Дисертації з теми "Data-driven techniques"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-33 дисертацій для дослідження на тему "Data-driven techniques".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.
Mousas, Christos. "Data-driven techniques for animating virtual characters." Thesis, University of Sussex, 2015. http://sro.sussex.ac.uk/id/eprint/52967/.
Повний текст джерелаBattle, Leilani Marie. "Behavior-driven optimization techniques for scalable data exploration." Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/111853.
Повний текст джерелаThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 153-162).
Interactive visualizations are a popular medium used by scientists to explore, analyze and generally make sense of their data. However, with the overwhelming amounts of data that scientists collect from various instruments (e.g., telescopes, satellites, gene sequencers and field sensors), they need ways of efficiently transforming their data into interactive visualizations. Though a variety of visualization tools exist to help people make sense of their data, these tools often rely on database management systems (or DBMSs) for data processing and storage; and unfortunately, DBMSs fail to process the data fast enough to support a fluid, interactive visualization experience. This thesis blends optimization techniques from databases and methodology from HCI and visualization in order to support interactive and iterative exploration of large datasets. Our main goal is to reduce latency in visualization systems, i.e., the time these systems spend responding to a user's actions. We demonstrate through a comprehensive user study that latency has a clear (negative) effect on users' high-level analysis strategies, which becomes more pronounced as the latency is increased. Furthermore, we find that users are more susceptible to the effects of system latency when they have existing domain knowledge, a common scenario for data scientists. We then developed a visual exploration system called Sculpin that utilizes a suite of optimizations to reduce system latency. Sculpin learns user exploration patterns automatically, and exploits these patterns to pre-fetch data ahead of users as they explore. We then combine data-prefetching with incremental data processing (i.e., incremental materialization) and visualization-focused caching optimizations to further boost performance. With all three of these techniques (pre-fetching, caching, and pre-computation), Sculpin is able to: create visualizations 380% faster and respond to user interactions 88% faster than existing visualization systems, while also using less than one third of the space required by other systems to store materialized query results.
by Leilani Battle.
Ph. D.
Massey, Tammara. "Data driven and optimization techniques for mobile health systems." Diss., Restricted to subscribing institutions, 2009. http://proquest.umi.com/pqdweb?did=1930907801&sid=4&Fmt=2&clientId=1564&RQT=309&VName=PQD.
Повний текст джерелаNordahl, Christian. "Data-Driven Techniques for Modeling and Analysis of User Behavior." Licentiate thesis, Blekinge Tekniska Högskola, Institutionen för datavetenskap, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-18667.
Повний текст джерелаOgweno, Austin Juma. "Power efficient, event driven data acquisition and processing using asynchronous techniques." Thesis, University of Newcastle upon Tyne, 2018. http://hdl.handle.net/10443/4121.
Повний текст джерелаEssaidi, Moez. "Model-Driven Data Warehouse and its Automation Using Machine Learning Techniques." Paris 13, 2013. http://scbd-sto.univ-paris13.fr/secure/edgalilee_th_2013_essaidi.pdf.
Повний текст джерелаThis thesis aims at proposing an end-to-end approach which allows the automation of the process of model transformations for the development of data warehousing components. The main idea is to reduce as much as possible the intervention of human experts by using once again the traces of transformations produced on similar projects. The goal is to use supervised learning techniques to handle concept definitions with the same expressive level as manipulated data. The nature of the manipulated data leads us to choose relational languages for the description of examples and hypothesises. These languages have the advantage of being expressive by giving the possibility to express relationships between the manipulated objects, but they have the major disadvantage of not having algorithms allowing the application on large scales of industrial applications. To solve this problem, we have proposed an architecture that allows the perfect exploitation of the knowledge obtained from transformations' invariants between models and metamodels. This way of proceeding has highlighted the dependencies between the concepts to learn and has led us to propose a learning paradigm, called dependent-concept learning. Finally, this thesis presents various aspects that may inuence the next generation of data warehousing platforms. The latter suggests, in particular, an architecture for business intelligence-as-a-service based on the most recent and promising industrial standards and technologies
Stender, Merten [Verfasser]. "Data-driven techniques for the nonlinear dynamics of mechanical structures / Merten Stender." Hamburg : Universitätsbibliothek der Technischen Universität Hamburg-Harburg, 2020. http://d-nb.info/1221669583/34.
Повний текст джерелаGodwin, Jamie Leigh. "Exploiting robust multivariate statistics and data driven techniques for prognosis and health management." Thesis, Durham University, 2015. http://etheses.dur.ac.uk/11157/.
Повний текст джерелаFields, Evan(Evan Jerome). "Demand uncensored : car-sharing mobility services using data-driven and simulation-based techniques." Thesis, Massachusetts Institute of Technology, 2019. https://hdl.handle.net/1721.1/121825.
Повний текст джерелаCataloged from PDF version of thesis.
Includes bibliographical references (pages 141-145).
In the design and operation of urban mobility systems, it is often desirable to understand patterns in traveler demand. However, demand is typically unobserved and must be estimated from available data. To address this disconnect, we begin by proposing a method for recovering an unknown probability distribution given a censored or truncated sample from that distribution. The proposed method is a novel and conceptually simple detruncation technique based on sampling the observed data according to weights learned by solving a simulation-based optimization problem; this method is especially appropriate in cases where little analytic information about the unknown distribution is available but the truncation process can be simulated.
The proposed method is compared to the ubiquitous maximum likelihood (MLE) method in a variety of synthetic validation experiments where it is found that the proposed method performs slightly worse than perfectly specified MLE and competitively with slight misspecified MLE. We then describe a novel car-sharing simulator which captures many of the important interactions between supply, demand, and system utilization while remaining simple and computationally efficient. In collaboration with Zipcar, a leading car-sharing operator in the United States, we demonstrate the usefulness of our detruncation method combined with our simulator via a pair of case studies. These tools allow us to estimate demand for round trip car-sharing services in the Boston and New York metropolitan areas, and the inferred demand distributions contain actionable insights.
Finally, we extend the detruncation method to cover cases where data is noisy, missing, or must be combined from different sources such as web or mobile applications. In synthetic validation experiments, the extended method is benchmarked against kernel density estimation (KDE) with Gaussian kernels. We find that the proposed method typically outperforms KDE, especially when the distribution to be estimated is not unimodal. With this extended method we consider the added utility of search data when estimating demand for car-sharing.
by Evan Fields.
Ph. D.
Ph.D. Massachusetts Institute of Technology, Sloan School of Management, Operations Research Center
Reinoso, Nicholas L. "Forecasting Harmful Algal Blooms for Western Lake Erie using Data Driven Machine Learning Techniques." Cleveland State University / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=csu1494343783463819.
Повний текст джерелаFarouq, Shiraz. "Towards large-scale monitoring of operationally diverse thermal energy systems with data-driven techniques." Licentiate thesis, Högskolan i Halmstad, CAISR Centrum för tillämpade intelligenta system (IS-lab), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-40964.
Повний текст джерелаSELICATI, VALERIA. "Innovative thermodynamic hybrid model-based and data-driven techniques for real time manufacturing sustainability assessment." Doctoral thesis, Università degli studi della Basilicata, 2022. http://hdl.handle.net/11563/157566.
Повний текст джерелаSpreyer, Kathrin. "Does it have to be trees? : Data-driven dependency parsing with incomplete and noisy training data." Phd thesis, Universität Potsdam, 2011. http://opus.kobv.de/ubp/volltexte/2012/5749/.
Повний текст джерелаWir präsentieren eine neuartige Herangehensweise an das Trainieren von daten-gesteuerten Dependenzparsern auf unvollständigen Annotationen. Unsere Parser sind einfache Varianten von zwei bekannten Dependenzparsern, nämlich des transitions-basierten Malt-Parsers sowie des graph-basierten MST-Parsers. Während frühere Arbeiten zum Parsing mit unvollständigen Daten die Aufgabe meist in Frameworks für unüberwachtes oder schwach überwachtes maschinelles Lernen gebettet haben, behandeln wir sie im Wesentlichen mit überwachten Lernverfahren. Insbesondere schlagen wir "agnostische" Parser vor, die jegliche Fragmentierung der Trainingsdaten vor ihren daten-gesteuerten Lernkomponenten verbergen. Wir stellen Versuchsergebnisse mit Trainingsdaten vor, die mithilfe von Annotationsprojektion gewonnen wurden. Annotationsprojektion ist ein Verfahren, das es uns erlaubt, innerhalb eines Parallelkorpus Annotationen von einer Sprache auf eine andere zu übertragen. Bedingt durch begrenzten crosslingualen Parallelismus und fehleranfällige Wortalinierung ist die Ausgabe des Projektionsschrittes jedoch üblicherweise verrauscht und unvollständig. Gerade dies macht projizierte Annotationen zu einer angemessenen Testumgebung für unsere fragment-fähigen Parser. Unsere Ergebnisse belegen, dass (i) Dependenzparser, die auf großen Mengen von projizierten Annotationen trainiert wurden, größere Genauigkeit erzielen als die zugrundeliegenden direkten Projektionen, und dass (ii) die Genauigkeit unserer agnostischen, fragment-fähigen Parser der Genauigkeit der Originalparser (trainiert auf streng gefilterten, komplett projizierten Bäumen) annähernd gleichgestellt ist. Schließlich zeigen wir mit künstlich fragmentierten Gold-Standard-Daten, dass (iii) der Verlust an Genauigkeit selbst dann bescheiden bleibt, wenn bis zu 50% aller Kanten in den Trainingsdaten fehlen.
Quaranta, Giacomo. "Efficient simulation tools for real-time monitoring and control using model order reduction and data-driven techniques." Doctoral thesis, Universitat Politècnica de Catalunya, 2019. http://hdl.handle.net/10803/667474.
Повний текст джерелаLa simulación numérica, el uso de ordenadores para ejecutar un programa que implementa un modelo matemático de un sistema físico, es una parte importante del mundo tecnológico actual. En muchos campos de la ciencia y la ingeniería es necesario estudiar el comportamiento de sistemas cuyos modelos matemáticos son demasiado complejos para proporcionar soluciones analíticas, haciendo posible la evaluación virtual de las respuestas de los sistemas (gemelos virtuales). Esto reduce drásticamente el número de pruebas experimentales para los diseños precisos del sistema real que el modelo numérico representa. Sin embargo, estos gemelos virtuales, basados en métodos clásicos que hacen uso de una rica representación del sistema (por ejemplo, el método de elementos finitos), rara vez permiten la retroalimentación en tiempo real, incluso cuando se considera la computación en plataformas de alto rendimiento. En estas circunstancias, el rendimiento en tiempo real requerido en algunas aplicaciones se ve comprometido. En efecto, los gemelos virtuales son estáticos, es decir, se utilizan en el diseño de sistemas complejos y sus componentes, pero no se espera que acomoden o asimilen los datos para definir sistemas de aplicación dinámicos basados en datos. Además, se suelen apreciar desviaciones significativas entre la respuesta observada y la predicha por el modelo, debido a inexactitudes en los modelos empleados, en la determinación de los parámetros del modelo o en su evolución temporal. En esta tesis se proponen diferentes métodos para resolver estas limitaciones con el fin de realizar un seguimiento y un control en tiempo real. En la primera parte se utilizan técnicas de Reducción de Modelos para satisfacer las restricciones en tiempo real; estas técnicas calculan una buena aproximación de la solución simplificando el procedimiento de resolución en lugar del modelo. La precisión de la solución no se ve comprometida y se pueden realizar simulaciones efficientes (gemelos digitales). En la segunda parte se emplea la modelización basada en datos para llenar el vacío entre la solución paramétrica, calculada utilizando técnicas de reducción de modelos no intrusivas, y los campos medidos, con el fin de hacer posibles los sistemas de aplicación dinámicos basados en datos (gemelos híbridos).
La simulation numérique, c'est-à-dire l'utilisation des ordinateurs pour exécuter un programme qui met en oeuvre un modèle mathématique d'un système physique, est une partie importante du monde technologique actuel. Elle est nécessaire dans de nombreux domaines scientifiques et techniques pour étudier le comportement de systèmes dont les modèles mathématiques sont trop complexes pour fournir des solutions analytiques et elle rend possible l'évaluation virtuelle des réponses des systèmes (jumeaux virtuels). Cela réduit considérablement le nombre de tests expérimentaux nécessaires à la conception précise du système réel que le modèle numérique représente. Cependant, ces jumeaux virtuels, basés sur des méthodes classiques qui utilisent une représentation fine du système (ex. méthode des éléments finis), permettent rarement une rétroaction en temps réel, même dans un contexte de calcul haute performance, fonctionnant sur des plates-formes puissantes. Dans ces circonstances, les performances en temps réel requises dans certaines applications sont compromises. En effet, les jumeaux virtuels sont statiques, c'est-à-dire qu'ils sont utilisés dans la conception de systèmes complexes et de leurs composants, mais on ne s'attend pas à ce qu'ils prennent en compte ou assimilent des données afin de définir des systèmes d'application dynamiques pilotés par les données. De plus, des écarts significatifs entre la réponse observée et celle prévue par le modèle sont généralement constatés en raison de l'imprécision des modèles employés, de la détermination des paramètres du modèle ou de leur évolution dans le temps. Dans cette thèse, nous proposons di érentes méthodes pour résoudre ces handicaps afin d'effectuer une surveillance et un contrôle en temps réel. Dans la première partie, les techniques de Réduction de Modèles sont utilisées pour tenir compte des contraintes en temps réel ; elles calculent une bonne approximation de la solution en simplifiant la procédure de résolution plutôt que le modèle. La précision de la solution n'est pas compromise et des simulations e caces peuvent être réalisées (jumeaux numériquex). Dans la deuxième partie, la modélisation pilotée par les données est utilisée pour combler l'écart entre la solution paramétrique calculée, en utilisant des techniques de réduction de modèles non intrusives, et les champs mesurés, afin de rendre possibles des systèmes d'application dynamiques basés sur les données (jumeaux hybrides).
Sahki, Nassim. "Méthodologie data-driven de détection séquentielle de ruptures pour des signaux physiologiques." Electronic Thesis or Diss., Université de Lorraine, 2021. http://www.theses.fr/2021LORR0185.
Повний текст джерелаThis thesis deals the problem of change-point detection in the sequential framework where the signal is assumed to be observed in real time and the phenomenon changes from its "normal" starting state to an "abnormal" post-change state. The challenge of sequential detection is to minimize the detection delay, subject to a tolerable false alarm limit. The idea is to sequentially test for the existence of a change-point by recursively writing the detection statistic as a function of the score, which replaces the Log-Likelihood Ratio when the data distribution is unknown. The detection procedure is thus based on a recursive statistic, a detection threshold and a stopping rule. In a first work, we consider the score-CUSUM statistic and propose to evaluate the detection performance of some detection thresholds. Two thresholds come from the literature, and three new thresholds are constructed by a method based on simulation: the first is constant, the second instantaneous and the third is a dynamic "data-driven" version of the previous one. We rigorously define each of the thresholds by highlighting the different notions of the controlled false alarm risk according to the threshold. Moreover, we propose a new corrected stopping rule to reduce the false alarm rate. We then perform a simulation study to compare the different thresholds and evaluate the corrected stopping rule. We find that the conditional empirical threshold is the best to minimize the detection delay while maintaining the tolerated risk of false alarms. However, on real data, we recommend using the data-driven threshold as it is the easiest to build and use for practical implementation. In the second part, we apply our data-driven detection methodology to physiological signals, namely temporal signals recorded at the level of the upper trapezium beam of 30 subjects performing different office activities. The methodology is subject-activity dependent; it includes the on-line estimation of the signal parameters and the construction of the data-driven threshold on the start of the signal of each activity of each subject. The objective was to identify regime changes during an activity in order to assess the level of muscle solicitation and EMG signal variability, which are associated with muscle fatigue. The results obtained confirmed the ease of our methodology and the performance and practicality of the proposed data-driven threshold. Subsequently, the results allowed the characterization of each type of activity using mixed models
Rivers, Derick L. "A Graphical Analysis of Simultaneously Choosing the Bandwidth and Mixing Parameter for Semiparametric Regression Techniques." VCU Scholars Compass, 2009. http://scholarscompass.vcu.edu/etd/1896.
Повний текст джерелаDuran, Villalobos Carlos Alberto. "Run-to-run modelling and control of batch processes." Thesis, University of Manchester, 2016. https://www.research.manchester.ac.uk/portal/en/theses/runtorun-modelling-and-control-of-batch-processes(1d42c508-b96d-4ee6-96ad-ec649a199913).html.
Повний текст джерелаAyo, Babatope S. "Data-driven flight path rerouting during adverse weather: Design and development of a passenger-centric model and framework for alternative flight path generation using nature inspired techniques." Thesis, University of Bradford, 2018. http://hdl.handle.net/10454/17387.
Повний текст джерелаRafique, Muhammad T. "Monitoring, diagnostics and improvement of process performance." Thesis, Curtin University, 2009. http://hdl.handle.net/20.500.11937/1333.
Повний текст джерелаGranjal, Cruz Gonçalo Jorge. "Development and validation of a bayesian measurement technique for data-driven measurement reduction." Electronic Thesis or Diss., Ecully, Ecole centrale de Lyon, 2024. http://www.theses.fr/2024ECDL0012.
Повний текст джерелаThis work presents a complete hybrid testing methodology for assessing the flow in turbomachinery components. Focused on minimizing testing times and instrumentation requirements, the methodology strategically integrates standard experimental measurements with numerical simulations, specifically employing Multi-Fidelity Gaussian Processes, Sparse Variational Gaussian Processes, and adaptive Bayesian optimization.The methodology systematically reduces both instrumentation efforts and testing times, providing uncertainty metrics comparable to traditional methodologies. Applied initially to a benchmarked axial high-pressure compressor (H25) and afterwards to an ultra-high bypass ratio fan (ECL5 UHBR) in blind test conditions, the methodology demonstrates robustness, adaptability, and significant reductions in measurement points and testing times leading to a direct impact in experimental campaign costs.For the H25 axial compressor, the proposed framework proves capable of predicting flow fields, emphasizing the trade-off between high-fidelity measurements and mean flow prediction accuracy. The ECL5 UHBR fan blind test results validate the methodology's efficiency in aerodynamic assessments and demonstrates time savings of at least one hour per operating condition.The a priori Design of Experiments achieves at least a 50% reduction in measurements, outperforming random sampling, and effectively assists in experimental campaign planning. The In situ adaptive sampling outperforms random sampling by up to 44%, showcasing accurate detection of flow phenomena and promising applications in achieving high accuracy experimental demands. The modular and adaptable nature of the methodology positions it for broad application in both academic and industrial settings, while its exploitation opens paths to infer unmeasured flow quantities or improve performance evaluation measurements.This work introduces a paradigm shift in experimental campaign planning, optimizing measurement budgets strategically beforehand or enhancing accuracy dynamically during a campaign, emphasizing the potential of machine learning-driven trends in shaping new research paths
Darwish, Amani. "Capteur d'images événementiel, asynchrone à échantillonnage non-uniforme." Thesis, Université Grenoble Alpes (ComUE), 2016. http://www.theses.fr/2016GREAT071/document.
Повний текст джерелаIn order to overcome the challenges associated with the design of high resolution image sensors, we propose, through this thesis, an innovative asynchronous event-driven image sensor based on non-uniform sampling. The proposed image sensor aims the reduction of the data flow and its associated data processing by limiting the activity of our image sensor to the new captured information.The proposed asynchronous image sensor is based on an event-driven pixels that incorporate a non-uniform sampling crossing levels. Unlike conventional imagers, where the pixels are read systematically at each frame, the proposed event-driven pixels are only read when they hold new and relevant information. This induces a reduced and scene dependent data flow.In this thesis, we introduce a complete pixel reading sequence. Beside the event-driven pixel, the proposed reading system is designed using asynchronous logic and adapted to control and manage the flow of data from event pixels. This digital reading system overcomes the traditional difficulties encountered in the management of simultaneous requests for event pixels without degrading the resolution and fill factor of the image sensor. In addition, the proposed reading circuit significantly reduces the spatial redundancy in an image which further reduces the data flow.Finally, by combining the aspect of level crossing sampling and the proposed reading technique, we replaced the conventional analog to digital conversion of the pixel processing chain by a time-to-digital Conversion (TDC). In other words, the pixel information is coded by time. This results in an increased reduction in power consumption of the vision system, the analog-digital converter being one of the most consuming reading system of conventional image sensors components
Alabdulrahman, Rabaa. "Towards Personalized Recommendation Systems: Domain-Driven Machine Learning Techniques and Frameworks." Thesis, Université d'Ottawa / University of Ottawa, 2020. http://hdl.handle.net/10393/41012.
Повний текст джерелаHenclewood, Dwayne Anthony. "Real-time estimation of arterial performance measures using a data-driven microscopic traffic simulation technique." Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/44792.
Повний текст джерелаJose, Sagar. "Stratégies d'apprentissage multimodal pour le diagnostic et le pronostic de la santé des machines industrielles dans un contexte de manque de données." Electronic Thesis or Diss., Université de Toulouse (2023-....), 2024. http://www.theses.fr/2024TLSEP093.
Повний текст джерелаPrognostics and Health Management (PHM) with data-driven techniques is heavily dependent upon the availability of extensive and high-quality datasets, a requirement often challenging to fulfill in industrial condition monitoring environments. This discrepancy creates a significant gap between state-of-the-art PHM methodologies and their practical application in real-world scenarios. The prevailing focus in data-driven PHM research on unimodal datasets highlights the potential of multimodal data to bridge this gap.This thesis explores the integration of multimodal data to advance PHM models for industrial machines. It systematically addresses pivotal challenges such as data missingness and noise, sparse and irregular datasets, class imbalance, and the scarcity of run-to-failure data. The research develops innovative methodologies that incorporate multiple data modalities and harness domain-specific expertise to create robust predictive models.The primary contributions of this research include:1. Cross-modal attention-based learning: A new multimodal learning method is designed to mitigate the limitations posed by missing and noisy data. It allows integrating information across multiple modalities, thereby enhancing the accuracy and robustness of predictive models.2. Expert-knowledge-assisted multimodal diagnostics methodology: This methodology combines domain expertise with multimodal learning to enable comprehensive diagnostics, thereby improving fault detection and classification in industrial machinery.3. Graph-based prognostics approach: This innovative approach constructs run-to-failure trajectories from incomplete data using graph-based techniques, offering a significant advancement in failure prognostics.These methodologies were rigorously validated using both simulation and industrial dataset of hydrogenerators, demonstrating significant improvements in PHM and predictive maintenance capabilities. The results underscore the potential of multimodal data to significantly enhance the reliability and efficiency of PHM methods and algorithms.This thesis proposes a comprehensive framework for leveraging diverse data sources and domain expertise, promising to transform maintenance strategies and reducing operational costs across various industries. The findings pave the way for future research and practical implementations, positioning multimodal data integration as a pivotal advancement in the field of PHM
Oteniya, Lloyd. "Bayesian belief networks for dementia diagnosis and other applications : a comparison of hand-crafting and construction using a novel data driven technique." Thesis, University of Stirling, 2008. http://hdl.handle.net/1893/497.
Повний текст джерелаBelmar, Gil Mario. "Computational study on the non-reacting flow in Lean Direct Injection gas turbine combustors through Eulerian-Lagrangian Large-Eddy Simulations." Doctoral thesis, Universitat Politècnica de València, 2021. http://hdl.handle.net/10251/159882.
Повний текст джерела[CA] El principal desafiament als motors turbina de gas utilitzats a la aviació resideix en augmentar l'eficiència del cicle termodinàmic mantenint les emissions contaminants per davall de les rigoroses restriccions. Aquest fet comporta la necessitat de dissenyar noves estratègies d'injecció/combustió que radiquen en punts d'operació perillosos per la seva aproximació al límit inferior d'apagat de flama. En aquest context, el concepte Lean Direct Injection (LDI) sorgeix com a eina innovadora a l'hora de reduir els òxids de nitrogen (NOx) emesos per les plantes propulsores dels avions de nova generació. Sota aquest context, aquesta tesis té com a objectius contribuir al coneixement dels mecanismes físics que regeixen el comportament d'un cremador LDI i proporcionar ferramentes d'anàlisi per a una profunda caracterització de les complexes estructures de flux turbulent generades a l'interior de la càmera de combustió. Per tal de dur-ho a terme s'ha desenvolupat una metodología numèrica basada en CFD capaç de modelar el flux bifàsic no reactiu a l'interior d'un cremador LDI acadèmic mitjançant els enfocaments de turbulència U-RANS i LES en un marc Eulerià-Lagrangià. La resolució numèrica d'aquest problema multiescala s'aborda mitjançant la resolució completa del flux al llarg de tots els elements que constitueixen la maqueta experimental, incloent el seu pas pel swirler i l'entrada a la càmera de combustió. Açò es duu a terme a través de dos codis CFD que involucren estratègies de mallat diferents: una basada en la generación automàtica de la malla i en l'algoritme de refinament adaptatiu (AMR) amb CONVERGE i l'altra que es basa en una tècnica de mallat estàtic més tradicional amb OpenFOAM. D'una banda, s'ha definit una metodologia per tal d'obtindre una estrategia de mallat òptima mitjançant l'ús de l'AMR i s'han explotat els seus beneficis front als enfocaments tradicionals de malla estàtica. D'aquesta forma, s'ha demostrat que l'aplicabilitat de les ferramente de control de malla disponibles en CONVERGE com el refinament fixe (fixed embedding) i l'AMR són una opció molt interessant per tal d'afrontar aquest tipus de problemes multiescala. Els resultats destaquen una optimització de l'ús dels recursos computacionals i una major precisió en les simulacions realitzades amb la metodologia presentada. D'altra banda, l'ús d'eines CFD s'ha combinat amb l'aplicació de tècniques de descomposició modal avançades (Proper Orthogonal Decomposition and Dynamic Mode Decomposition). La identificació numèrica dels principals modes acústics a la càmera de combustió ha demostrat el potencial d'aquestes ferramentes al permetre caracteritzar les estructures de flux coherents generades com a conseqüència del trencament dels vòrtex (VBB) i dels raigs fortament arremolinats presents al cremador LDI. A més, la implantació d'estos procediments matemàtics ha permès recuperar informació sobre les característiques de la dinàmica del flux i proporcionar un enfocament sistemàtic per tal d'identificar els principals mecanismes que sustenten les inestabilitats a la càmera de combustió. Finalment, la metodologia validada ha sigut explotada a traves d'un Diseny d'Experiments (DoE) per tal de quantificar la influència dels factors crítics de disseny en el flux no reactiu. D'aquesta manera, s'ha avaluat la contribución individual d'alguns paràmetres funcionals (el nombre de pales del swirler, l'angle de les pales, l'amplada de la càmera de combustió i la posició axial de l'orifici de l'injector) en els patrons del camp fluid, la distribució de la mida de gotes del combustible líquid i l'aparició d'inestabilitats en la càmera de combustió mitjançant una matriu ortogonal L9 de Taguchi. Aquest estudi estadístic és un bon punt de partida per a futurs estudis de injecció, atomització i combustió en cremadors LDI.
[EN] Aeronautical gas turbine engines present the main challenge of increasing the efficiency of the cycle while keeping the pollutant emissions below stringent restrictions. This has led to the design of new injection-combustion strategies working on more risky and problematic operating points such as those close to the lean extinction limit. In this context, the Lean Direct Injection (LDI) concept has emerged as a promising technology to reduce oxides of nitrogen (NOx) for next-generation aircraft power plants In this context, this thesis aims at contributing to the knowledge of the governing physical mechanisms within an LDI burner and to provide analysis tools for a deep characterisation of such complex flows. In order to do so, a numerical CFD methodology capable of reliably modelling the 2-phase nonreacting flow in an academic LDI burner has been developed in an Eulerian-Lagrangian framework, using the U-RANS and LES turbulence approaches. The LDI combustor taken as a reference to carry out the investigation is the laboratory-scale swirled-stabilised CORIA Spray Burner. The multi-scale problem is addressed by solving the complete inlet flow path through the swirl vanes and the combustor through two different CFD codes involving two different meshing strategies: an automatic mesh generation with adaptive mesh refinement (AMR) algorithm through CONVERGE and a more traditional static meshing technique in OpenFOAM. On the one hand, a methodology to obtain an optimal mesh strategy using AMR has been defined, and its benefits against traditional fixed mesh approaches have been exploited. In this way, the applicability of grid control tools available in CONVERGE such as fixed embedding and AMR has been demonstrated to be an interesting option to face this type of multi-scale problem. The results highlight an optimisation of the use of the computational resources and better accuracy in the simulations carried out with the presented methodology. On the other hand, the use of CFD tools has been combined with the application of systematic advanced modal decomposition techniques (i.e., Proper Orthogonal Decomposition and Dynamic Mode Decomposition). The numerical identification of the main acoustic modes in the chamber have proved their potential when studying the characteristics of the most powerful coherent flow structures of strongly swirled jets in a LDI burner undergoing vortex breakdown (VBB). Besides, the implementation of these mathematical procedures has allowed both retrieving information about the flow dynamics features and providing a systematic approach to identify the main mechanisms that sustain instabilities in the combustor. Last, this analysis has also allowed identifying some key features of swirl spray systems such as the complex pulsating, intermittent and cyclical spatial patterns related to the Precessing Vortex Core (PVC). Finally, the validated methodology is exploited through a Design of Experiments (DoE) to quantify the influence of critical design factors on the non-reacting flow. In this way, the individual contribution of some functional parameters (namely the number of swirler vanes, the swirler vane angle, the combustion chamber width and the axial position of the nozzle tip) into both the flow field pattern, the spray size distribution and the occurrence of instabilities in the combustion chamber are evaluated throughout a Taguchi's orthogonal array L9. Such a statistical study has supposed a good starting point for subsequent studies of injection, atomisation and combustion on LDI burners.
Belmar Gil, M. (2020). Computational study on the non-reacting flow in Lean Direct Injection gas turbine combustors through Eulerian-Lagrangian Large-Eddy Simulations [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/159882
TESIS
Teng, Sin Yong. "Intelligent Energy-Savings and Process Improvement Strategies in Energy-Intensive Industries." Doctoral thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2020. http://www.nusl.cz/ntk/nusl-433427.
Повний текст джерелаSamal, K. Krishna Rani. "Exploring Deep Learning Techniques for Data-driven Air Quality Modeling and Forecasting." Thesis, 2022. http://ethesis.nitrkl.ac.in/10415/1/2022_PhD_KKRSamal_517CS6019_Exploring.pdf.
Повний текст джерелаCernaut, Oana-Maria. "Customer targeting models using data mining techniques." Master's thesis, 2019. http://hdl.handle.net/10773/30010.
Повний текст джерелаMestrado em Marketing
Amorim, Inês Oliveira. "Analytical CRM in a management consulting firm : an application of data driven techniques." Master's thesis, 2021. http://hdl.handle.net/10400.14/34745.
Повний текст джерелаConsiderando o ambiente competitivo em que as empresas operam atualmente e a importância do customer relationship management (CRM), é crucial analisar os dados relacionados com clientes para adquirir mais conhecimento e obter importantes insights sobre os mesmos, a fim de aumentar a sua retenção e o desempenho da empresa. A investigação apresentada resultou de um estágio curricular realizado na empresa Inova+, uma consultora especializada no apoio ao crescimento de organizações. Neste sentido, o objetivo desta investigação visa apoiar o sistema CRM e as estratégias de gestão de clientes da Inova+, contribuindo para a melhoria e fortalecimento das relações entre a empresa e os seus clientes. Para esse efeito, uma metodologia quantitativa utilizando ferramentas analíticas, nomeadamente ferramentas de data mining, foi adotada para estudar várias dimensões do CRM. Neste contexto, esta investigação focou-se em quatro aspetos principais em análise, que permitiram obter um conhecimento mais detalhado sobre os clientes da empresa. Inicialmente, a observação de KPIs relativos ao CRM e ao desempenho da empresa através da construção de dashboards. Em segundo lugar, foi aplicado um modelo de previsão de séries temporais relativo ao volume de negócios potencial. Adicionalmente, foram identificados segmentos de clientes de acordo com o seu comportamento de compra através da aplicação de um modelo RFM e foi desenvolvida uma análise de clustering. Por fim, foram identificados fatores significativos que influenciam a probabilidade de adjudicação de uma proposta comercial, tais como o país, tipo de organização e setor económico da empresa cliente, bem como o serviço associado.
Zhao, Ming. "Iterative Receiver Techniques for Data-Driven Channel Estimation and Interference Mitigation in Wireless Communications." Phd thesis, 2009. http://hdl.handle.net/1885/8033.
Повний текст джерелаOVIEDO, HERNANDEZ GUILLERMO. "Improving the quality of PV plant performance analysis by increasing data integrity and reliability: a data-driven approach using Machine Learning techniques." Doctoral thesis, 2021. http://hdl.handle.net/11573/1587657.
Повний текст джерелаSong, Lixing. "Adaptive wireless rate control driven by highly fine-grained channel assessment." 2014. http://liblink.bsu.edu/uhtbin/catkey/1749603.
Повний текст джерелаBackground : a survey for rate adaptation -- ABEP metric and channell assessment -- ABEP-based adaptive rate control -- Performance evaluation.
Access to thesis permanently restricted to Ball State community only.
Department of Computer Science