Ansgar. "Data Reduction and Analysis for Exoplanet Characterization." Licentiate thesis, Uppsala universitet, Institutionen för fysik och astronomi, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-437613.
Повний текст джерелаVamulapalli, Harika Rao. "On Dimensionality Reduction of Data." ScholarWorks@UNO, 2010. http://scholarworks.uno.edu/td/1211.
Повний текст джерелаMcClelland, Robyn L. "Regression based variable clustering for data reduction /." Thesis, Connect to this title online; UW restricted, 2000. http://hdl.handle.net/1773/9611.
Повний текст джерелаDhungana, Prakash. "Application for quick reduction of GPS data for urban mobility analysis." Master's thesis, Escola Superior Tecnologia e Gestão de Oliveira do Hospital, 2014. http://hdl.handle.net/10400.26/17521.
Повний текст джерелаThe potential requirement of using data reduction application as an assistive tool for the student and researchers has been designed, developed and deployed. For that, numerous researches have been carried for this project. During the process, several modifications on architectural design, development and implemention have been done. The idea of further advancement of this application to the further development has been explored. Primarily, open source software for data reductions have been developed to suit the needs of the data analysis enthusiastic. Requirement for the project were drawn upon a thematic analysis carried on the data collected via the statement of arts and supervisors. Six evaluation sessions were carried out with various sectors of data reduction techniques to establish the acceptance, suitability, usefulness and efficiency of the product. The results were outstanding and indicate strong prospects of the product for the targeted arena.
info:eu-repo/semantics/acceptedVersion
Ross, Ian. "Nonlinear dimensionality reduction methods in climate data analysis." Thesis, University of Bristol, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.492479.
Повний текст джерелаLi, Yingxing. "On sliced methods in dimension reduction." Click to view the E-thesis via HKUTO, 2005. http://sunzi.lib.hku.hk/hkuto/record/B31559256.
Повний текст джерелаLi, Yingxing, and 李迎星. "On sliced methods in dimension reduction." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2005. http://hub.hku.hk/bib/B31559256.
Повний текст джерелаClaudet, Andre Aman. "Data reduction for high speed computational analysis of three dimensional coordinate measurement data." Thesis, Georgia Institute of Technology, 1998. http://hdl.handle.net/1853/17617.
Повний текст джерелаTobeck, Daniel. "Data Structures and Reduction Techniques for Fire Tests." Thesis, University of Canterbury. Civil Engineering, 2007. http://hdl.handle.net/10092/1578.
Повний текст джерелаFerrer, Samuel. "STAIRS : Data reduction strategy on genomics." Thesis, Uppsala universitet, Institutionen för biologisk grundutbildning, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-383465.
Повний текст джерелаRay, Sujan. "Dimensionality Reduction in Healthcare Data Analysis on Cloud Platform." University of Cincinnati / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=ucin161375080072697.
Повний текст джерелаZhou, Ping. "ERROR ANALYSIS AND DATA REDUCTION FOR INTERFEROMETRIC SURFACE MEASUREMENTS." Diss., The University of Arizona, 2009. http://hdl.handle.net/10150/195309.
Повний текст джерелаDi, Ciaccio Lucio. "Feature selection and dimensionality reduction for supervised data analysis." Thesis, Massachusetts Institute of Technology, 2016. https://hdl.handle.net/1721.1/122827.
Повний текст джерелаCataloged from PDF version of thesis.
Includes bibliographical references (pages 103-106).
by Lucio Di Ciaccio.
S.M.
S.M. Massachusetts Institute of Technology, Department of Aeronautics and Astronautics
Fidalgo, André Filipe dos Santos Pinto. "IPTV data reduction strategy to measure real users’ behaviours." Master's thesis, Faculdade de Ciências e Tecnologia, 2012. http://hdl.handle.net/10362/8448.
Повний текст джерелаThe digital IPTV service has evolved in terms of features, technology and accessibility of their contents. However, the rapid evolution of features and services has brought a more complex offering to customers, which often are not enjoyed or even perceived. Therefore, it is important to measure the real advantage of those features and understand how they are used by customers. In this work, we present a strategy that deals directly with the real IPTV data, which result from the interaction actions with the set-top boxes by customers. But this data has a very low granularity level, which is complex and difficult to interpret. The approach is to transform the clicking actions to a more conceptual and representative level of the running activities. Furthermore, there is a significant reduction in the data cardinality, enhanced in terms of information quality. More than a transformation, this approach aims to be iterative, where at each level, we achieve a more accurate information, in order to characterize a particular behaviour. As experimental results, we present some application areas regarding the main offered features in this digital service. In particular, is made a study about zapping behaviour, and also an evaluation about DVR service usage. It is also discussed the possibility to integrate the strategy devised in a particular carrier, aiming to analyse the consumption rate of their services, in order to adjust them to customer real usage profile, and also to study the feasibility of new services introduction.
Voss, T. J. "Automated Analysis Tools for Reducing Spacecraft Telemetry Data." International Foundation for Telemetering, 1993. http://hdl.handle.net/10150/611898.
Повний текст джерелаA practical description is presented of the methods used to reduce spacecraft telemetry data using a hierarchial toolkit of software programs developed for a UNIX environment.
Hart, Dennis L., and Marvin A. Smith. "AIM-120A DOPPLER RADAR TELEMETRY DATA REDUCTION AND ANALYSIS SOFTWARE." International Foundation for Telemetering, 1994. http://hdl.handle.net/10150/608575.
Повний текст джерелаThis paper describes the application software used to convert AIM-120A, Advanced Medium Range Air-to-Air Missile (AMRAAM), telemetry data to a series of color images and time-correlated engineering unit results. X Window System-based graphics facilitate visualization of the doppler radar data. These software programs were developed for the VAX/VMS and DEC Alpha environments.
Dionisi, Steven M. "Real Time Data Reduction and Analysis Using Artificial Neural Networks." International Foundation for Telemetering, 1993. http://hdl.handle.net/10150/611856.
Повний текст джерелаAn artificial neural network (ANN) for use in real time data reduction and analysis will be presented. The use and advantage of hardware and software implementations of neural networks will be considered. The ability of neural networks to learn and store associations between different sets of data can be used to create custom algorithms for some of the data analysis done during missions. Once trained, the ANN can distill the signals from several sensors into a single output, such as safe/unsafe. Used on a neural chip, the trained ANN can eliminate the need for A/D conversions and multiplexing for processing of combined parameters and the massively parallel nature of the network allows the processing time to remain independent of the number of parameters. As a software routine, the advantages of using an ANN over conventional algorithms include the ease of use for engineers, and the ability to handle nonlinear, noisy and imperfect data. This paper will apply the ANN to performance data from a T-38 aircraft.
Lee, Ho-Jin. "Functional data analysis: classification and regression." Texas A&M University, 2004. http://hdl.handle.net/1969.1/2805.
Повний текст джерелаBuckley, Dave. "Moving Data Analysis into the Acquisition Hardware." International Foundation for Telemetering, 2014. http://hdl.handle.net/10150/577519.
Повний текст джерелаData acquisition for flight test is typically handled by dedicated hardware which performs specific functions and targets specific interfaces and buses. Through the use of an FPGA state machine based design approach, performance and robustness can be guaranteed. Up to now sufficient flexibility has been provided by allowing the user to configure the hardware depending on the particular application. However by allowing custom algorithms to be run on the data acquisition hardware, far greater control and flexibility can be offered to the flight test engineer. As the volume of the acquired data increases, this extra control can be used to vastly reduce the amount of data to be recorded or telemetered. Also real-time analysis of test points can now be done where post processing would previously have been required. This paper examines examples of data acquisition, recording and processing and investigates where data reduction and time savings can be achieved by enabling the flight test engineer to run his own algorithms on the hardware.
Concha, Ramírez Francisca Andrea. "FADRA: A CPU-GPU framework for astronomical data reduction and Analysis." Tesis, Universidad de Chile, 2016. http://repositorio.uchile.cl/handle/2250/140769.
Повний текст джерелаEsta tesis establece las bases de FADRA: Framework for Astronomical Data Reduction and Analysis. El framework FADRA fue diseñado para ser eficiente, simple de usar, modular, expandible, y open source. Hoy en día, la astronomía es inseparable de la computación, pero algunos de los software más usados en la actualidad fueron desarrollados tres décadas atrás y no están diseñados para enfrentar los actuales paradigmas de big data. El mundo del software astronómico debe evolucionar no solo hacia prácticas que comprendan y adopten la era del big data, sino también que estén enfocadas en el trabajo colaborativo de la comunidad. El trabajo desarollado consistió en el diseño e implementación de los algoritmos básicos para el análisis de datos astronómicos, dando inicio al desarrollo del framework. Esto consideró la implementación de estructuras de datos eficientes al trabajar con un gran número de imágenes, la implementación de algoritmos para el proceso de calibración o reducción de imágenes astronómicas, y el diseño y desarrollo de algoritmos para el cálculo de fotometría y la obtención de curvas de luz. Tanto los algoritmos de reducción como de obtención de curvas de luz fueron implementados en versiones CPU y GPU. Para las implementaciones en GPU, se diseñaron algoritmos que minimizan la cantidad de datos a ser procesados de manera de reducir la transferencia de datos entre CPU y GPU, proceso lento que muchas veces eclipsa las ganancias en tiempo de ejecución que se pueden obtener gracias a la paralelización. A pesar de que FADRA fue diseñado con la idea de utilizar sus algoritmos dentro de scripts, un módulo wrapper para interactuar a través de interfaces gráficas también fue implementado. Una de las principales metas de esta tesis consistió en la validación de los resultados obtenidos con FADRA. Para esto, resultados de la reducción y curvas de luz fueron comparados con resultados de AstroPy, paquete de Python con distintas utilidades para astrónomos. Los experimentos se realizaron sobre seis datasets de imágenes astronómicas reales. En el caso de reducción de imágenes astronómicas, el Normalized Root Mean Squared Error (NRMSE) fue utilizado como métrica de similaridad entre las imágenes. Para las curvas de luz, se probó que las formas de las curvas eran iguales a través de la determinación de offsets constantes entre los valores numéricos de cada uno de los puntos pertenecientes a las distintas curvas. En términos de la validez de los resultados, tanto la reducción como la obtención de curvas de luz, en sus implementaciones CPU y GPU, generaron resultados correctos al ser comparados con los de AstroPy, lo que significa que los desarrollos y aproximaciones diseñados para FADRA otorgan resultados que pueden ser utilizados con seguridad para el análisis científico de imágenes astronómicas. En términos de tiempos de ejecución, la naturaleza intensiva en uso de datos propia del proceso de reducción hace que la versión GPU sea incluso más lenta que la versión CPU. Sin embargo, en el caso de la obtención de curvas de luz, el algoritmo GPU presenta una disminución importante en tiempo de ejecución comparado con su contraparte en CPU.
Este trabajo ha sido parcialmente financiado por Proyecto Fondecyt 1120299
Cheriyadat, Anil Meerasa. "Limitations of principal component analysis for dimensionality-reduction for classification of hyperspectral data." Master's thesis, Mississippi State : Mississippi State University, 2003. http://library.msstate.edu/etd/show.asp?etd=etd-11072003-133109.
Повний текст джерелаSallum, S., and J. Eisner. "Data Reduction and Image Reconstruction Techniques for Non-redundant Masking." IOP PUBLISHING LTD, 2017. http://hdl.handle.net/10150/626263.
Повний текст джерелаBattey, Heather Suzanne. "Dimension reduction and automatic smoothing in high dimensional and functional data analysis." Thesis, University of Cambridge, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.609849.
Повний текст джерелаSease, Bradley Jason. "Data Reduction for Diverse Optical Observers through Fundamental Dynamic and Geometric Analysis." Diss., Virginia Tech, 2016. http://hdl.handle.net/10919/70923.
Повний текст джерелаPh. D.
Kliegr, Tomáš. "Clickstream Analysis." Master's thesis, Vysoká škola ekonomická v Praze, 2007. http://www.nusl.cz/ntk/nusl-2065.
Повний текст джерелаLandgraf, Andrew J. "Generalized Principal Component Analysis: Dimensionality Reduction through the Projection of Natural Parameters." The Ohio State University, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=osu1437610558.
Повний текст джерелаChao, Roger. "Data analysis for Systematic Literature Reviews." Thesis, Linnéuniversitetet, Institutionen för informatik (IK), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-105122.
Повний текст джерелаRooney, E. M. "The measurement and reduction of quality related costs in the process plant industry." Thesis, Cranfield University, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.380671.
Повний текст джерелаZhou, Dunke. "High-dimensional Data Clustering and Statistical Analysis of Clustering-based Data Summarization Products." The Ohio State University, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=osu1338303646.
Повний текст джерелаMarschall, Nicolas. "Methodological Problems with Transformation and Size Reduction of Data Sets in Network Analysis." [S.l. : s.n.], 2006. http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-19420.
Повний текст джерелаDai, Congxia. "An advanced data acquisition system & noise analysis on the aluminum reduction process." Morgantown, W. Va. : [West Virginia University Libraries], 2003. http://etd.wvu.edu/templates/showETD.cfm?recnum=2850.
Повний текст джерелаTitle from document title page. Document formatted into pages; contains ix, 82 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 75-78).
Hildreth, John C. "The Use of Short-Interval GPS Data for Construction Operations Analysis." Diss., Virginia Tech, 2003. http://hdl.handle.net/10919/26120.
Повний текст джерелаPh. D.
Grimm, Alexander Rudolf. "Parametric Dynamical Systems: Transient Analysis and Data Driven Modeling." Diss., Virginia Tech, 2018. http://hdl.handle.net/10919/83840.
Повний текст джерелаPh. D.
潤, 土田, and Jun Tsuchida. "Dimensional reduction method for three-mode three-way data based on canonical covariance analysis." Thesis, https://doors.doshisha.ac.jp/opac/opac_link/bibid/BB13056385/?lang=0, 2018. https://doors.doshisha.ac.jp/opac/opac_link/bibid/BB13056385/?lang=0.
Повний текст джерелаThree-mode three-way data exist in various research areas, such as psychology and marketing research. We propose new dimensional reduction methods for three-mode three-way data based on canonical covariance analysis in this study. In addition, we include a simulation study and apply the proposed method to real data.
博士(文化情報学)
Doctor of Culture and Information Science
同志社大学
Doshisha University
Bécavin, Christophe. "Dimensionaly reduction and pathway network analysis of transcriptome data : application to T-cell characterization." Paris, Ecole normale supérieure, 2010. http://www.theses.fr/2010ENSUBS02.
Повний текст джерелаGaines, June Bullard. "AEGIS Data Analysis and Reduction (ADAR) in Support of the AEGIS Weapon System (AWS)." VCU Scholars Compass, 1998. http://scholarscompass.vcu.edu/etd/4622.
Повний текст джерелаKim, Jeong Min. "REDUCTION AND ANALYSIS PROGRAM FOR TELEMETRY RECORDINGS (RAPTR): ANALYSIS AND DECOMMUTATION SOFTWARE FOR IRIG 106 CHAPTER 10 DATA." International Foundation for Telemetering, 2005. http://hdl.handle.net/10150/604912.
Повний текст джерелаSolid State On-Board Recording is becoming a revolutionary way of recording airborne telemetry data and IRIG 106 Chapter 10 “Solid State On-Board Recorder Standard” provides interface documentation for solid state digital data acquisition. The Reduction and Analysis Program for Telemetry Recordings (RAPTR) is a standardized and extensible software application developed by the 96th Communications Group, Test and Analysis Division, at Eglin AFB, and provides a data reduction capability for disk files in Chapter 10 format. This paper provides the system description and software architecture of RAPTR and presents the 96th Communication Group’s total solution for Chapter 10 telemetry data reduction.
Pelzel, Frank [Verfasser]. "New Strategies for Data Analysis by Dimension Reduction, of Resource Combinations and Benchmarking / Frank Pelzel." Berlin : epubli, 2020. http://d-nb.info/1219792594/34.
Повний текст джерелаErgin, Leanna N. "ENHANCED DATA REDUCTION, SEGMENTATION, AND SPATIAL MULTIPLEXING METHODS FOR HYPERSPECTRAL IMAGING." Cleveland State University / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=csu1501871494997272.
Повний текст джерелаWeng, Jiaying. "TRANSFORMS IN SUFFICIENT DIMENSION REDUCTION AND THEIR APPLICATIONS IN HIGH DIMENSIONAL DATA." UKnowledge, 2019. https://uknowledge.uky.edu/statistics_etds/40.
Повний текст джерелаSelf, Jessica Zeitz. "Designing and Evaluating Object-Level Interaction to Support Human-Model Communication in Data Analysis." Diss., Virginia Tech, 2016. http://hdl.handle.net/10919/70950.
Повний текст джерелаPh. D.
Ridgeway, Gregory Kirk. "Generalization of boosting algorithms and applications of Bayesian inference for massive datasets /." Thesis, Connect to this title online; UW restricted, 1999. http://hdl.handle.net/1773/8986.
Повний текст джерелаUpadrasta, Bharat. "Boolean factor analysis a review of a novel method of matrix decomposition and neural network Boolean factor analysis /." Diss., Online access via UMI:, 2009.
Знайти повний текст джерелаIncludes bibliographical references.
Caples, Jerry Joseph. "Variance reduction and variable selection methods for Alho's logistic capture recapture model with applications to census data /." Full text (PDF) from UMI/Dissertation Abstracts International, 2000. http://wwwlib.umi.com/cr/utexas/fullcit?p9992762.
Повний текст джерелаSafari, Katesari Hadi. "BAYESIAN DYNAMIC FACTOR ANALYSIS AND COPULA-BASED MODELS FOR MIXED DATA." OpenSIUC, 2021. https://opensiuc.lib.siu.edu/dissertations/1948.
Повний текст джерелаKidzinski, Lukasz. "Inference for stationary functional time series: dimension reduction and regression." Doctoral thesis, Universite Libre de Bruxelles, 2014. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209226.
Повний текст джерелаL'objectif principal de ce projet de doctorat est d'analyser la dépendance temporelle de l’ADF. Cette dépendance se produit, par exemple, si les données sont constituées à partir d'un processus en temps continu qui a été découpé en segments, les jours par exemple. Nous sommes alors dans le cadre des séries temporelles fonctionnelles.
La première partie de la thèse concerne la régression linéaire fonctionnelle, une extension de la régression multivariée. Nous avons découvert une méthode, basé sur les données, pour choisir la dimension de l’estimateur. Contrairement aux résultats existants, cette méthode n’exige pas d'assomptions invérifiables.
Dans la deuxième partie, on analyse les modèles linéaires fonctionnels dynamiques (MLFD), afin d'étendre les modèles linéaires, déjà reconnu, dans un cadre de la dépendance temporelle. Nous obtenons des estimateurs et des tests statistiques par des méthodes d’analyse harmonique. Nous nous inspirons par des idées de Brillinger qui a étudié ces models dans un contexte d’espaces vectoriels.
Doctorat en Sciences
info:eu-repo/semantics/nonPublished
Löhr, Andrea. "A noise reduction method based upon statistical analysis for the detection of weak signals in discrete data." [S.l.] : [s.n.], 2003. http://deposit.ddb.de/cgi-bin/dokserv?idn=968817505.
Повний текст джерелаGapper, Justin J. "Bias Reduction in Machine Learning Classifiers for Spatiotemporal Analysis of Coral Reefs using Remote Sensing Images." Chapman University Digital Commons, 2019. https://digitalcommons.chapman.edu/cads_dissertations/2.
Повний текст джерелаSakarya, Hatice. "A Contribution To Modern Data Reduction Techniques And Their Applications By Applied Mathematics And Statistical Learning." Master's thesis, METU, 2010. http://etd.lib.metu.edu.tr/upload/12612819/index.pdf.
Повний текст джерелаStenberg, Erik. "SEQUENTIAL A/B TESTING USING PRE-EXPERIMENT DATA." Thesis, Uppsala universitet, Statistiska institutionen, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-385253.
Повний текст джерела