Дисертації з теми "CYCLE GAS TURBINE"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-50 дисертацій для дослідження на тему "CYCLE GAS TURBINE".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.
Betelmal, Entesar Hassan. "Thermo-economic study of gas turbine-absorption cogeneration cycle." Thesis, University of Newcastle Upon Tyne, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.417545.
Повний текст джерелаHou, Yu 1963 Carleton University Dissertation Engineering Aerospace. "Cycle analysis of intercooled and regenerative naval gas turbine." Ottawa.:, 1993.
Знайти повний текст джерелаParmar, J. "Turbine inlet temperature measurement for control and diagnosis in combined cycle gas turbine." Thesis, Cranfield University, 2002. http://dspace.lib.cranfield.ac.uk/handle/1826/11053.
Повний текст джерелаKandamby, Naminda Harisinghe. "Mathematical modelling of gasifier fuelled gas turbine combustors." Thesis, Imperial College London, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.267305.
Повний текст джерелаPradeepkumar, K. N. "Analysis of a 115MW, 3 shaft, helium Brayton cycle." Thesis, Cranfield University, 2002. http://dspace.lib.cranfield.ac.uk/handle/1826/9219.
Повний текст джерелаSchutte, Jeffrey Scott. "Simultaneous multi-design point approach to gas turbine on-design cycle analysis for aircraft engines." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/28169.
Повний текст джерелаCommittee Chair: Mavris, Dimitri; Committee Member: Gaeta, Richard; Committee Member: German, Brian; Committee Member: Jones, Scott; Committee Member: Schrage, Daniel; Committee Member: Tai, Jimmy.
Janikovic, Jan. "Gas turbine transient performance modeling for engine flight path cycle analysis." Thesis, Cranfield University, 2010. http://dspace.lib.cranfield.ac.uk/handle/1826/7894.
Повний текст джерелаSampath, Suresh. "Fault diagnostics for advanced cycle marine gas turbine using genetic algorithm." Thesis, Cranfield University, 2003. http://dspace.lib.cranfield.ac.uk/handle/1826/10204.
Повний текст джерелаSantos, Ana Paula Pereira dos. "Thermodynamic analysis of gas turbine cycle using inlet air cooling methods." Instituto Tecnológico de Aeronáutica, 2012. http://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=2024.
Повний текст джерелаGhasemi, Milad, Hassan Hammodi, and Sigaroodi Homan Moosavi. "Parallel-Powered Hybrid Cycle with Superheating “Partially” by Gas Turbine Exhaust." Thesis, Högskolan i Gävle, Avdelningen för bygg- energi- och miljöteknik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-16395.
Повний текст джерелаMoxon, Matthew. "Thermodynamic analysis of the Brayton-cycle gas turbine under equilibrium chemistry assumptions." Thesis, Cranfield University, 2011. http://dspace.lib.cranfield.ac.uk/handle/1826/9237.
Повний текст джерелаHerraiz, Palomino Laura. "Selective exhaust gas recirculation in combined cycle gas turbine power plants with post-combustion carbon capture." Thesis, University of Edinburgh, 2017. http://hdl.handle.net/1842/23460.
Повний текст джерелаMalhotra, Vaibhav. "Life cycle cost analysis of a novel cooling and power gas turbine engine." [Gainesville, Fla.] : University of Florida, 2005. http://purl.fcla.edu/fcla/etd/UFE0011865.
Повний текст джерелаEllis, William J. "Control of combustion zone soot formation in a semi-closed cycle gas turbine." [Gainesville, Fla.] : University of Florida, 2008. http://purl.fcla.edu/fcla/etd/UFE0022852.
Повний текст джерелаDechamps, P. J. Th. "Technical and economical considerations on repowering a steam cycle with a gas turbine." Thesis, Cranfield University, 1990. http://hdl.handle.net/1826/3478.
Повний текст джерелаArvesen, Oystein, and Vegard Gjelsvik Medbø. "Valuation of a Combined Cycle Gas Turbine : under price uncertainty and operational constraints." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for industriell økonomi og teknologiledelse, 2012. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-21056.
Повний текст джерелаCodeceira, Neto Alcides. "Assessment of novel power generation systems for the biomass industry." Thesis, Cranfield University, 1999. http://hdl.handle.net/1826/3448.
Повний текст джерелаMontero, Carrero Marina. "Decoupling heat and electricity production from micro gas turbines: numerical, experimental and economic analysis of the micro humid air turbine cycle." Doctoral thesis, Universite Libre de Bruxelles, 2018. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/271492.
Повний текст джерелаDoctorat en Sciences de l'ingénieur et technologie
info:eu-repo/semantics/nonPublished
Jayasinghe, Prabodha. "Development of a tool for simulating performance of sub systems of a combined cycle power plant." Thesis, KTH, Energiteknik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-99164.
Повний текст джерелаKadáková, Nina. "Návrh paroplynového zdroje elektřiny." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2020. http://www.nusl.cz/ntk/nusl-417426.
Повний текст джерелаLiang, Hua. "Viability of stirling-based combined cycle distributed power generation." Ohio : Ohio University, 1998. http://www.ohiolink.edu/etd/view.cgi?ohiou1176484842.
Повний текст джерелаIhiabe, Daniel. "Assessing biomass-fired gas turbine power plants : a techno-economic and environmental perspective." Thesis, Cranfield University, 2013. http://dspace.lib.cranfield.ac.uk/handle/1826/8451.
Повний текст джерелаGonzalez, Diaz Abigail. "Sequential supplementary firing in natural gas combined cycle plants with carbon capture for enhanced oil recovery." Thesis, University of Edinburgh, 2016. http://hdl.handle.net/1842/20483.
Повний текст джерелаWasantakorn, Aran. "Efficient power generation by integrating a MSW incinerator with a combined cycle gas turbine plant." Thesis, University of Sheffield, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.369938.
Повний текст джерелаGopalakrishna, Sandeep. "Investigation of solar applicable gas cycles." Thesis, Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/51734.
Повний текст джерелаBufi, Elio Antonio. "Optimisation robuste de turbines pour les cycles organiques de Rankine (ORC)." Thesis, Paris, ENSAM, 2016. http://www.theses.fr/2016ENAM0070/document.
Повний текст джерелаIn recent years, the Organic Rankine Cycle (ORC) technology has received great interest from the scientific and technical community because of its capability to recover energy from low-grade heat sources. In some applications, as the Waste Heat Recovery (WHR), ORC plants need to be as compact as possible because of geometrical and weight constraints. Recently, these issues have been studied in order to promote the ORC technology for Internal Combustion Engine (ICE) applications. The idea to recover this residual energy is not new and the 1970s energy crisis encouraged the development of feasible ORC small-scale plants (1-10 kWe). Due to the molecular complexity of the working fluids, strong real gas effects have to be taken into account because of the high pressures and densities, if compared to an ideal gas. In these conditions the fluid is known as dense gas. Dense gases are defined as single phase vapors, characterized by complex molecules and moderate to large molecular weights. The role of dense gas dynamics in transonic internal flows has been widely studied for its importance in turbomachinery applications involved in low-grade energy exploitation, such as the ORC. Recently, the attention has been focused on axial turbines, which minimize the system size, if compared with radial solutions at the same pressure ratios and enthalpy drops. In this work, a novel design methodology for supersonic ORC axial impulse turbine stages is proposed. It consists in a fast, accurate two-dimensional design which is carried out for the mean-line stator and rotor blade rows of a turbine stage by means of a method of characteristic (MOC) extended to a generic equation of state. The viscous effects are taken into account by introducing a proper turbulent compressible boundary layer correction to the inviscid design obtained with MOC. Since proposed heat sources for ORC turbines typically include variable energy sources such as WHR from industrial processes or automotive applications, as a result, to improve the feasibility of this technology, the resistance to variable input conditions is taken into account. The numerical optimization under uncertainties is called Robust Optimization (RO) and it overcomes the limitation of deterministic optimization that neglects the effect of uncertainties in design variables and/or design parameters. To measure the robustness of a new design, statistics such as mean and variance (or standard deviation) of a response are calculated in the RO process. In this work, the MOC design of supersonic ORC nozzle blade vanes is used to create a baseline injector shape. Subsequently, this is optimized through a RO loop. The stochastic optimizer is based on a Bayesian Kriging model of the system response to the uncertain parameters, used to approximate statistics of the uncertain system output, coupled to a multi-objective non-dominated sorting genetic algorithm (NSGA). An optimal shape that maximizes the mean and minimizes the variance of the expander isentropic efficiency is searched. The isentropic efficiency is evaluated by means of RANS (Reynolds Average Navier-Stokes) simulations of the injector. The fluid thermodynamic behavior is modelled by means of the well-known Peng-Robinson-Stryjek-Vera equation of state. The blade shape is parametrized by means of a Free Form Deformation approach. In order to speed-up the RO process, an additional Kriging model is built to approximate the multi-objective fitness function and an adaptive infill strategy based on the Multi Objective Expected Improvement for the individuals is proposed in order to improve the surrogate accuracy at each generation of the NSGA. The robustly optimized ORC expander shape is compared to the results provided by the MOC baseline shape and the injector designed by means of a standard deterministic optimizer
Petrov, Miroslav. "Biomass and Natural Gas Hybrid Combined Cycles." Licentiate thesis, KTH, Energy Technology, 2003. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-1660.
Повний текст джерелаBiomass is one of the main natural resources in Sweden.Increased utilisation of biomass for energy purposes incombined heat and power (CHP) plants can help the country meetits nuclear phase-out commitment. The present low-CO2 emissioncharacteristics of the Swedish electricity production system(governed by hydropower and nuclear power) can be retained onlyby expansion of biofuels in the CHP sector. Domestic Swedishbiomass resources are vast and renewable, but not infinite.They should be utilised as efficiently as possible in order tomeet the conditions for sustainability in the future.Application of efficient power generation cycles at low cost isessential for meeting this challenge. This applies also tomunicipal solid waste (MSW) incineration with energyextraction, which is to be preferred to landfilling.
Modern gas turbines and internal combustion engines firedwith natural gas have comparatively low installation costs,good efficiency characteristics and show reliable performancein power applications. Environmental and source-of-supplyfactors place natural gas at a disadvantage as compared tobiofuels. However, from a rational perspective, the use ofnatural gas (being the least polluting fossil fuel) togetherwith biofuels contributes to a diverse and more secure resourcemix. The question then arises if both these fuels can beutilised more efficiently if they are employed at the samelocation, in one combined cycle unit.
The work presented herein concentrates on the hybriddual-fuel combined cycle concept in cold-condensing and CHPmode, with a biofuel-fired bottoming steam cycle and naturalgas fired topping gas turbine or engine. Higher electricalefficiency attributable to both fuels is sought, while keepingthe impact on environment at a low level and incorporating onlyproven technology with standard components. The study attemptsto perform a generalized and systematic evaluation of thethermodynamic advantages of various hybrid configurations withthe help of computer simulations, comparing the efficiencyresults to clearly defined reference values.
Results show that the electrical efficiency of hybridconfigurations rises with up to 3-5 %-points in cold-condensingmode (up to 3 %-points in CHP mode), compared to the sum of twosingle-fuel reference units at the relevant scales, dependingon type of arrangement and type of bottoming fuel. Electricalefficiency of utilisation of the bottoming fuel (biomass orMSW) within the overall hybrid configuration can increase withup to 8-10 %-points, if all benefits from the thermalintegration are assigned to the bottoming cycle and effects ofscale on the reference electrical efficiency are accounted for.All fully-fired (windbox) configurations show advantages of upto 4 %-points in total efficiency in CHP mode with districtheating output, when flue gas condensation is applied. Theadvantages of parallel-powered configurations in terms of totalefficiency in CHP mode are only marginal. Emissions offossil-based CO2 can be reduced with 20 to 40 kg CO2/MWhel incold-condensing mode and with 5-8 kg CO2 per MWh total outputin CHP mode at the optimum performance points.
Keywords: Biomass, Municipal Solid Waste (MSW), Natural Gas,Simulation, Hybrid, Combined Cycle, Gas Turbine, InternalCombustion Engine, Utilization, Electrical Efficiency, TotalEfficiency, CHP.
Thorud, Bjørn. "Dynamic Modelling and Characterisation of a Solid Oxide Fuel Cell Integrated in a Gas Turbine Cycle." Doctoral thesis, Norwegian University of Science and Technology, Department of Energy and Process Engineering, 2005. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-660.
Повний текст джерелаThis thesis focuses on three main areas within the field of SOFC/GT-technology:
• Development of a dynamic SOFC/GT model
• Model calibration and sensitivity study
• Assessment of the dynamic properties of a SOFC/GT power plant
The SOFC/GT model developed in this thesis describes a pressurised tubular Siemens Westinghouse-type SOFC, which is integrated in a gas turbine cycle. The process further includes a plate-fin recuperator for stack air preheating, a prereformer, an anode exhaust gas recycling loop for steam/carbon-ratio control, an afterburner and a shell-tube heat exchanger for air preheating. The fuel cell tube, the recuperator and the shell-tube heat exchanger are spatially distributed models. The SOFC model is further thermally integrated with the prereformer. The compressor and turbine models are based on performance maps as a general representation of the characteristics. In addition, a shaft model which incorporates moment of inertia is included to account for gas turbine transients.
The SOFC model is calibrated against experimentally obtained data from a single-cell experiment performed on a Siemens Westinghouse tubular SOFC. The agreement between the model and the experimental results is good. The sensitivity study revealed that the degree of prereforming is of great importance with respect to the axial temperature distribution of the fuel cell.
Types of malfunctions are discussed prior to the dynamic behaviour study. The dynamic study of the SOFC/GT process is performed by simulating small and large load changes according to three different strategies;
• Load change at constant mean fuel cell temperature
• Load change at constant turbine inlet temperature
• Load change at constant shaft speed
Of these three strategies, the constant mean fuel cell temperature strategy appears to be the most rapid load change method. Furthermore, this strategy implies the lowest degree of thermal cycling, the smoothest fuel cell temperature distribution and the lowest current density at part-load. Thus, this strategy represents the overall lowest risk with respect to system malfunctions and degradation. In addition, the constant mean fuel cell temperature strategy facilitates high efficiency part-load operation. The constant turbine inlet temperature strategy proved to lead to unstable operation at low load, and thus it is considered to be the least adequate method for load change. For both the constant mean fuel cell temperature strategy and the constant TIT strategy, surge might be a problem for very large load reductions. The slowest response to load changes was found for the constant shaft speed strategy. Furthermore, this strategy leads to very low fuel cell temperatures at low loads. This in combination with a possible higher degradation rate makes the constant shaft speed strategy unsuited for large load variations. Nevertheless, operation at constant shaft speed may be facilitated by air bypass, VIGV or compressor blow off.
Paper I is published with kind permission of Elsevier, Sciencedirect.com
Douglas, Mary Elizabeth. "Cost analysis and balance-of-plant of a solid oxide fuel cell/gas turbine combined cycle." Thesis, Georgia Institute of Technology, 2003. http://hdl.handle.net/1853/17960.
Повний текст джерелаDuoÌ, Pierangelo. "A predictive study of foreign object damage in gas turbine compressor blades under high cycle fatigue." Thesis, University of Oxford, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.418633.
Повний текст джерелаÖijerholm, Mikael. "Aspects of the choice of sampling frequency in the control system of a gas turbine." Thesis, Linköping University, Linköping University, Automatic Control, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-17678.
Повний текст джерелаAt Siemens, plcs are used to control the gas turbines, and to execute the code in the plcs cyclic interrupts are used. If the execution time for the interrupt becomes close to the cyclic time of the interrupt the load of the plc increases. High load levels can lead to situations were segments of code are not executed on time or even not executed at all. In this thesis an analysis of the regulators used to govern a gas turbine has been performed. The purpose of the analysis is to study the performance of the regulators for different cycle times with the aim to be able to reduce the load by sampling more slowly.
To determine the load contribution from each regulator a review of the regulators and their execution times has been made. For the analysis the Matlab program Simulink has been used to make models of the regulators, which have then been sampled at different rates. With this information it is possible to determine for which cycle times each regulator has accepetable performance and how much load each regulator contributes with. A save of load of approximately 2 percent can be obtained without loosing too much performance.
Kysel, Stanislav. "Energetický paroplynový zdroj na bázi spalování hutnických plynů." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2011. http://www.nusl.cz/ntk/nusl-229801.
Повний текст джерелаKysel, Stanislav. "Energetický paroplynový zdroj na bázi spalování hutnických plynů." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2012. http://www.nusl.cz/ntk/nusl-230245.
Повний текст джерелаMogawer, Tamer [UNESP]. "Analise técnica e econômica para seleção de sistemas de cogeração em ciclo combinado." Universidade Estadual Paulista (UNESP), 2005. http://hdl.handle.net/11449/99343.
Повний текст джерелаUniversidade Estadual Paulista (UNESP)
O setor elétrico brasileiro vem continuamente passando por crises energéticas; os consumidores, indústrias que dependem de energia para exercerem as suas atividades passaram a valorizar e a buscar fontes alternativas, confiáveis e ecologicamente adequadas com o objetivo de garantir o fornecimento de eletricidade de forma econômica, possibilitando desta maneira uma certa independência energética. Neste contexto, este trabalho tem a finalidade de selecionar sistemas de cogeração utilizando ciclos combinados com conjuntos a gás associadas a caldeira de recuperação sem queima suplementar e turbina a vapor, assim como realizar o levantamento das curvas de produção de energia e eficiência para os ciclos obtidos. Foram utilizados os parâmetros técnicos e construtivos das turbinas a gás e a vapor de uma mesma empresa fabricante, e através das curvas obtidas é possível selecionar o ciclo combinado mais adequado para cada situação desejada, tanto do ponto de vista energético quanto do ponto de vista econômico.
The electric Brazilian sector is continually subject to energy crisis, the industrial consumers, that depends on energy to do its activities, is nowadays up to valorize and to look for alternative, trustful and environmental appropriate sources with the objective of guaranteeing the supply of electricity in an economic way and warranting a certain energy independence. In this context, this work has the purpose of selecting cogeneration systems based on using combined cycles with gas turbines associated to heat recovery steam generators without supplementary burners and steam turbines, as well as accomplishing the rising of the curves of production of energy and efficiency for the obtained cycles. The technical and constructive parameters of the gas and steam turbines were considered from the same manufacturing company, and through the obtained curves it is possible to select the more appropriate cycle for each process requirement, in the energy and economic point of view.
Bhatt, Dhruv. "Economic Dispatch of the Combined Cycle Power Plant Using Machine Learning." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-266110.
Повний текст джерелаKombicykelkraftverk spelar en nyckelroll i det moderna elsystemet pågrund av den låga investeringskostnaden, den korta tiden för att byggaett nytta kraftverk och hög flexibilitet jämfört med andra kraftverk.Elproduktionssystemen förändras i takt med en allt större andel förnybarelproduktion. Det som en gång var ett tydligt definierat flödefrån produktion via transmission till distribution ändrar nu karaktärtill fluktuerande, distribuerad generering. På grund av variationernai elproduktion från förnybara energikällor finns ett ökat behov avatt kombicykelkraftverk varierar sin elproduktion för att upprätthållabalansen mellan produktion och konsumtion i systemet. Kombicykelkraftverkbehöver startas och stoppas oftare. Detta medför mer stresspå gasturbinen och som ett resultat påverkas underhållsintervallerna.Syftet med detta examensarbete är att utveckla en algoritm för korttidsplaneringav ett kombicykelkraftverk där även driften på lång siktbeaktas. Begränsningarna på lång sikt utgår från underhållsintervallenför gasturbinerna. Dessa långsiktiga begränsningar definieras som antaletekvivalenta drifttimmar och ekvivalenta driftcykler för det aktuellakraftverket. Kombikraftverket drivs på den öppna elmarknaden.Det består av två SGT-800 GT och en SST-600 ångturbin. Det främstamålet med examensarbetet är att maximera den totala vinsten förkraftverket. Ett sekundärt mål är att utveckla metamodeller för attskatta använda ekvivalenta drifttimmar och ekvivalenta driftcyklerunder planeringsperioden.Siemens Industrial Turbo-machinery AB (SIT AB) har installeratsensorer som samlar in data från gasturbinerna. Maskininlärningsteknikerhar tillämpats på sensordata för att konstruera kurvor för attuppskatta värmetillförseln och avgasvärme. Resultaten visar en potentiellbesparing i bränsleförbrukningen om de sammanlagda ekvivalentadrifttimmarna och de sammanlagda ekvivalenta driftcyklernabegränsas under planeringsperioden. Det framhålls dock också att detfinns viktiga förbättringar som behövs innan korttidsplaneringsalgoritmenkan kommersialiseras.
Trtík, Jan. "Uvádění do provozu plynové spalovací turbíny." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2012. http://www.nusl.cz/ntk/nusl-219389.
Повний текст джерелаConnolley, Thomas. "Initiation and growth of short cracks in u-notch bend specimens of superalloy IN718 during high temperature low cycle fatigue." Thesis, University of Southampton, 2001. https://eprints.soton.ac.uk/427002/.
Повний текст джерелаJonsson, Maria. "Advanced power cycles with mixture as the working fluid." Doctoral thesis, KTH, Chemical Engineering and Technology, 2003. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3492.
Повний текст джерелаThe world demand for electrical power increasescontinuously, requiring efficient and low-cost methods forpower generation. This thesis investigates two advanced powercycles with mixtures as the working fluid: the Kalina cycle,alternatively called the ammonia-water cycle, and theevaporative gas turbine cycle. These cycles have the potentialof improved performance regarding electrical efficiency,specific power output, specific investment cost and cost ofelectricity compared with the conventional technology, sincethe mixture working fluids enable efficient energyrecovery.
This thesis shows that the ammonia-water cycle has a betterthermodynamic performance than the steam Rankine cycle as abottoming process for natural gas-fired gas and gas-dieselengines, since the majority of the ammonia-water cycleconfigurations investigated generated more power than steamcycles. The best ammonia-water cycle produced approximately40-50 % more power than a single-pressure steam cycle and 20-24% more power than a dual-pressure steam cycle. The investmentcost for an ammonia-water bottoming cycle is probably higherthan for a steam cycle; however, the specific investment costmay be lower due to the higher power output.
A comparison between combined cycles with ammonia-waterbottoming processes and evaporative gas turbine cycles showedthat the ammonia-water cycle could recover the exhaust gasenergy of a high pressure ratio gas turbine more efficientlythan a part-flow evaporative gas turbine cycle. For a mediumpressure ratio gas turbine, the situation was the opposite,except when a complex ammonia-water cycle configuration withreheat was used. An exergy analysis showed that evaporativecycles with part-flow humidification could recover energy asefficiently as, or more efficiently than, full-flow cycles. Aneconomic analysis confirmed that the specific investment costfor part-flow cycles was lower than for full-flow cycles, sincepart-flow humidification reduces the heat exchanger area andhumidification tower volume. In addition, the part-flow cycleshad lower or similar costs of electricity compared with thefull-flow cycles. Compared with combined cycles, the part-flowevaporative cycles had significantly lower total and specificinvestment costs and lower or almost equal costs ofelectricity; thus, part-flow evaporative cycles could competewith the combined cycle for mid-size power generation.
Keywords:power cycle, mixture working fluid, Kalinacycle, ammonia-water mixture, reciprocating internal combustionengine, bottoming cycle, gas turbine, evaporative gas turbine,air-water mixture, exergy
Rovný, Jan. "Návrh paroplynového cyklu pro teplárenský provoz." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2020. http://www.nusl.cz/ntk/nusl-417531.
Повний текст джерелаWhiteford, James Raymond George. "Security analysis of the interaction between the UK gas and electricity transmission systems." Thesis, University of Edinburgh, 2012. http://hdl.handle.net/1842/6274.
Повний текст джерелаCesari, Simone. "Design of an indirectly fired gas turbine integrated with an organic rankine cycle unit for combined heat and power production." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2016. http://amslaurea.unibo.it/10229/.
Повний текст джерелаBughazem, Mohamed. "Performance enhancement of the single shaft combined cycle gas turbine power plant by intake air cooling using an absorption chiller." Thesis, University of Newcastle Upon Tyne, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.613447.
Повний текст джерелаVANNONI, ALBERTO. "Flexible Heat and Power Generation: Market Opportunities for Combined Cycle Gas Turbines and Heat Pumps Coupling." Doctoral thesis, Università degli studi di Genova, 2022. http://hdl.handle.net/11567/1083022.
Повний текст джерелаMogawer, Tamer. "Analise técnica e econômica para seleção de sistemas de cogeração em ciclo combinado /." Guaratinguetá : [s.n.], 2005. http://hdl.handle.net/11449/99343.
Повний текст джерелаAbstract: The electric Brazilian sector is continually subject to energy crisis, the industrial consumers, that depends on energy to do its activities, is nowadays up to valorize and to look for alternative, trustful and environmental appropriate sources with the objective of guaranteeing the supply of electricity in an economic way and warranting a certain energy independence. In this context, this work has the purpose of selecting cogeneration systems based on using combined cycles with gas turbines associated to heat recovery steam generators without supplementary burners and steam turbines, as well as accomplishing the rising of the curves of production of energy and efficiency for the obtained cycles. The technical and constructive parameters of the gas and steam turbines were considered from the same manufacturing company, and through the obtained curves it is possible to select the more appropriate cycle for each process requirement, in the energy and economic point of view.
Orientador: Júlio Santana Antunes
Coorientador: José Luz Silveira
Banca: José Antonio Perrella Balestieri
Banca: Valdir Apolinario de Freitas
Mestre
Chiu, Ya-Tien. "A Performance Study of a Super-cruise Engine with Isothermal Combustion inside the Turbine." Diss., Virginia Tech, 2004. http://hdl.handle.net/10919/30202.
Повний текст джерелаPh. D.
Chiu, Ya-tien. "A Performance Study of a Super-cruise Engine with Isothermal Combustion inside the Turbine." Diss., Virginia Tech, 2004. http://hdl.handle.net/10919/30202.
Повний текст джерелаPh. D.
Veleba, Lukáš. "Parní turbína o výkonu 300 MW." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2018. http://www.nusl.cz/ntk/nusl-378707.
Повний текст джерелаOlumayegun, Olumide. "Study of closed-cycle gas turbine for application to small modular reactors (SMRs) and coal-fired power generation through modelling and simulation." Thesis, University of Sheffield, 2017. http://etheses.whiterose.ac.uk/19069/.
Повний текст джерелаReenaas, Marte. "Solid Oxide Fuel Cell Combined With Gas Turbine Versus Diesel Engine As Auxiliary Power Producing Unit Onboard A Passenger Ferry: A Comparative Life Cycle Assessment And Life Cycle Cost Assessment." Thesis, Norwegian University of Science and Technology, Industrial Ecology Programme, 2005. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-1413.
Повний текст джерелаA comparative Life Cycle Assessment (LCA) and Life Cycle Cost analysis (LCC) were performed to evaluate the environmental and economical performance of a solid oxide fuel cell combined with gas turbine (SOFC/GT) versus a conventional diesel engine as auxiliary power producing unit onboard a passenger ship. A setup of three diesel engines of 1080kW for the conventional system and five modules each of 500kW for the SOFC/GT system were investigated. Four different SOFC/GT fuel supply scenarios were studied, LNG from Norway, LNG from Import, onsite liquefaction of natural gas and sulphur free car diesel. The LCA includes the manufacturing of the auxiliary systems, operation and fuel supply and decommissioning (discussed qualitatively only), while the LCC includes purchasing cost, maintenance cost, energy costs and decommissioning cost (qualitatively). The vessel is assumed to service the route Oslo-Kiel.
Three environmental categories are included in the LCA: global warming potential, photochemical oxidation potential and acidification potential, calculated in CO2, CH4 and SO2 equivalents respectively. It is found that all SOFC/GT scenarios have a much better environmental performance than the conventional diesel engine in all the three environmental categories. The main advantages for the fuel cell systems are cleaner fuels and higher electric efficiency, compared to the conventional diesel engine. The most environmentally advantageous scenario is a fuel cell system using LNG (liquefied natural gas) produced in Norway. This is due to fewer and shorter fuel transport links.
Evaluation of the life cycle costs of the auxiliary systems identifies the diesel engine to be the cheapest alternative of the auxiliary systems. The SOFC/GT system using LNG from Norway or LNG imported via Kiel is the cheapest SOFC/GT system. Due to the high uncertainty concerning the costs different sensitivity analysis were performed. All LCC scenarios performed pointed out the fuel cell initial cost and stack replacement cost as the crucial cost disadvantages for the SOFC/GT system and low energy costs as a great advantage.
A hybrid model was created, using the total LCC results as an “economical category” combined with the emissions categories in the LCA. Such a hybrid model where the LCA and LCC are integrated requires that the importance of the environment and the economy are weighed when choosing an auxiliary system. In this case the conclusion is that the passenger ferry company has to choose whether it is willing to pay more per kWh for the SOFC/GT system than for the diesel engine, to achieve a distinct improvement of the environmental performance.
Veselý, Petr. "Návrh turbíny do kombinovaného cyklu." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2017. http://www.nusl.cz/ntk/nusl-320116.
Повний текст джерела