Статті в журналах з теми "Cu2V2O7"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Cu2V2O7.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Cu2V2O7".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Suganya, P., J. Princy, N. Mathivanan, and Krishnasamy K. "One-Pot Synthesis of rGO@Cu2V2O7 Nanocomposite as High Stabled Electrode for Symmetric Electrochemical Capacitors." ECS Journal of Solid State Science and Technology 11, no. 4 (April 1, 2022): 041005. http://dx.doi.org/10.1149/2162-8777/ac62f1.

Повний текст джерела
Анотація:
The rGO anchored copper vanadate nanostructures have been synthesized through facile hydrothermal synthesis for the high efficient energy storage applications. The prepared Cu2V2O7 and rGO@Cu2V2O7 nanostructures are fabricated as the electrode materials for three electrode and symmetric type electrochemical supercapacitors. Based on the electrochemical the electrodes shows the outstanding areal capacitance values of 340 and 545 F g−1 for Cu2V2O7 and rGO@Cu2V2O7 electrodes, respectively. Also the charge discharge curves of the rGO@Cu2V2O7 electrode revealed the higher specific capacitance values of 520 F g−1 at 1 A g−1 which is higher capacitance value than Cu2V2O7 electrode (318 F g−1 at 1 A g−1). Based on the cyclic performance the rGO@Cu2V2O7 electrode enumerate 98.6% withstand even the 1000th cycle. The symmetric electrode based device have been shows the higher capacitance values of 190 F g−1 at 1 A g−1 for rGO@Cu2V2O7 it is higher than pure Cu2V2O7 (148 F g−1 at 1 A g−1). With the synergitic reaction of rGO@Cu2V2O7 electrode shows the high energy 29.7 Wh kg−1 and power 4.8 kW kg−1 and the Cu2V2O7 and rGO@Cu2V2O7 electrodes. Also the rGO@Cu2V2O7 symmetric electrode device shows the higher cyclic efficiency about 97.5% at the 2000th cycle. These findings assess the rGO@Cu2V2O7 electrode is a promising candidate for the energy storage application.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Shuang, Shuang, Leonardo Girardi, Gian Rizzi, Andrea Sartorel, Carla Marega, Zhengjun Zhang та Gaetano Granozzi. "Visible Light Driven Photoanodes for Water Oxidation Based on Novel r-GO/β-Cu2V2O7/TiO2 Nanorods Composites". Nanomaterials 8, № 7 (18 липня 2018): 544. http://dx.doi.org/10.3390/nano8070544.

Повний текст джерела
Анотація:
This paper describes the preparation and the photoelectrochemical performances of visible light driven photoanodes based on novel r-GO/β-Cu2V2O7/TiO2 nanorods/composites. β-Cu2V2O7 was deposited on both fluorine doped tin oxide (FTO) and TiO2 nanorods (NRs)/FTO by a fast and convenient Aerosol Assisted Spray Pyrolysis (AASP) procedure. Ethylenediamine (EN), ammonia and citric acid (CA) were tested as ligands for Cu2+ ions in the aerosol precursors solution. The best-performing deposits, in terms of photocurrent density, were obtained when NH3 was used as ligand. When β-Cu2V2O7 was deposited on the TiO2 NRs a good improvement in the durability of the photoanode was obtained, compared with pure β-Cu2V2O7 on FTO. A further remarkable improvement in durability and photocurrent density was obtained upon addition, by electrophoretic deposition, of reduced graphene oxide (r-GO) flakes on the β-Cu2V2O7/TiO2 composite material. The samples were characterized by X-ray Photoelectron Spectroscopy (XPS), Raman, High Resolution Transmission Electron Microscopy (HR-TEM), Scanning Electron Microscopy (SEM), Wide Angle X-ray Diffraction (WAXD) and UV-Vis spectroscopies. The photoelectrochemical (PEC) performances of β-Cu2V2O7 on FTO, β-Cu2V2O7/TiO2 and r-GO/β-Cu2V2O7/TiO2 were tested in visible light by linear voltammetry and Electrochemical Impedance Spectroscopy (EIS) measurements.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Krivovichev, S. V., S. K. Filatov, P. N. Cherepansky, T. Armbruster, and O. Yu Pankratova. "CRYSTAL STRUCTURE OF -Cu2V2O7 AND ITS COMPARISON TO BLOSSITE ( -Cu2V2O7) AND ZIESITE ( -Cu2V2O7)." Canadian Mineralogist 43, no. 2 (April 1, 2005): 671–77. http://dx.doi.org/10.2113/gscanmin.43.2.671.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Fontaine, Blandine, Youssef Benrkia, Jean-François Blach, Christian Mathieu, Pascal Roussel, Ahmad I. Ayesh, Adlane Sayede, and Sébastien Saitzek. "Photoelectrochemical properties of copper pyrovanadate (Cu2V2O7) thin films synthesized by pulsed laser deposition." RSC Advances 13, no. 18 (2023): 12161–74. http://dx.doi.org/10.1039/d3ra01509b.

Повний текст джерела
Анотація:
The photoelectrochemical properties of copper pyrovanadate (bulk α-Cu2V2O7 and thin films β-Cu2V2O7 elaborated by pulsed laser deposition) were investigated. For thin films, the best photocurrent efficiency was obtained under blue light (450 nm).
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Krasnenko, Tatiana, Nadezhda Medvedeva, and Vitalii Bamburov. "Atomic and Electronic Structure of Zinc and Copper Pyrovanadates with Negative Thermal Expansion." Advances in Science and Technology 63 (October 2010): 358–63. http://dx.doi.org/10.4028/www.scientific.net/ast.63.358.

Повний текст джерела
Анотація:
Zinc and copper pyrovanadates are promising materials for micro- and optoelectronics due to their negative coefficient of volume thermal expansion (NTE). Besides, solid solutions on the base of these compounds can be used to obtain grade materials with variable thermal coefficients. Thermal deformation of both Zn2V2O7 and Cu2V2O7 structures was studied. According to the structural data, NTE of these substances is provided by the zigzag shape of zinc (copper) chains alongside with stable distances between layers. The structural and electronic characteristics depending on temperature were studied for α-Zn2V2O7 and α-Cu2V2O7 by using the first principle method. Our results demonstrate that the lowest total energies corresponds to the structural parameters at 400° C and 200° C for α-Zn2V2O7 and α-Cu2V2O7, respectively. We predict that α- Zn2V2O7 is a semiconductor with the band gap of 1,5 эВ and the bottom of conduction band is determined by the vanadium 3d states with small addition of antibonding oxygen 2р-states. For α- Cu2V2O7, the lowest interband transitions correspond to energy of 1,6 eV and involve also the O2p and V 3d states.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Benko, F. A., and F. P. Koffyberg. "Semiconductivity and optical interband transitions of CuV2O6 and Cu2V2O7." Canadian Journal of Physics 70, no. 2-3 (February 1, 1992): 99–103. http://dx.doi.org/10.1139/p92-011.

Повний текст джерела
Анотація:
CuV2O6 and Cu2V2O7 are low-mobility n-type semiconductors; at room temperature [Formula: see text]. From photoelectron-chemical measurements optical interband transitions are found at 2.02 and 3.15 eV for indium-doped CuV2O6, and at 1.87 and 2.88 eV for Cu2V2O7. In both materials the valence band edge is 6.9 eV below the vacuum level; a qualitative analysis of all data indicates that the upper valence band is made up mainly of oxygen-2p wave functions, as in V2O5.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Ponomarenko, L. A., A. N. Vasil'ev, E. V. Antipov, and Yu A. Velikodny. "Magnetic properties of Cu2V2O7." Physica B: Condensed Matter 284-288 (July 2000): 1459–60. http://dx.doi.org/10.1016/s0921-4526(99)02702-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

EGUCHI, M., I. FURUSAWA, T. MIURA, and T. KISHI. "Lithium insertion characteristics of ß-Cu2V2O7." Solid State Ionics 68, no. 1-2 (February 1994): 159–64. http://dx.doi.org/10.1016/0167-2738(94)90253-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Wang, Hui, Mengjie Yang, Mingju Chao, Juan Guo, Qilong Gao, Yajie Jiao, Xinbo Tang та Erjun Liang. "Negative thermal expansion property of β-Cu2V2O7". Solid State Ionics 343 (грудень 2019): 115086. http://dx.doi.org/10.1016/j.ssi.2019.115086.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Денисова, Л. Т., Н. В. Белоусова, В. М. Денисов та Н. А. Галиахметова. "Высокотемпературная теплоемкость оксидов системы CuO-V-=SUB=-2-=/SUB=-O-=SUB=-5-=/SUB=-". Физика твердого тела 59, № 6 (2017): 1243. http://dx.doi.org/10.21883/ftt.2017.06.44500.407.

Повний текст джерела
Анотація:
С помощью твердофазного синтеза из исходных компонентов CuO и V2O5 при ступенчатом обжиге получены CuV2O6 и Cu2V2O7. Методом дифференциальной сканирующей калориметрии измерена высокотемпературная теплоемкость оксидных соединений. По экспериментальным зависимостям CP=f(T) рассчитаны термодинамические свойства (изменение энтальпии, энтропии и приведенная энергия Гиббса). Установлено, что между удельной теплоемкостью и составом оксидов системы CuO-V2O5 имеется корреляция. DOI: 10.21883/FTT.2017.06.44500.407
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Feng, Jian, Xia Ran, Li Wang, Bo Xiao, Li Lei, Jinming Zhu, Zuoji Liu, et al. "The Synergistic Effect of Adsorption-Photocatalysis for Removal of Organic Pollutants on Mesoporous Cu2V2O7/Cu3V2O8/g-C3N4 Heterojunction." International Journal of Molecular Sciences 23, no. 22 (November 17, 2022): 14264. http://dx.doi.org/10.3390/ijms232214264.

Повний текст джерела
Анотація:
Cu2V2O7/Cu3V2O8/g-C3N4 heterojunctions (CVCs) were prepared successfully by the reheating synthesis method. The thermal etching process increased the specific surface area. The formation of heterojunctions enhanced the visible light absorption and improved the separation efficiency of photoinduced charge carriers. Therefore, CVCs exhibited superior adsorption capacity and photocatalytic performance in comparison with pristine g-C3N4 (CN). CVC-2 (containing 2 wt% of Cu2V2O7/Cu3V2O8) possessed the best synergistic removal efficiency for removal of dyes and antibiotics, in which 96.2% of methylene blue (MB), 97.3% of rhodamine B (RhB), 83.0% of ciprofloxacin (CIP), 86.0% of tetracycline (TC) and 80.5% of oxytetracycline (OTC) were eliminated by the adsorption and photocatalysis synergistic effect under visible light irradiation. The pseudo first order rate constants of MB and RhB photocatalytic degradation on CVC-2 were 3 times and 10 times that of pristine CN. For photocatalytic degradation of CIP, TC and OTC, it was 3.6, 1.8 and 6.1 times that of CN. DRS, XPS VB and ESR results suggested that CVCs had the characteristics of a Z-scheme photocatalytic system. This study provides a reliable reference for the treatment of real wastewater by the adsorption and photocatalysis synergistic process.
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Piyawongwatthana, Pharit, Daisuke Okuyama, Kazuhiro Nawa, Kittiwit Matan та Taku J. Sato. "Formation of Single Polar Domain in α-Cu2V2O7". Journal of the Physical Society of Japan 90, № 2 (15 лютого 2021): 025003. http://dx.doi.org/10.7566/jpsj.90.025003.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Rao, Martha Purnachander, A. K. Akhila, Jerry J. Wu, Abdullah M. Asiri, and Sambandam Anandan. "Synthesis, characterization and adsorption properties of Cu2V2O7 nanoparticles." Solid State Sciences 92 (June 2019): 13–23. http://dx.doi.org/10.1016/j.solidstatesciences.2019.03.021.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Petrova, S. A., M. V. Rotermel, R. G. Zakharov, and T. I. Krasnenko. "High-temperature X-ray study of Zn-substituted Cu2V2O7." Acta Crystallographica Section A Foundations of Crystallography 61, a1 (August 23, 2005): c469. http://dx.doi.org/10.1107/s0108767305080463.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Denisova, L. T., N. V. Belousova, N. A. Galiakhmetova, V. M. Denisov, and E. O. Golubeva. "High-Temperature Heat Capacity of Zn2V2O7–Cu2V2O7 Solid Solutions." Physics of the Solid State 60, no. 7 (July 2018): 1303–7. http://dx.doi.org/10.1134/s1063783418070090.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Sakurai, Yoji, Shin-ichi Tobishima, and Jun-ichi Yamaki. "Dependence of Li/Cu2V2O7 cell characteristics on electrolytic properties." Electrochimica Acta 34, no. 7 (July 1989): 981–86. http://dx.doi.org/10.1016/0013-4686(89)80024-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Zhang, Niu, Li Li, Mingyi Wu, Yuxiang Li, Dongsheng Feng, Cunyuan Liu, Yanchao Mao, Juan Guo, Mingju Chao та Erjun Liang. "Negative thermal expansion and electrical properties of α-Cu2V2O7". Journal of the European Ceramic Society 36, № 11 (вересень 2016): 2761–66. http://dx.doi.org/10.1016/j.jeurceramsoc.2016.04.030.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Kim, Eung Soo, Je Hun Kim, Ki Gang Lee, Seung Gu Kang, and Pyung Kyu Kim. "Microwave dielectric properties of Bi(Nb1-xTax)O4ceramics with Cu2V2O7." Ferroelectrics 262, no. 1 (January 2001): 263–68. http://dx.doi.org/10.1080/00150190108225160.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Strukan, Neven, Gwilherm Nénert, Alexei Belik та Boris V. Slobodin. "Irreversible pressure-induced phase transformation in blossite, α-Cu2V2O7, mineral". Acta Crystallographica Section A Foundations and Advances 71, a1 (23 серпня 2015): s372. http://dx.doi.org/10.1107/s2053273315094450.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Slobodin, B. V., and R. F. Samigullina. "Thermoanalytical study of the polymorphism and melting behavior of Cu2V2O7." Inorganic Materials 46, no. 2 (February 2010): 196–200. http://dx.doi.org/10.1134/s0020168510020196.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Zhang, Niu, Yanchao Mao, Xiansheng Liu, Mengjie Yang, Xuhui Kong, Mengdi Zhang, Xiaoshuai Kong, Juan Guo, Mingju Chao та Erjun Liang. "Tailored thermal expansion and electrical properties of α-Cu2V2O7/Al". Ceramics International 42, № 15 (листопад 2016): 17004–8. http://dx.doi.org/10.1016/j.ceramint.2016.07.207.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Sakurai, Yoji, та Jun-Ichi Yamaki. "Electrochemical reaction of α-Cu2V2O7 with lithium in organic electrolyte". Electrochimica Acta 34, № 3 (березень 1989): 355–61. http://dx.doi.org/10.1016/0013-4686(89)87011-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Wiktor, Julia, Igor Reshetnyak, Michal Strach, Mariateresa Scarongella, Raffaella Buonsanti та Alfredo Pasquarello. "Sizable Excitonic Effects Undermining the Photocatalytic Efficiency of β-Cu2V2O7". Journal of Physical Chemistry Letters 9, № 19 (7 вересня 2018): 5698–703. http://dx.doi.org/10.1021/acs.jpclett.8b02323.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Schindler, Michael, та Frank C. Hawthorne. "Structural Characterization of the β-Cu2V2O7–α-Zn2V2O7 Solid Solution". Journal of Solid State Chemistry 146, № 1 (серпень 1999): 271–76. http://dx.doi.org/10.1006/jssc.1999.8371.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Kar, Abja Keshar, Bidisa Chattopadhyay, Ratnadwip Singha, Abhisikta Barman, Md A. Ahmed, A. Midya, S. Bandyopadhyay, Devajyoti Mukherjee, D. Jana та Prabhat Mandal. "Effect of Co and Mg doping at Cu site on structural, magnetic and dielectric properties of α–Cu2V2O7". Journal of Physics: Condensed Matter 34, № 7 (30 листопада 2021): 075702. http://dx.doi.org/10.1088/1361-648x/ac38df.

Повний текст джерела
Анотація:
Abstract We have studied the effect of doping of both magnetic (Co) and nonmagnetic (Mg) ions at the Cu site on phase transition in polycrystalline α–Cu2V2O7 through structural, magnetic, and electrical measurements. X-ray diffraction reveals that Mg doping triggers an onset of α- to β-phase structural transition in Cu2−x Mg x V2O7 above a critical Mg concentration x c = 0.15, and both the phases coexist up to x = 0.25. Cu2V2O7 possesses a non-centrosymmetric crystal structure and antiferromagnetic ordering along with a non-collinear spin structure in the α phase, originated from the microscopic Dzyaloshinskii–Moriya interaction between the neighboring Cu spins. Accordingly, a weak ferromagnetic (FM) behavior has been observed up to x = 0.25. However, beyond this concentration, Cu2−x Mg x V2O7 exhibits complex magnetic properties. A clear dielectric anomaly is observed in α–Cu2−x Mg x V2O7 around the magnetic transition temperature, which loses its prominence with the increase in Mg doping. The analysis of experimental data shows that the magnetoelectric coupling is nonlinear, which is in agreement with the Landau theory of continuous phase transitions. Co doping, on the other hand, initiates a sharp α to β phase transition around the same critical concentration x c = 0.15 in Cu2−x Co x V2O7 but the FM behavior is very weak and can be detected only up to x = 0.10. We have drawn the magnetic phase diagram which indicates that the rate of suppression in transition temperature is the same for both types of doping, magnetic (Co) and nonmagnetic (Zn/Mg).
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Muthamizh, S., J. Yesuraj, R. Jayavel, D. Contreras, K. Arul Varman та R. V. Mangalaraja. "Microwave synthesis of β-Cu2V2O7 nanorods: structural, electrochemical supercapacitance, and photocatalytic properties". Journal of Materials Science: Materials in Electronics 32, № 3 (24 січня 2021): 2744–56. http://dx.doi.org/10.1007/s10854-020-05007-w.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Keerthana, S. P., R. Yuvakkumar, P. Senthil Kumar, G. Ravi та Dhayalan Velauthapillai. "Surfactant induced copper vanadate (β-Cu2V2O7, Cu3V2O8) for different textile dyes degradation". Environmental Research 211 (серпень 2022): 112964. http://dx.doi.org/10.1016/j.envres.2022.112964.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Kulbakin, I. V., S. V. Fedorov, and V. V. Belousov. "Features of Oxygen Transfer in Cu2V2O7 – 20 wt% CuV2O6 Molten Oxide Membrane." Journal of The Electrochemical Society 165, no. 13 (2018): H861—H865. http://dx.doi.org/10.1149/2.0831813jes.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Ruan, M. Y., Z. W. Ouyang, Y. C. Sun, Z. C. Xia, G. H. Rao та H. S. Chen. "Examining Magnetic Models and Anisotropies in β-Cu2V2O7 by High-Frequency ESR". Applied Magnetic Resonance 48, № 5 (29 березня 2017): 423–33. http://dx.doi.org/10.1007/s00723-017-0871-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Krasnenko, T. I., M. V. Rotermel’, S. A. Petrova, R. G. Zakharov, O. V. Sivtsova, and A. N. Chvanova. "Phase relations in the Zn2V2O7-Cu2V2O7 system from room temperature to melting." Russian Journal of Inorganic Chemistry 53, no. 10 (October 2008): 1641–47. http://dx.doi.org/10.1134/s0036023608100203.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Wang, L., J. Werner, A. Ottmann, R. Weis, M. Abdel-Hafiez, J. Sannigrahi, S. Majumdar, C. Koo та R. Klingeler. "Magnetoelastic coupling and ferromagnetic-type in-gap spin excitations in multiferroic α-Cu2V2O7". New Journal of Physics 20, № 6 (25 червня 2018): 063045. http://dx.doi.org/10.1088/1367-2630/aac9dc.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Chattopadhyay, Bidisa, Md A. Ahmed, S. Bandyopadhyay, R. Singha та P. Mandal. "Magnetic ordering induced ferroelectricity in α-Cu2V2O7 studied through non-magnetic Zn doping". Journal of Applied Physics 121, № 9 (7 березня 2017): 094103. http://dx.doi.org/10.1063/1.4977859.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Guo, Wenlong, Xin Lian, Yao Nie, Meichen Hu, Liming Wu, Huahui Gao та Ting Wang. "Facile growth of β-Cu2V2O7 thin films and characterization for photoelectrochemical water oxidation". Materials Letters 258 (січень 2020): 126842. http://dx.doi.org/10.1016/j.matlet.2019.126842.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Sato, M., V. Warne-Lang, Y. Kadowaki, N. Katayama, Y. Okamoto, and K. Takenaka. "Sol–gel synthesis of doped Cu2V2O7 fine particles showing giant negative thermal expansion." AIP Advances 10, no. 7 (July 1, 2020): 075207. http://dx.doi.org/10.1063/5.0010631.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Vali, Abbas, та Krishnan Rajeshwar. "Β-Cu2V2O7 Thin Films By a Hybrid Electrochemical/Thermal Route: Preparation and Characterization". ECS Meeting Abstracts MA2020-02, № 15 (23 листопада 2020): 1423. http://dx.doi.org/10.1149/ma2020-02151423mtgabs.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Kim, Min-woo, Bhavana Joshi, Hyun Yoon, Tae Yoon Ohm, Karam Kim, Salem S. Al-Deyab, and Sam S. Yoon. "Electrosprayed copper hexaoxodivanadate (CuV2O6) and pyrovanadate (Cu2V2O7) photoanodes for efficient solar water splitting." Journal of Alloys and Compounds 708 (June 2017): 444–50. http://dx.doi.org/10.1016/j.jallcom.2017.02.302.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Wang, Yong, Liyun Cao, Jianfeng Huang, Lingjiang Kou, Jiayin Li, Jianpeng Wu, Yijun Liu, and Limin Pan. "Improved Li-Storage Properties of Cu2V2O7 Microflower by Constructing an in Situ CuO Coating." ACS Sustainable Chemistry & Engineering 7, no. 6 (February 17, 2019): 6267–74. http://dx.doi.org/10.1021/acssuschemeng.8b06696.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Song, Angang, Abdelkrim Chemseddine, Ibbi Yilmaz Ahmet, Peter Bogdanoff, Dennis Friedrich, Fatwa F. Abdi, Sean P. Berglund та Roel van de Krol. "Evaluation of Copper Vanadate (β-Cu2V2O7) as a Photoanode Material for Photoelectrochemical Water Oxidation". Chemistry of Materials 32, № 6 (2 березня 2020): 2408–19. http://dx.doi.org/10.1021/acs.chemmater.9b04909.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Guo, Wenlong, William D. Chemelewski, Oluwaniyi Mabayoje, Peng Xiao, Yunhuai Zhang, and C. Buddie Mullins. "Synthesis and Characterization of CuV2O6 and Cu2V2O7: Two Photoanode Candidates for Photoelectrochemical Water Oxidation." Journal of Physical Chemistry C 119, no. 49 (November 30, 2015): 27220–27. http://dx.doi.org/10.1021/acs.jpcc.5b07219.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Ilic, D., and D. Neumann. "Characterization of Cu2V2O7 as cathode material for lithium cells by X-ray and photoelectron spectroscopy." Journal of Power Sources 44, no. 1-3 (April 1993): 589–93. http://dx.doi.org/10.1016/0378-7753(93)80207-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Ninova, Silviya, Michal Strach, Raffaella Buonsanti та Ulrich Aschauer. "Suitability of Cu-substituted β-Mn2V2O7 and Mn-substituted β-Cu2V2O7 for photocatalytic water-splitting". Journal of Chemical Physics 153, № 8 (28 серпня 2020): 084704. http://dx.doi.org/10.1063/5.0019306.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Gadiyar, Chethana, Michal Strach, Pascal Schouwink, Anna Loiudice та Raffaella Buonsanti. "Chemical transformations at the nanoscale: nanocrystal-seeded synthesis of β-Cu2V2O7 with enhanced photoconversion efficiencies". Chemical Science 9, № 25 (2018): 5658–65. http://dx.doi.org/10.1039/c8sc01314d.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Machida, Masato, Takahiro Kawada, Hiroaki Yamashita, and Tonami Tajiri. "Role of Oxygen Vacancies in Catalytic SO3 Decomposition over Cu2V2O7 in Solar Thermochemical Water Splitting Cycles." Journal of Physical Chemistry C 117, no. 50 (December 5, 2013): 26710–15. http://dx.doi.org/10.1021/jp410431a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Thanh Truc, Nguyen Thi, Nguyen Thi Hanh, Minh Viet Nguyen, Nguyen Thi Phuong Le Chi, Nguyen Van Noi, Dinh Trinh Tran, Minh Ngoc Ha, Do Quang Trung, and Thanh-Dong Pham. "Novel direct Z-scheme Cu2V2O7/g-C3N4 for visible light photocatalytic conversion of CO2 into valuable fuels." Applied Surface Science 457 (November 2018): 968–74. http://dx.doi.org/10.1016/j.apsusc.2018.07.034.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Kalal, Sangeeta, Arpita Pandey, Rakshit Ameta, Pinki B. Punjabi, and Alexandra Martha Zoya Slawin. "Heterogeneous photo-Fenton-like catalysts Cu2V2O7 and Cr2V4O13 for an efficient removal of azo dye in water." Cogent Chemistry 2, no. 1 (March 22, 2016): 1143344. http://dx.doi.org/10.1080/23312009.2016.1143344.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Guo, Wenlong, та Xin Lian. "Kinetics mechanism insights into the oxygen evolution reaction on the (110) and (022) crystal facets of β-Cu2V2O7". Catalysis Science & Technology 10, № 15 (2020): 5129–35. http://dx.doi.org/10.1039/d0cy00959h.

Повний текст джерела
Анотація:
We study the kinetics mechanism for the oxygen evolution reaction (OER) on the (110) and (022) facets of β-Cu2V2O7 using the density functional theory and find that the (110) orientation is more OER active than (022).
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Scarongella, Mariateresa, Chethana Gadiyar, Michal Strach, Luca Rimoldi, Anna Loiudice та Raffaella Buonsanti. "Assembly of β-Cu2V2O7/WO3 heterostructured nanocomposites and the impact of their composition on structure and photoelectrochemical properties". Journal of Materials Chemistry C 6, № 44 (2018): 12062–69. http://dx.doi.org/10.1039/c8tc02888e.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Wang, Yong, Liyun Cao, Jianfeng Huang, Jing Lu, Boye Zhang, Guojuan Hai, and Na Jia. "Enhanced cyclic performance of Cu2V2O7/ reduced Graphene Oxide mesoporous microspheres assembled by nanoparticles as anode for Li-ion battery." Journal of Alloys and Compounds 724 (November 2017): 421–26. http://dx.doi.org/10.1016/j.jallcom.2017.07.070.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Paul, Arijita, and Siddhartha Sankar Dhar. "Designing Cu2V2O7/CoFe2O4/g-C3N4 ternary nanocomposite: A high performance magnetically recyclable photocatalyst in the reduction of 4-nitrophenol to 4-aminophenol." Journal of Solid State Chemistry 290 (October 2020): 121563. http://dx.doi.org/10.1016/j.jssc.2020.121563.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Kumar, Amit, Sunil Kumar Sharma, Gaurav Sharma, Changsheng Guo, Dai-Viet N. Vo, Jibran Iqbal, Mu Naushad, and Florian J. Stadler. "Silicate glass matrix@Cu2O/Cu2V2O7 p-n heterojunction for enhanced visible light photo-degradation of sulfamethoxazole: High charge separation and interfacial transfer." Journal of Hazardous Materials 402 (January 2021): 123790. http://dx.doi.org/10.1016/j.jhazmat.2020.123790.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії