Добірка наукової літератури з теми "Cytosolic export"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Cytosolic export".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Cytosolic export"
Banerjee, Tuhina, Lucia Cilenti, Michael Taylor, Adrienne Showman, Suren A. Tatulian, and Ken Teter. "Thermal Unfolding of the Pertussis Toxin S1 Subunit Facilitates Toxin Translocation to the Cytosol by the Mechanism of Endoplasmic Reticulum-Associated Degradation." Infection and Immunity 84, no. 12 (September 19, 2016): 3388–98. http://dx.doi.org/10.1128/iai.00732-16.
Повний текст джерелаKoszinowski, U. "Emptying pandora's box: cytosolic export and MHC degradation." Trends in Microbiology 4, no. 9 (September 1996): 338–39. http://dx.doi.org/10.1016/0966-842x(96)30025-5.
Повний текст джерелаKehlenbach, Ralph H., Achim Dickmanns, and Larry Gerace. "Nucleocytoplasmic Shuttling Factors Including Ran and CRM1 Mediate Nuclear Export of NFAT In Vitro." Journal of Cell Biology 141, no. 4 (May 18, 1998): 863–74. http://dx.doi.org/10.1083/jcb.141.4.863.
Повний текст джерелаPandey, Alok, Jayashree Pain, Nathaniel Dziuba, Ashutosh K. Pandey, Andrew Dancis, Paul A. Lindahl, and Debkumar Pain. "Mitochondria Export Sulfur Species Required for Cytosolic tRNA Thiolation." Cell Chemical Biology 25, no. 6 (June 2018): 738–48. http://dx.doi.org/10.1016/j.chembiol.2018.04.002.
Повний текст джерелаEhrnsberger, Hans F., Marion Grasser, and Klaus D. Grasser. "Nucleocytosolic mRNA transport in plants: export factors and their influence on growth and development." Journal of Experimental Botany 70, no. 15 (April 11, 2019): 3757–63. http://dx.doi.org/10.1093/jxb/erz173.
Повний текст джерелаHolaska, James M., Ben E. Black, Dona C. Love, John A. Hanover, John Leszyk, and Bryce M. Paschal. "Calreticulin Is a Receptor for Nuclear Export." Journal of Cell Biology 152, no. 1 (January 8, 2001): 127–40. http://dx.doi.org/10.1083/jcb.152.1.127.
Повний текст джерелаTolerico, Leslie H., Ann L. Benko, John P. Aris, David R. Stanford, Nancy C. Martin, and Anita K. Hopper. "Saccharomyces cerevisiae Mod5p-II Contains Sequences Antagonistic for Nuclear and Cytosolic Locations." Genetics 151, no. 1 (January 1, 1999): 57–75. http://dx.doi.org/10.1093/genetics/151.1.57.
Повний текст джерелаOng, Yan Shan, Bor Luen Tang, Li Shen Loo, and Wanjin Hong. "p125A exists as part of the mammalian Sec13/Sec31 COPII subcomplex to facilitate ER-Golgi transport." Journal of Cell Biology 190, no. 3 (August 2, 2010): 331–45. http://dx.doi.org/10.1083/jcb.201003005.
Повний текст джерелаDuerden, J. M., and G. F. Gibbons. "Storage, mobilization and secretion of cytosolic triacylglycerol in hepatocyte cultures. The role of insulin." Biochemical Journal 272, no. 3 (December 15, 1990): 583–87. http://dx.doi.org/10.1042/bj2720583.
Повний текст джерелаBasu, Somsuvro, Joanne C. Leonard, Nishal Desai, Despoina A. I. Mavridou, Kong Ho Tang, Alan D. Goddard, Michael L. Ginger, Julius Lukeš, and James W. A. Allen. "Divergence of Erv1-Associated Mitochondrial Import and Export Pathways in Trypanosomes and Anaerobic Protists." Eukaryotic Cell 12, no. 2 (December 21, 2012): 343–55. http://dx.doi.org/10.1128/ec.00304-12.
Повний текст джерелаДисертації з теми "Cytosolic export"
Gros, Marine. "Rôle du complexe ESCRT-III dans l'export cytosolique des antigènes au cours de la présentation croisée par les cellules dendritiques." Thesis, Université Paris Cité, 2019. https://wo.app.u-paris.fr/cgi-bin/WebObjects/TheseWeb.woa/wa/show?t=2112&f=21263.
Повний текст джерелаDendritic cells (DCs) play a central role in immune homeostasis by linking innate signals to adaptive responses. In addition to their capacity to expose exogenous antigens on Major Histocompatibility Complex (MHC) class II molecules or endogenous antigens (derived from self or viral proteins) on MHC class I, they also show a remarkable ability to take-up, process and present extracellular antigens on MHC class I molecules. This process, termed Cross-Presentation (CP) plays a critical role in eliciting Cytotoxic T Cell responses to tumors and pathogens that do not readily infect DCs. So far, two main intracellular pathways have been described for CP, namely the vacuolar and the cytosolic pathways, the latter being predominant in CD8+ DC at homeostasis. The first step of the cytosolic pathway resides in the phagocytosis of exogenous antigens that are subsequently exported into the cytosol, where they are processed by the proteasome. The resulting processed antigens can then be channeled through the TAP transporter into the endoplasmic reticulum or into intracellular compartments where they are loaded on MHC class I. While the contributions of the proteasome and TAP transporter to this process are now well established, the way endocytosed antigens gain access to the cytosol remains unclear and is a long-standing matter of controversy, that confronts two main models: transfer through specific transporters or rupture of endocytic membranes and leakage of luminal content. Although the latter hypothesis has been repeatedly dismissed owing to its presumable lack of control, we reasoned that it could only be operational if membrane damages were contained by effective repair, to preserve cell survival. My PhD work thereby focused on the possible implication of the ESCRT-III (Endosomal Sorting Complex Required for Transport) complex, the main repair system for biological membranes, in antigen export to the cytosol during antigen CP by DCs. We showed that CD8+ DCs, corresponding to the most efficient exporting and cross-presenting DC subset, display higher amounts to intracellular damages triggered by a lysosomotropic drug, compared to their CD11b+ counterparts. This increased susceptibility to intracellular damages in CD8+ DCs correlates with the observed enriched recruitment of ESCRT-III subunits in this DC subset's endocytic compartments, relatively to CD11b+ DCs. Additionally, in a CD8+ DC cell line, silencing of Chmp2a or Chmp4b, two effector subunits of ESCRT-III, enhances cytosolic antigen export, as well as in vitro and in vivo CP, without affecting MHC-II presentation. Finally, in the light of recent studies demonstrating that ESCRT-III is repairing steady-state necroptotic damages formed by channels of phospho-MLKL octamers, we studied interactions between the induction of necroptosis and export to the cytosol in ESCRT-III-silenced cells. We supposed that, in absence of a functional repair system, MLKL channels could persist at biological membranes (plasma or endocytic) and result in increased membrane permeability, possibly explaining the increased antigen export phenotype displayed by ESCRT-III-silenced cells. Indeed, following pharmacological inhibition of RIPK3, the kinase phosphorylating MLKL, we observed a strong reduction of antigen export to the cytosol in ESCRT-III-deficient DCs. Altogether, these results show a critical role for membrane repair in containing cytosolic antigen export and CP in DCs. They identify a new fundamental cellular mechanism involved in antigen CP and strengthen the idea that antigens are exiting intracellular compartments following membrane disruption, rather than through transporters. The discovery of the functional relevance of ESCRT-III in a key immunological pathway illustrates the fascinating co-option of ancestral cellular mechanisms present in early eukaryotes in new crucial functions specifically carried by higher vertebrates, such as the induction of adaptive immune responses
BASU, Somsuvro. "Erv1 associated mitochondrial import-export pathway and the cytosolic iron-sulfur protein assembly machinery in Trypanosoma brucei." Doctoral thesis, 2014. http://www.nusl.cz/ntk/nusl-175336.
Повний текст джерелаЧастини книг з теми "Cytosolic export"
Vivar, Omar I., Joao G. Magalhaes, and Sebastian Amigorena. "Measurement of Export to the Cytosol in Dendritic Cells Using a Cytofluorimetry-Based Assay." In Methods in Molecular Biology, 183–88. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-3606-9_13.
Повний текст джерелаHopper, Anita K. "Role of Ran GTPase in RNA Processing and Export of RNA from the Nucleus to the Cytosol: Insights from Budding Yeast." In The Small GTPase Ran, 33–58. Boston, MA: Springer US, 2001. http://dx.doi.org/10.1007/978-1-4615-1501-2_3.
Повний текст джерелаBose, Diptiman D. "Store-Operated Calcium Entry Channels." In Emerging Applications, Perspectives, and Discoveries in Cardiovascular Research, 53–72. IGI Global, 2017. http://dx.doi.org/10.4018/978-1-5225-2092-4.ch004.
Повний текст джерелаЗвіти організацій з теми "Cytosolic export"
Olszewski, Neil, and David Weiss. Role of Serine/Threonine O-GlcNAc Modifications in Signaling Networks. United States Department of Agriculture, September 2010. http://dx.doi.org/10.32747/2010.7696544.bard.
Повний текст джерелаBlumwald, Eduardo, and Avi Sadka. Citric acid metabolism and mobilization in citrus fruit. United States Department of Agriculture, October 2007. http://dx.doi.org/10.32747/2007.7587732.bard.
Повний текст джерела