Дисертації з теми "Data mining"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-50 дисертацій для дослідження на тему "Data mining".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.
Mrázek, Michal. "Data mining." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2019. http://www.nusl.cz/ntk/nusl-400441.
Повний текст джерелаPayyappillil, Hemambika. "Data mining framework." Morgantown, W. Va. : [West Virginia University Libraries], 2005. https://etd.wvu.edu/etd/controller.jsp?moduleName=documentdata&jsp%5FetdId=3807.
Повний текст джерелаTitle from document title page. Document formatted into pages; contains vi, 65 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 64-65).
Abedjan, Ziawasch. "Improving RDF data with data mining." Phd thesis, Universität Potsdam, 2014. http://opus.kobv.de/ubp/volltexte/2014/7133/.
Повний текст джерелаLinked Open Data (LOD) umfasst viele und oft sehr große öffentlichen Datensätze und Wissensbanken, die hauptsächlich in der RDF Triplestruktur bestehend aus Subjekt, Prädikat und Objekt vorkommen. Dabei repräsentiert jedes Triple einen Fakt. Unglücklicherweise erfordert die Heterogenität der verfügbaren öffentlichen Daten signifikante Integrationsschritte bevor die Daten in Anwendungen genutzt werden können. Meta-Daten wie ontologische Strukturen und Bereichsdefinitionen von Prädikaten sind zwar wünschenswert und idealerweise durch eine Wissensbank verfügbar. Jedoch sind Wissensbanken im Kontext von LOD oft unvollständig oder einfach nicht verfügbar. Deshalb ist es nützlich automatisch Meta-Informationen, wie ontologische Abhängigkeiten, Bereichs-und Domänendefinitionen und thematische Assoziationen von Ressourcen generieren zu können. Eine neue und vielversprechende Technik um solche Daten zu untersuchen basiert auf das entdecken von Assoziationsregeln, welche ursprünglich für Verkaufsanalysen in transaktionalen Datenbanken angewendet wurde. Wir haben eine Adaptierung dieser Technik auf RDF Daten entworfen und stellen das Konzept der Mining Konfigurationen vor, welches uns befähigt in RDF Daten auf unterschiedlichen Weisen Muster zu erkennen. Verschiedene Konfigurationen erlauben uns Schema- und Wertbeziehungen zu erkennen, die für interessante Anwendungen genutzt werden können. In dem Sinne, stellen wir assoziationsbasierte Verfahren für eine Prädikatvorschlagsverfahren, Datenvervollständigung, Ontologieverbesserung und Anfrageerleichterung vor. Das Vorschlagen von Prädikaten behandelt das Problem der inkonsistenten Verwendung von Ontologien, indem einem Benutzer, der einen neuen Fakt einem Rdf-Datensatz hinzufügen will, eine sortierte Liste von passenden Prädikaten vorgeschlagen wird. Eine Kombinierung von verschiedenen Konfigurationen erweitert dieses Verfahren sodass automatisch komplett neue Fakten für eine Wissensbank generiert werden. Hierbei stellen wir zwei Verfahren vor, einen nutzergesteuertenVerfahren, bei dem ein Nutzer die Entität aussucht die erweitert werden soll und einen datengesteuerten Ansatz, bei dem ein Algorithmus selbst die Entitäten aussucht, die mit fehlenden Fakten erweitert werden. Da Wissensbanken stetig wachsen und sich verändern, ist ein anderer Ansatz um die Verwendung von RDF Daten zu erleichtern die Verbesserung von Ontologien. Hierbei präsentieren wir ein Assoziationsregeln-basiertes Verfahren, der Daten und zugrundeliegende Ontologien zusammenführt. Durch die Verflechtung von unterschiedlichen Konfigurationen leiten wir einen neuen Algorithmus her, der gleichbedeutende Prädikate entdeckt. Diese Prädikate können benutzt werden um Ergebnisse einer Anfrage zu erweitern oder einen Nutzer während einer Anfrage zu unterstützen. Für jeden unserer vorgestellten Anwendungen präsentieren wir eine große Auswahl an Experimenten auf Realweltdatensätzen. Die Experimente und Evaluierungen zeigen den Mehrwert von Assoziationsregeln-Generierung für die Integration und Nutzbarkeit von RDF Daten und bestätigen die Angemessenheit unserer konfigurationsbasierten Methodologie um solche Regeln herzuleiten.
Liu, Tantan. "Data Mining over Hidden Data Sources." The Ohio State University, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=osu1343313341.
Повний текст джерелаTaylor, Phillip. "Data mining of vehicle telemetry data." Thesis, University of Warwick, 2015. http://wrap.warwick.ac.uk/77645/.
Повний текст джерелаSherikar, Vishnu Vardhan Reddy. "I2MAPREDUCE: DATA MINING FOR BIG DATA." CSUSB ScholarWorks, 2017. https://scholarworks.lib.csusb.edu/etd/437.
Повний текст джерелаZhang, Nan. "Privacy-preserving data mining." [College Station, Tex. : Texas A&M University, 2006. http://hdl.handle.net/1969.1/ETD-TAMU-1080.
Повний текст джерелаHulten, Geoffrey. "Mining massive data streams /." Thesis, Connect to this title online; UW restricted, 2005. http://hdl.handle.net/1773/6937.
Повний текст джерелаBüchel, Nina. "Faktorenvorselektion im Data Mining /." Berlin : Logos, 2009. http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&doc_number=019006997&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA.
Повний текст джерелаShao, Junming. "Synchronization Inspired Data Mining." Diss., lmu, 2011. http://nbn-resolving.de/urn:nbn:de:bvb:19-137356.
Повний текст джерелаWang, Xiaohong. "Data mining with bilattices." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2001. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/MQ59344.pdf.
Повний текст джерелаKnobbe, Arno J. "Multi-relational data mining /." Amsterdam [u.a.] : IOS Press, 2007. http://www.loc.gov/catdir/toc/fy0709/2006931539.html.
Повний текст джерела丁嘉慧 and Ka-wai Ting. "Time sequences: data mining." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2001. http://hub.hku.hk/bib/B31226760.
Повний текст джерелаWan, Chang, and 萬暢. "Mining multi-faceted data." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2013. http://hdl.handle.net/10722/197527.
Повний текст джерелаpublished_or_final_version
Computer Science
Master
Master of Philosophy
GarciÌa-Osorio, CeÌsar. "Data mining and visualization." Thesis, University of Exeter, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.414266.
Повний текст джерелаWang, Grant J. (Grant Jenhorn) 1979. "Algorithms for data mining." Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/38315.
Повний текст джерелаIncludes bibliographical references (p. 81-89).
Data of massive size are now available in a wide variety of fields and come with great promise. In theory, these massive data sets allow data mining and exploration on a scale previously unimaginable. However, in practice, it can be difficult to apply classic data mining techniques to such massive data sets due to their sheer size. In this thesis, we study three algorithmic problems in data mining with consideration to the analysis of massive data sets. Our work is both theoretical and experimental - we design algorithms and prove guarantees for their performance and also give experimental results on real data sets. The three problems we study are: 1) finding a matrix of low rank that approximates a given matrix, 2) clustering high-dimensional points into subsets whose points lie in the same subspace, and 3) clustering objects by pairwise similarities/distances.
by Grant J. Wang.
Ph.D.
Anwar, Muhammad Naveed. "Data mining of audiology." Thesis, University of Sunderland, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.573120.
Повний текст джерелаSantos, José Carlos Almeida. "Mining protein structure data." Master's thesis, FCT - UNL, 2006. http://hdl.handle.net/10362/1130.
Повний текст джерелаGarda-Osorio, Cesar. "Data mining and visualisation." Thesis, University of the West of Scotland, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.742763.
Повний текст джерелаRawles, Simon Alan. "Object-oriented data mining." Thesis, University of Bristol, 2007. http://hdl.handle.net/1983/c13bda2c-75c9-4bfa-b86b-04ac06ba0278.
Повний текст джерелаMao, Shihong. "Comparative Microarray Data Mining." Wright State University / OhioLINK, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=wright1198695415.
Повний текст джерелаNovák, Petr. "Data mining časových řad." Master's thesis, Vysoká škola ekonomická v Praze, 2009. http://www.nusl.cz/ntk/nusl-72068.
Повний текст джерелаBlunt, Gordon. "Mining credit card data." Thesis, n.p, 2002. http://ethos.bl.uk/.
Повний текст джерелаNiggemann, Oliver. "Visual data mining of graph based data." [S.l. : s.n.], 2001. http://deposit.ddb.de/cgi-bin/dokserv?idn=962400505.
Повний текст джерелаLi, Liangchun. "Web-based data visualization for data mining." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp03/MQ35845.pdf.
Повний текст джерелаAl-Hashemi, Idrees Yousef. "Applying data mining techniques over big data." Thesis, Boston University, 2013. https://hdl.handle.net/2144/21119.
Повний текст джерелаThe rapid development of information technology in recent decades means that data appear in a wide variety of formats — sensor data, tweets, photographs, raw data, and unstructured data. Statistics show that there were 800,000 Petabytes stored in the world in 2000. Today’s internet has about 0.1 Zettabytes of data (ZB is about 1021 bytes), and this number will reach 35 ZB by 2020. With such an overwhelming flood of information, present data management systems are not able to scale to this huge amount of raw, unstructured data—in today’s parlance, Big Data. In the present study, we show the basic concepts and design of Big Data tools, algorithms, and techniques. We compare the classical data mining algorithms to the Big Data algorithms by using Hadoop/MapReduce as a core implementation of Big Data for scalable algorithms. We implemented the K-means algorithm and A-priori algorithm with Hadoop/MapReduce on a 5 nodes Hadoop cluster. We explore NoSQL databases for semi-structured, massively large-scaling of data by using MongoDB as an example. Finally, we show the performance between HDFS (Hadoop Distributed File System) and MongoDB data storage for these two algorithms.
Zhou, Wubai. "Data Mining Techniques to Understand Textual Data." FIU Digital Commons, 2017. https://digitalcommons.fiu.edu/etd/3493.
Повний текст джерелаKAVOOSIFAR, MOHAMMAD REZA. "Data Mining and Indexing Big Multimedia Data." Doctoral thesis, Politecnico di Torino, 2019. http://hdl.handle.net/11583/2742526.
Повний текст джерелаAdderly, Darryl M. "Data mining meets e-commerce using data mining to improve customer relationship management /." [Gainesville, Fla.]: University of Florida, 2002. http://purl.fcla.edu/fcla/etd/UFE0000500.
Повний текст джерелаVithal, Kadam Omkar. "Novel applications of Association Rule Mining- Data Stream Mining." AUT University, 2009. http://hdl.handle.net/10292/826.
Повний текст джерелаPatel, Akash. "Data Mining of Process Data in Multivariable Systems." Thesis, KTH, Skolan för elektro- och systemteknik (EES), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-201087.
Повний текст джерелаModellering av reglersystem i industriprocesser med hjälp av system identifieringsexperiment, kan vara både kostsammt och tidskrävande. Ökad tillgångtill stora volymer av historisk lagrad data och processorkraft har därmed väcktstort intresse för data mining algoritmer.Denna avhandling fokuserar på utvärderingen av en data minig algoritm för mulitvariablaprocesser där de utvunna data segmenten can potenitellt användasför system identifiering. Första delen av avhandlingen utforskar vilken effektalgoritmens många parametrar har på dess prestanda. För att förenkla valenav parametrarna, utveklades ett användargränsnitt. Den andra delen av avhandlingenutvärderar algoritmens prestanda genom att modellera en simuleradprocess som är baserad på de utvunna data segment.Resultaten visar att algoritmen är särskilt känslig mot valen av brytfrekvensernai bandpassfiltret, tröskel värdet för det reciproka konditions talet och ordernpå Laguerre filtret. Dessutom visar resultaten att det är, genom det utveckladeanvändargränssnittet, möjligt att välja parameter värden som ger godtyckligautvunna data segment. Slutgiltigen kan det konstateras att man kan medhög nogrannhet modellera en simulerad process med hjälp av de utvunna datasegmenten från algoritmen.
Cordeiro, Robson Leonardo Ferreira. "Data mining in large sets of complex data." Universidade de São Paulo, 2011. http://www.teses.usp.br/teses/disponiveis/55/55134/tde-22112011-083653/.
Повний текст джерелаO crescimento em quantidade e complexidade dos dados armazenados nas organizações torna a extração de conhecimento utilizando técnicas de mineração uma tarefa ao mesmo tempo fundamental para aproveitar bem esses dados na tomada de decisões estratégicas e de alto custo computacional. O custo vem da necessidade de se explorar uma grande quantidade de casos de estudo, em diferentes combinações, para se obter o conhecimento desejado. Tradicionalmente, os dados a explorar são representados como atributos numéricos ou categóricos em uma tabela, que descreve em cada tupla um caso de teste do conjunto sob análise. Embora as mesmas tarefas desenvolvidas para dados tradicionais sejam também necessárias para dados mais complexos, como imagens, grafos, áudio e textos longos, a complexidade das análises e o custo computacional envolvidos aumentam significativamente, inviabilizando a maioria das técnicas de análise atuais quando aplicadas a grandes quantidades desses dados complexos. Assim, técnicas de mineração especiais devem ser desenvolvidas. Este Trabalho de Doutorado visa a criação de novas técnicas de mineração para grandes bases de dados complexos. Especificamente, foram desenvolvidas duas novas técnicas de agrupamento e uma nova técnica de rotulação e sumarização que são rápidas, escaláveis e bem adequadas à análise de grandes bases de dados complexos. As técnicas propostas foram avaliadas para a análise de bases de dados reais, em escala de Terabytes de dados, contendo até bilhões de objetos complexos, e elas sempre apresentaram resultados de alta qualidade, sendo em quase todos os casos pelo menos uma ordem de magnitude mais rápidas do que os trabalhos relacionados mais eficientes. Os dados reais utilizados vêm das seguintes aplicações: diagnóstico automático de câncer de mama, análise de imagens de satélites, e mineração de grafos aplicada a um grande grafo da web coletado pelo Yahoo! e também a um grafo com todos os usuários da rede social Twitter e suas conexões. Tais resultados indicam que nossos algoritmos permitem a criação de aplicações em tempo real que, potencialmente, não poderiam ser desenvolvidas sem a existência deste Trabalho de Doutorado, como por exemplo, um sistema em escala global para o auxílio ao diagnóstico médico em tempo real, ou um sistema para a busca por áreas de desmatamento na Floresta Amazônica em tempo real
XIAO, XIN. "Data Mining Techniques for Complex User-Generated Data." Doctoral thesis, Politecnico di Torino, 2016. http://hdl.handle.net/11583/2644046.
Повний текст джерелаTong, Suk-man Ivy. "Techniques in data stream mining." Click to view the E-thesis via HKUTO, 2005. http://sunzi.lib.hku.hk/hkuto/record/B34737376.
Повний текст джерелаBorgelt, Christian. "Data mining with graphical models." [S.l. : s.n.], 2000. http://deposit.ddb.de/cgi-bin/dokserv?idn=962912107.
Повний текст джерелаWeber, Irene. "Suchraumbeschränkung für relationales Data Mining." [S.l. : s.n.], 2004. http://www.bsz-bw.de/cgi-bin/xvms.cgi?SWB11380447.
Повний текст джерелаMaden, Engin. "Data Mining On Architecture Simulation." Master's thesis, METU, 2010. http://etd.lib.metu.edu.tr/upload/2/12611635/index.pdf.
Повний текст джерелаDrwal, Maciej. "Data mining in distributedcomputer systems." Thesis, Blekinge Tekniska Högskola, Sektionen för datavetenskap och kommunikation, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-5709.
Повний текст джерелаThun, Julia, and Rebin Kadouri. "Automating debugging through data mining." Thesis, KTH, Data- och elektroteknik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-203244.
Повний текст джерелаDagens system genererar stora mängder av loggmeddelanden. Dessa meddelanden kan effektivt lagras, sökas och visualiseras genom att använda sig av logghanteringsverktyg. Analys av loggmeddelanden ger insikt i systemets beteende såsom prestanda, serverstatus och exekveringsfel som kan uppkomma i webbapplikationer. iStone AB vill undersöka möjligheten att automatisera felsökning. Eftersom iStone till mestadels utför deras felsökning manuellt så tar det tid att hitta fel inom systemet. Syftet var att därför att finna olika lösningar som reducerar tiden det tar att felsöka. En analys av loggmeddelanden inom access – och konsolloggar utfördes för att välja de mest lämpade data mining tekniker för iStone’s system. Data mining algoritmer och logghanteringsverktyg jämfördes. Resultatet av jämförelserna visade att ELK Stacken samt en blandning av Eclat och en hybrid algoritm (Eclat och Apriori) var de lämpligaste valen. För att visa att så är fallet så implementerades ELK Stacken och Eclat. De framställda resultaten visar att data mining och användning av en plattform för logganalys kan underlätta och minska den tid det tar för att felsöka.
Rahman, Sardar Muhammad Monzurur, and mrahman99@yahoo com. "Data Mining Using Neural Networks." RMIT University. Electrical & Computer Engineering, 2006. http://adt.lib.rmit.edu.au/adt/public/adt-VIT20080813.094814.
Повний текст джерелаGuo, Shishan. "Data mining in crystallographic databases." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape3/PQDD_0012/NQ52854.pdf.
Повний текст джерелаSun, Wenyi. "Data mining extension for economics." Diss., Columbia, Mo. : University of Missouri-Columbia, 2006. http://hdl.handle.net/10355/5869.
Повний текст джерелаThe entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Title from title screen of research.pdf file (viewed on September ) Vita. Includes bibliographical references.
Papadatos, George. "Data mining for lead optimisation." Thesis, University of Sheffield, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.556989.
Повний текст джерелаRice, Simon B. "Text data mining in bioinformatics." Thesis, University of Manchester, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.488351.
Повний текст джерелаLin, Zhenmin. "Privacy Preserving Distributed Data Mining." UKnowledge, 2012. http://uknowledge.uky.edu/cs_etds/9.
Повний текст джерелаTong, Suk-man Ivy, and 湯淑敏. "Techniques in data stream mining." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2005. http://hub.hku.hk/bib/B34737376.
Повний текст джерелаLuo, Man. "Data mining and classical statistics." Virtual Press, 2004. http://liblink.bsu.edu/uhtbin/catkey/1304657.
Повний текст джерелаDepartment of Mathematical Sciences
Cai, Zhongming. "Technical aspects of data mining." Thesis, Cardiff University, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.395784.
Повний текст джерелаShioda, Romy 1977. "Integer optimization in data mining." Thesis, Massachusetts Institute of Technology, 2003. http://hdl.handle.net/1721.1/17579.
Повний текст джерелаIncludes bibliographical references (p. 103-107).
While continuous optimization methods have been widely used in statistics and data mining over the last thirty years, integer optimization has had very limited impact in statistical computation. Thus, our objective is to develop a methodology utilizing state of the art integer optimization methods to exploit the discrete character of data mining problems. The thesis consists of two parts: The first part illustrates a mixed-integer optimization method for classification and regression that we call Classification and Regression via Integer Optimization (CRIO). CRIO separates data points in different polyhedral regions. In classification each region is assigned a class, while in regression each region has its own distinct regression coefficients. Computational experimentation with real data sets shows that CRIO is comparable to and often outperforms the current leading methods in classification and regression. The second part describes our cardinality-constrained quadratic mixed-integer optimization algorithm, used to solve subset selection in regression and portfolio selection in asset allocation. We take advantage of the special structures of these problems by implementing a combination of implicit branch-and-bound, Lemke's pivoting method, variable deletion and problem reformulation. Testing against popular heuristic methods and CPLEX 8.0's quadratic mixed-integer solver, we see that our tailored approach to these quadratic variable selection problems have significant advantages over simple heuristics and generalized solvers.
by Romy Shioda.
Ph.D.
Lo, Ya-Chin, and 羅雅琴. "Data mining in bioinformatics -- NCBI tools for data mining." Thesis, 2004. http://ndltd.ncl.edu.tw/handle/38227591029165701821.
Повний текст джерела靜宜大學
資訊管理學系研究所
92
Bioinformatics represents a new, growing area of science that computational approaches to answer biological questions. With the explosion of sequence and structural information available to researchers, the field of bioinformatics is playing an increasingly large role in the study of fundamental biomedical problems. The functional view of bioinformatics is the representation, storage, and distribution of data. Data mining is used to refer the process of searching through a large volume of data, stored into a database, to discover interesting and useful information previously unknown. Bioinformatics provides opportunities for developing different data mining methods. Data mining will play an increasingly important role in the analysis and discovery of sequence, structure and functional patterns or models from large sequence databases. NCBI provides large-scale informatics systems that will support scientific inquiry well into the future. The mission of the NCBI is to develop new information technologies to aid in the understanding of fundamental molecular and genetic processes that control health and disease. In this thesis, we enumerate several kinds of data mining tools often used inside NCBI. We also introduce the characteristics of these tools and basic operation methods . So we can understand the data mining application and development of limitless latent energy appeared in bioinformatics field.