Статті в журналах з теми "CuInGaSe"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: CuInGaSe.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "CuInGaSe".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Lee, Ah-Reum, Hun-Soo Jeon, Gang-Suok Lee, Jin-Eun Ok, Dong-Wan Cho, Kyung-Hwa Kim, Min Yang, et al. "Characterizations of CuInGaSe(CIGS) mixed-source and the thin film." Journal of the Korean Crystal Growth and Crystal Technology 20, no. 1 (February 28, 2010): 1–6. http://dx.doi.org/10.6111/jkcgct.2010.20.1.001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Yoshino, Kenji, Takahiro Tokuda, Akira Nagaoka, Kenichiro Miseki, Rie Mori, Shou Bin Zhang, and Shigeo Doutyoku. "Growth of CuInGaSe2 Films by RF Sputtering Using CuInGaSe2 Single Phase Target." Applied Mechanics and Materials 372 (August 2013): 571–74. http://dx.doi.org/10.4028/www.scientific.net/amm.372.571.

Повний текст джерела
Анотація:
CuIn0.8Ga0.2Se2 thin film is grown at room temperature by RF sputtering using high quality of CuIn0.8Ga0.2Se2 single phase target. A (112) diffraction peak is dominant with no secondary phases such as selenide materials in the X-ray diffraction pattern. A flat and homogeneous surface can be obtained in the sample.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Chang, Jen-Chuan, Chia-Chih Chuang, Jhe-Wei Guo, Shu-Chun Hsu, Hung-Ru Hsu, Chung-Shin Wu, and Tung-Po Hsieh. "An Investigation of CuInGaSe2 Thin Film Solar Cells by Using CuInGa Precursor." Nanoscience and Nanotechnology Letters 3, no. 2 (April 1, 2011): 200–203. http://dx.doi.org/10.1166/nnl.2011.1147.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Mendivil, M. I., L. V. García, B. Krishnan, D. Avellaneda, J. A. Martinez, and S. Shaji. "CuInGaSe 2 nanoparticles by pulsed laser ablation in liquid medium." Materials Research Bulletin 72 (December 2015): 106–15. http://dx.doi.org/10.1016/j.materresbull.2015.07.038.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

SONG, H., S. KIM, H. KIM, S. KIM, K. KANG, J. LEE, and K. YOON. "Preparation of CuInGaSe thin films by sputtering and selenization process." Solar Energy Materials and Solar Cells 75, no. 1-2 (January 2003): 145–53. http://dx.doi.org/10.1016/s0927-0248(02)00125-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Jeon, Hunsoo, Ahreum Lee, Gang-Seok Lee, Dong-Wan Jo, Jin-Eun Ok, Kyoung Hwa Kim, Min Yang, et al. "Fabrication of the CuInGaSe Pellet and Characterization of the Thin Film." Japanese Journal of Applied Physics 50, no. 1S1 (January 1, 2011): 01AG01. http://dx.doi.org/10.7567/jjap.50.01ag01.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Jeon, Hunsoo, Ahreum Lee, Gang-Seok Lee, Dong-Wan Jo, Jin-Eun Ok, Kyoung Hwa Kim, Min Yang, et al. "Fabrication of the CuInGaSe Pellet and Characterization of the Thin Film." Japanese Journal of Applied Physics 50 (January 20, 2011): 01AG01. http://dx.doi.org/10.1143/jjap.50.01ag01.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Kim, Hong Tak, Chang Duk Kim, Maeng Jun Kim, and Young‐Soo Sohn. "AC analysis of temperature effects on conversion efficiency of CuInGaSe 2 solar cells." Electronics Letters 51, no. 1 (January 2015): 86–88. http://dx.doi.org/10.1049/el.2014.3257.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Devaney, W. E., W. S. Chen, J. M. Stewart, and R. A. Mickelsen. "Structure and properties of high efficiency ZnO/CdZnS/CuInGaSe/sub 2/ solar cells." IEEE Transactions on Electron Devices 37, no. 2 (1990): 428–33. http://dx.doi.org/10.1109/16.46378.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Mir, Irshad Ahmad, Kamla Rawat, and H. B. Bohidar. "CuInGaSe nanocrystals for detection of trace amount of water in D2O (at ppm level)." Crystal Research and Technology 51, no. 10 (September 8, 2016): 561–68. http://dx.doi.org/10.1002/crat.201600054.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Chen, Liang Yan, and Chao Fang. "Investigation on Stability and Optical Properties of ZnnSen(n=1~13) Nanocluster in CIGS-ZnSe Heterojunction Interface." Advanced Materials Research 953-954 (June 2014): 991–94. http://dx.doi.org/10.4028/www.scientific.net/amr.953-954.991.

Повний текст джерела
Анотація:
ZnSe cluster is the main form of growth mechanism in CuInGaSe based solar cells as the buffer layer and the building blocks for larger bulk ZnSe materials as well. With the generalized gradient approximation in first principle all-electron calculations, a number of configurations and structural isomers of ZnnSen(n=1~13) nanoclusters has been geometrically optimized to get the lowest energy constructions of ZnnSen(n=1~13). Second-order energy difference were applied to investigate the stability of small ZnSe nanoclusters. And the nanocage Zn12Se12cluster has been identified to be in rather stable state and can be the building block of larger ZnSe nanoclusters materials. Energy gap between lowest unoccupied molecular orbital and the highest occupied molecular orbital, Infrared Spectroscopy have also been investigated for further study on size and optical properties through testing methods.
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Kim, Ki Hyun, Young Gab Chun, Byung Ok Park, and Kyung Hoon Yoon. "Synthesis of CuInSe2 and CuInGaSe2 Nanoparticles by Solvothermal Route." Materials Science Forum 449-452 (March 2004): 273–76. http://dx.doi.org/10.4028/www.scientific.net/msf.449-452.273.

Повний текст джерела
Анотація:
Chalcopyrite CuInSe 2 (CIS) and CuInGaSe 2</sub(CIGS) nanoparticles were directly synthesized by a solvothemal route in an autoclave with alkylamine as a solvent. The rod-like CIS nanoparticles with widths of 5-10 nm and lengths of 10-30 nm were obtained at 180°C for 36 hour whereas spherical nanoparticles with diameter in the range of 10-80 nm were observed at 200- 250 °C for 36 hour. A morphology change from spherical to rod-like CIS nanoparticles was observed at 190 °C as reaction time increased from 36 to 60 hour. The formation of the rod-like nanoparticles in diethylamine, without double N-chelation, was explained by the SLS (Solution- Liquid-Solid) mechanism. Spherical CIGS nanoparticles with diameter in the range of 30-80 nm were obtained in ethylenediamine at 280 °C for 14 hour. The products were characterized by x-ray diffraction (XRD), transmission electron microscopy (TEM) and high-resolution scanning electron microscopy (HRSEM).
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Courel, Maykel, Miriam M. Nicolás, and Osvaldo Vigil-Galán. "Study on the physical properties of Cu2ZnSnS4 thin films deposited by pneumatic spray pyrolysis technique." Applied Chemical Engineering 4, no. 1 (April 27, 2021): 9. http://dx.doi.org/10.24294/ace.v4i1.652.

Повний текст джерела
Анотація:
The acquisition of new materials for the manufacturing of high efficiency and low-cost photovoltaic devices has currently become a challenge. Thin films of CuInGaSe and CdTe have been widely used in solar cell of second generation, achieving efficiencies about 20 %; however, the low abundance of In and Te as well as the toxicity of Cd is the primary obstacles to their industrial production. Compounds such as Cu2ZnSnS4, Cu2ZnSnSe4 and Cu2ZnSn(SSe)4 have emerged as an important and less costly alternative for efficient energy conversion in the future. In addition, these compounds have the required characteristics to be used as an absorber material in solar cells (band-gap close to 1.4 eV, an absorption coefficient greater than 104 cm-1 and a p-type conductivity). In this work, we present a study of the structural, compositional, morphological and optical properties of Cu2ZnSnS4 thin films deposited by spray pyrolysis technique as well as their dependence on temperature.
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Selmane, Naceur, Ali Cheknane, Fakhereddine Khemloul, Mohammed H. S. Helal, and Hikmat S. Hilal. "Cost-saving and performance-enhancement of CuInGaSe solar cells by adding CuZnSnSe as a second absorber." Solar Energy 234 (March 2022): 64–80. http://dx.doi.org/10.1016/j.solener.2022.01.072.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Arul, S., N. Muthukumarasamy, M. D. Kannan, and S. Jayakumar. "Preparation and Characterization of Hot Wall Deposited CuInGaSe2 Thin Films for Solar Cell Applications." Applied Mechanics and Materials 705 (December 2014): 56–59. http://dx.doi.org/10.4028/www.scientific.net/amm.705.56.

Повний текст джерела
Анотація:
CuIn0.7Ga0.3Se2 (CIGS) bulk compound was prepared by direct reaction of high purity (99.99%) elemental copper, indium, gallium and selenium. Using the prepared bulk CIGS, polycrystalline CuInGaSe2 thin films were deposited onto well cleaned soda-lime glass substrates using hot wall deposition technique by optimizing process parameters such as the wall temperature, filament current and time of deposition. The x-ray diffraction studies on the as-prepared films revealed polycrystalline nature. The composition of the chemical constituents present in the prepared bulk and thin films has been determined using energy dispersive X-ray analysis (EDX). The surface morphology of CIGS thin film of deposition time 3 min. have been carried out using Atomic Force Microscopy (AFM). The AFM images revealed that the average grain size was 20 nm and the surface roughness was about 8 nm. Transmittance spectra in the wavelength range of 190 nm to 2500 nm was obtained using a double beam spectrophotometer (UV-VIS) and the results are discussed.
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Cheng, Xin-Yan, Zheng-Ji Zhou, Ze-Liang Hou, Wen-Hui Zhou, and Si-Xin Wu. "High Performance Dye-Sensitized Solar Cell Using CuInGaSe2 as Counter Electrode Prepared by Sputtering." Science of Advanced Materials 5, no. 9 (September 1, 2013): 1193–98. http://dx.doi.org/10.1166/sam.2013.1572.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Oliveri, Roberto Luigi, Bernardo Patella, Floriana Di Pisa, Alfonso Mangione, Giuseppe Aiello, and Rosalinda Inguanta. "Fabrication of CZTSe/CIGS Nanowire Arrays by One-Step Electrodeposition for Solar-Cell Application." Materials 14, no. 11 (May 24, 2021): 2778. http://dx.doi.org/10.3390/ma14112778.

Повний текст джерела
Анотація:
The paper reports some preliminary results concerning the manufacturing process of CuZnSnSe (CZTSe) and CuInGaSe (CIGS) nanowire arrays obtained by one-step electrodeposition for p-n junction fabrication. CZTSe nanowires were obtained through electrodeposition in a polycarbonate membrane by applying a rectangular pulsed current, while their morphology was optimized by appropriately setting the potential and the electrolyte composition. The electrochemical parameters, including pH and composition of the solution, were optimized to obtain a mechanically stable array of nanowires. The samples were characterized by scanning electron microscopy, Raman spectroscopy, and energy-dispersion spectroscopy. The nanostructures obtained showed a cylindrical shape with an average diameter of about 230 nm and a length of about 3 µm, and were interconnected due to the morphology of the polycarbonate membrane. To create the p-n junctions, first a thin film of CZTSe was electrodeposited to avoid direct contact between the ZnS and Mo. Subsequently, an annealing process was carried out at 500 °C in a S atmosphere for 40 min. The ZnS was obtained by chemical bath deposition at 95 °C for 90 min. Finally, to complete the cell, ZnO and ZnO:Al layers were deposited by magnetron-sputtering.
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Gour, K. S., R. Parmar, O. P. Singh, and V. N. Singh. "Optimizing CuInGaSe2 Thin Films Grown by Selenization of Culn/CuGa Multilayers for Solar Cell Applications." Advanced Science, Engineering and Medicine 8, no. 4 (April 1, 2016): 314–18. http://dx.doi.org/10.1166/asem.2016.1860.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Wang, Chen, Daming Zhuang, Ming Zhao, Guoan Ren, Yuxian Li, Jinquan Wei, Qianming Gong, and Liangzheng Dong. "Optimization of CuInGaSSe properties and CuInGaSSe/CdS interface quality for efficient solar cells processed with CuInGa precursors." Journal of Power Sources 479 (December 2020): 229105. http://dx.doi.org/10.1016/j.jpowsour.2020.229105.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Kim, Sung Chul. "Simulation of Rough Surface of CIGS (CuInGaSe) Solar Cell by RCWA (Rigorous Coupled Wave Analysis) Considering the Incoherency of Light." Journal of the Optical Society of Korea 18, no. 2 (April 25, 2014): 180–83. http://dx.doi.org/10.3807/josk.2014.18.2.180.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Yamaguchi, T., T. Hirao, S. Niiyama, and Y. Miyake. "Cu(In,Ga)(S,Se)2 thin films prepared by thermal crystallization from CuInGaSe/CuGaSe precursor in S/Se atmosphere." physica status solidi (c) 3, no. 8 (September 2006): 2555–58. http://dx.doi.org/10.1002/pssc.200669552.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Dharmadasa, I. M., N. B. Chaure, G. J. Tolan, and A. P. Samantilleke. "Development of p[sup +], p, i, n, and n[sup +]-Type CuInGaSe[sub 2] Layers for Applications in Graded Bandgap Multilayer Thin-Film Solar Cells." Journal of The Electrochemical Society 154, no. 6 (2007): H466. http://dx.doi.org/10.1149/1.2718401.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Kim, Hong Tak, Chang-Duk Kim, and Young-Soo Sohn. "Properties of CuInGaSe2 (CIGS) Films Formed by a Rapid Thermal Annealing Process of CuGaSe2/CuInSe2 Stacked Layers." Journal of Nanoelectronics and Optoelectronics 10, no. 4 (August 1, 2015): 471–74. http://dx.doi.org/10.1166/jno.2015.1784.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Ru Hsu, Hung, Shu Chun Hsu, and Yung-sheng Liu. "Improvement of Voc and Jsc in CuInGaSe2 solar cells using a novel sandwiched CuGa/CuInGa/In precursor structure." Applied Physics Letters 100, no. 23 (June 4, 2012): 233903. http://dx.doi.org/10.1063/1.4705297.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Gour, Kuldeep S., Rahul Parmar, Rahul Kumar, and Vidya N. Singh. "Cd-Free Zn(O,S) as Alternative Buffer Layer for Chalcogenide and Kesterite Based Thin Films Solar Cells: A Review." Journal of Nanoscience and Nanotechnology 20, no. 6 (June 1, 2020): 3622–35. http://dx.doi.org/10.1166/jnn.2020.17537.

Повний текст джерела
Анотація:
Cd is categorized as a toxic material with restricted use in electronics as there are inherent problems of treating waste and convincing consumers that it is properly sealed inside without any threat of precarious leaks. Apart from toxicity, band-gap of CdS is about 2.40–2.50 eV, which results significant photon loss in short-wavelength range which restricts the overall performance of solar cells. Thin film of Zn(O,S) is a favorable contender to substitute CdS thin film as buffer layer for CuInGaSe2 (CIGS), CuInGa(S,Se)2 (CIGSSe), Cu2ZnSn(S,Se)4 (CZTSSe) Cu2ZnSnSe4 (CZTSe), Cu2ZnSnS4 (CZTS) thin film absorber material based photovoltaic due to it made from earth abundant, low cost, non-toxic materials and its ability to improve the efficiency of chalcogenide and kesterite based photovoltaic due to wider band-gap which results in reduction of absorption loss compared to CdS. In this review, apart from mentioning various deposition technique for Zn(O,S) thin films, changes in various properties i.e., optical, morphological, and opto-electrical properties of Zn(O,S) thin film deposited using various methods utilized for fabricating solar cell based on CIGS, CIGSSe, CZTS, CZTSe and CZTSSe thin films, the material has been evaluated for all the properties of buffer layer (high transparency for incident light, good conduction band lineup with absorber material, low interface recombination, high resistivity and good device stability).
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Deshmukh, Swapnil D., Kyle G. Weideman, Ryan G. Ellis, Kim Kisslinger, and Rakesh Agrawal. "Enabling fine-grain free 2-micron thick CISe/CIGSe film fabrication via a non-hydrazine based solution processing route." Materials Advances 3, no. 7 (2022): 3293–302. http://dx.doi.org/10.1039/d2ma00095d.

Повний текст джерела
Анотація:
Fine grain layer formation in solution processed CuInSe2/CuInGaSe2 (CISe/CIGSe) photovoltaic devices is controlled through surface modifications and ink manipulations to achieve improved performance and fine grain free morphologies.
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Perera, Sanjaya D., Haitao Zhang, Xiaoyue Ding, Andrew Nelson, and Richard D. Robinson. "Nanocluster seed-mediated synthesis of CuInS2 quantum dots, nanodisks, nanorods, and doped Zn-CuInGaS2 quantum dots." Journal of Materials Chemistry C 3, no. 5 (2015): 1044–55. http://dx.doi.org/10.1039/c4tc01887g.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Hsu, Hung-Ru, Shu-Chun Hsu, and Y. S. Liu. "Improvement of Ga distribution and enhancement of grain growth of CuInGaSe2 by incorporating a thin CuGa layer on the single CuInGa precursor." Solar Energy 86, no. 1 (January 2012): 48–52. http://dx.doi.org/10.1016/j.solener.2011.09.005.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Gaillard, Nicolas, Wilman Septina, Joel Varley, Tadashi Ogitsu, Kenta K. Ohtaki, Hope A. Ishii, John P. Bradley, et al. "Performance and limits of 2.0 eV bandgap CuInGaS2 solar absorber integrated with CdS buffer on F:SnO2 substrate for multijunction photovoltaic and photoelectrochemical water splitting devices." Materials Advances 2, no. 17 (2021): 5752–63. http://dx.doi.org/10.1039/d1ma00570g.

Повний текст джерела
Анотація:
Photocurrent density in excess of 10 mA cm−2 reported on 2.0 eV CuInGaS2 solar cells integrated on SnO2:F substrates, yet new wide bandgap n-type buffers required to achieve higher photoconversion efficiency.
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Murali, K. R., and V. Chitra. "Properties of Pulse Electrodeposited CuInGaSe2 Films." ECS Transactions 69, no. 31 (December 28, 2015): 15–20. http://dx.doi.org/10.1149/06931.0015ecst.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

He, Xiaoqing, Tadas Paulauskas, Peter Ercius, Joel Varley, Jeff Bailey, Geordie Zapalac, Dmitry Poplavskyy, et al. "Cd doping at PVD-CdS/CuInGaSe2 heterojunctions." Solar Energy Materials and Solar Cells 164 (May 2017): 128–34. http://dx.doi.org/10.1016/j.solmat.2017.01.043.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Chun, Y. G., K. H. Kim, and K. H. Yoon. "Synthesis of CuInGaSe2 nanoparticles by solvothermal route." Thin Solid Films 480-481 (June 2005): 46–49. http://dx.doi.org/10.1016/j.tsf.2004.11.078.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Kikuchi, Kenji, Shigeyuki Imura, Kazunori Miyakawa, Hiroshi Ohtake, Misao Kubota, and Eiji Ohta. "Photocurrent multiplication in Ga2O3/CuInGaSe2 heterojunction photosensors." Sensors and Actuators A: Physical 224 (April 2015): 24–29. http://dx.doi.org/10.1016/j.sna.2015.01.001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Harayama, Koudai, Akira Nagaoka, Taizo Masuda, Kensuke Nishioka, and Kenji Yoshino. "Growth and Characterization of CuInGaSe2 Single Crystal." ECS Meeting Abstracts MA2020-02, no. 68 (November 23, 2020): 3614. http://dx.doi.org/10.1149/ma2020-02683614mtgabs.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Baan, Marzieh, Ari N. Blumer, and Tyler J. Grassman. "EBSD of Rough Native CuInGaSe2 Thin-Films." Microscopy and Microanalysis 27, S1 (July 30, 2021): 3442–44. http://dx.doi.org/10.1017/s1431927621011831.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Mandati, Sreekanth, and Bulusu V. Sarada. "Electrodeposited chalcopyrite CuInGaSe2 absorbers for solar energy harvesting." Materials Science for Energy Technologies 3 (2020): 440–45. http://dx.doi.org/10.1016/j.mset.2020.03.001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Der Wu, Jiann, Ling Ting Wang, and Chie Gau. "Synthesis of CuInGaSe2 nanoparticles by modified polyol route." Solar Energy Materials and Solar Cells 98 (March 2012): 404–8. http://dx.doi.org/10.1016/j.solmat.2011.11.044.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Yanagisawa, T., T. Kojima, T. Koyanagi, K. Takahisa, and K. Nakamura. "Behaviour of CuInGaSe2 solar cells under light irradiation." Electronics Letters 36, no. 19 (2000): 1659. http://dx.doi.org/10.1049/el:20001176.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Hameed, Talaat A., I. M. El Radaf, and Hani E. Elsayed-Ali. "Characterization of CuInGeSe4 thin films and Al/n–Si/p–CuInGeSe4/Au heterojunction device." Journal of Materials Science: Materials in Electronics 29, no. 15 (May 29, 2018): 12584–94. http://dx.doi.org/10.1007/s10854-018-9375-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Hsiao, Yu-Jen, Chung-Hsin Lu, and Te-Hua Fang. "To Enhance Performance of Light Soaking Process on ZnS/CuIn1-xGaxSe2Solar Cell." International Journal of Photoenergy 2013 (2013): 1–5. http://dx.doi.org/10.1155/2013/561948.

Повний текст джерела
Анотація:
The ZnS/CuInGaSe2heterojunction solar cell fabricated on Mo coated glass is studied. The crystallinity of the CIGS absorber layer is prepared by coevaporated method and the ZnS buffer layer with a band gap of 3.21 eV. The MoS2phase was also found in the CuInGaSe2/Mo system form HRTEM. The light soaking effect of photoactive film for 10 min results in an increase in F.F. from 55.8 to 64%, but series resistivity from 7.4 to 3.8 Ω. The efficiency of the devices improved from 8.12 to 9.50%.
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Hsieh, Tung-Po, Chia-Chih Chuang, Chung-Shin Wu, Jen-Chuan Chang, Jhe-Wei Guo, and Wei-Chien Chen. "Effects of residual copper selenide on CuInGaSe2 solar cells." Solid-State Electronics 56, no. 1 (February 2011): 175–78. http://dx.doi.org/10.1016/j.sse.2010.11.019.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Ramanathan, K., G. Teeter, J. C. Keane, and R. Noufi. "Properties of high-efficiency CuInGaSe2 thin film solar cells." Thin Solid Films 480-481 (June 2005): 499–502. http://dx.doi.org/10.1016/j.tsf.2004.11.050.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Choi, In-Hwan, Chul-Hwan Choi, and Joo-Won Lee. "Deep centers in a CuInGaSe2 /CdS/ZnO:B solar cell." physica status solidi (a) 209, no. 6 (March 16, 2012): 1192–97. http://dx.doi.org/10.1002/pssa.201127596.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Kim, Ki-Hyun, Young-Gab Chun, Kyung-Hoon Yoon, and Byung-Ok Park. "Synthesis of CuInGaSe2 nanoparticles by low temperature colloidal route." Journal of Mechanical Science and Technology 19, no. 11 (November 2005): 2085–90. http://dx.doi.org/10.1007/bf02916502.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Hsieh, Li Zen, Xi Ming Duan, and Ming Jer Jeng. "The Study of CIGS Absorption Layer Grown by Two-Step Growth Method for Thin-Film Solar Cell." Applied Mechanics and Materials 418 (September 2013): 238–41. http://dx.doi.org/10.4028/www.scientific.net/amm.418.238.

Повний текст джерела
Анотація:
Two-step growth method was used for CuInGaSe2,(CIGS) absorption layer in this study. The layer was first deposited by thermal evaporator to use indium and gallium sauces at a vacuum of 5 × 10-6 torr and secondly, the deposited thin film was enclosed in a quartz cartridge for the first selenization. The second selenization process was coated by copper and then annealed again in a furnace. Finding best precursor for thin film solar cells was analyzed by scanning electron microscope (SEM), X-ray diffraction analyzer (XRD) and energy dispersive spectrometer (EDS).
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Su, Chia-Ying, Chiu-Yen Chiu, Chih-Hui Chang, and Jyh-Ming Ting. "Synthesis of Cu2In2O5 and CuInGaO4 nanoparticles." Thin Solid Films 531 (March 2013): 42–48. http://dx.doi.org/10.1016/j.tsf.2012.11.139.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Gorgut, G. P., A. O. Fedorchuk, I. V. Kityk, V. P. Sachanyuk, I. D. Olekseyuk, and O. V. Parasyuk. "Synthesis and structural properties of CuInGeS4." Journal of Crystal Growth 324, no. 1 (June 2011): 212–16. http://dx.doi.org/10.1016/j.jcrysgro.2011.02.029.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

GUO Kai, 郭. 凯., and 张传升 ZHANG Chuan-sheng. "Improved Performance of CuInGaSe2 Solar Cells with Patterned Front Contact." Chinese Journal of Luminescence 40, no. 2 (2019): 204–8. http://dx.doi.org/10.3788/fgxb20194002.0204.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Devaney, W. E., and R. A. Mickelsen. "Vacuum deposition processes for CuInSe2 and CuInGaSe2 based solar cells." Solar Cells 24, no. 1-2 (May 1988): 19–26. http://dx.doi.org/10.1016/0379-6787(88)90032-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Morales-Acevedo, Arturo. "A simple model of graded band-gap CuInGaSe2 solar cells." Energy Procedia 2, no. 1 (August 2010): 169–76. http://dx.doi.org/10.1016/j.egypro.2010.07.024.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії