Добірка наукової літератури з теми "Cu foam"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Cu foam".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Cu foam"
Wang, Jing, Zan Zhang, Jian Ding, Chuan Rong Qiu, Xing Chuan Xia, and Wei Min Zhao. "Quasi-Static Compressive Characteristics of Cu-Containing Closed-Cell Aluminum Foams." Key Engineering Materials 748 (August 2017): 173–80. http://dx.doi.org/10.4028/www.scientific.net/kem.748.173.
Повний текст джерелаDutta, Abhijit, Kiran Kiran, Motiar Rahaman, Ivan Zelocualtecatl Montiel, Pavel Moreno-Garcí, Soma Vesztergom, Jakub Drnec, Mehtap Oezaslan, and Peter Broekmann. "Insights from Operando and Identical Location (IL) Techniques on the Activation of Electrocatalysts for the Conversion of CO2: A Mini-Review." CHIMIA International Journal for Chemistry 75, no. 9 (September 15, 2021): 733–43. http://dx.doi.org/10.2533/chimia.2021.733.
Повний текст джерелаYang, Haobo, Jichao Li, Hao Yu, Feng Peng, and Hongjuan Wang. "Metal-Foam-Supported Pd/Al2O3 Catalysts for Catalytic Combustion of Methane: Effect of Interaction between Support and Catalyst." International Journal of Chemical Reactor Engineering 13, no. 1 (March 1, 2015): 83–93. http://dx.doi.org/10.1515/ijcre-2014-0009.
Повний текст джерелаSridaeng, Duangruthai, Benjatham Sukkaneewat, Nuttawut Chueasakol, and Nuanphun Chantarasiri. "Copper-amine complex solution as a low-emission catalyst for flexible polyurethane foam preparation." e-Polymers 15, no. 2 (March 1, 2015): 119–26. http://dx.doi.org/10.1515/epoly-2014-0197.
Повний текст джерелаHuang, Yao, Zexin Li, Lucai Wang, Leilei Sun, Xiaohong You, Wenzhan Huang, and Fang Wang. "Preparation and Heat Dissipation Properties Comparison of Al and Cu Foam." Metals 12, no. 12 (November 30, 2022): 2066. http://dx.doi.org/10.3390/met12122066.
Повний текст джерелаMirzaee, Majid, and Changiz Dehghanian. "Nanostructured Ni-Cu Foam Electrodeposited on a Copper Substrate Applied as Supercapacitor Electrode." Acta Metallurgica Slovaca 24, no. 4 (December 11, 2018): 325. http://dx.doi.org/10.12776/ams.v24i4.1138.
Повний текст джерелаSridaeng, Duangruthai, Wannisa Jitaree, Preecha Thiampanya, and Nuanphun Chantarasiri. "Preparation of rigid polyurethane foams using low-emission catalysts derived from metal acetates and ethanolamine." e-Polymers 16, no. 4 (July 1, 2016): 265–75. http://dx.doi.org/10.1515/epoly-2016-0021.
Повний текст джерелаBalciunaite, Aldona, Žana Činčienė, Loreta Tamasiunaite, Jūratė Vaičiūnienė, and Eugenijus Norkus. "3D Structured Pt(Cu-Ni)/Ti Catalysts for the Oxidation of Sodium Borohydride." ECS Meeting Abstracts MA2022-01, no. 35 (July 7, 2022): 1523. http://dx.doi.org/10.1149/ma2022-01351523mtgabs.
Повний текст джерелаYe, Bora, and Sunjung Kim. "Formation of Nanocrystalline Surface of Cu–Sn Alloy Foam Electrochemically Produced for Li-Ion Battery Electrode." Journal of Nanoscience and Nanotechnology 15, no. 10 (October 1, 2015): 8217–21. http://dx.doi.org/10.1166/jnn.2015.11434.
Повний текст джерелаHou, Guang Ya, Ji Yu Li, Lian Kui Wu, Yi Ping Tang, Hua Zhen Cao, and Guo Qu Zheng. "Effect of Dealloying Process on Microstructure and Electrochemical Properties of Ni Foam." Materials Science Forum 922 (May 2018): 3–7. http://dx.doi.org/10.4028/www.scientific.net/msf.922.3.
Повний текст джерелаДисертації з теми "Cu foam"
Smith, William Daniel. "The effects of zirconium on the microstructure and mechanical properties of the Al-Li-Cu-Mg alloy 8090." Thesis, University of Southampton, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.245329.
Повний текст джерелаAn, Tao. "Design, realization and study of bimetallic and metallic based composite materials with controlled architecture obtained by mixed process : additive manufacturing/foundry/powder metallurgy for heat exchange in braking systems." Electronic Thesis or Diss., Université de Lille (2022-....), 2024. https://pepite-depot.univ-lille.fr/ToutIDP/EDSMRE/2024/2024ULILR028.pdf.
Повний текст джерелаThe high and repeated thermal stresses during the braking of high-speed trains result in thermal fatigue cracks, leading to braking material failures. Composite braking pads based on copper (Cu) matrix in powder form are chosen to improve thermal dissipation of braking system. However, new international environmental standards require a reduction in Cu content, conflicting with maintaining the proper thermal properties. It is proposed in this work to utilize Cu foams architected with a continuous network in the form of a representative elementary volume (REV) enabling better control of heat flow. FEM numerical simulations are first carried out to investigate the feasibility of optimizing heat transfer ability by using Cu foams. Simulation results show that the thermal diffusivity considering REVs can be significantly improved. Especially locally, when the REV size is reduced. Thus, the following work focuses on reducing REV size of Cu foams produced by additive manufacturing (AM) assisted investment casting. Bimetallic pads based on Cu foams are then produced by a hot-pressing technology. Their thermal behavior of the produced pads is studied. Experimental results show that Cu foams with a REV size of up to 2 mm can be technically fabricated. In addition, a tribological test is also carried out. Cu foams with a reduced REV size can significantly optimize the heat transfer capacity of braking pads, in line with the numerical results. Finally, this new configuration demonstrates braking stability by promoting the formation of a third body
Bullock, Richard John. "Mobility, chemical form and bioavailability of Cd, Zn, Pb and Cu in woodland soils contaminated by aerial fallout." Thesis, University of Bristol, 1992. http://hdl.handle.net/1983/745d9114-d91c-4b21-9dfd-bb0195a59939.
Повний текст джерелаCarnahan, Elizabeth A. "Foraminiferal assemblages as bioindicators of potentially toxic elements in Biscayne Bay, Florida." [Tampa, Fla.] : University of South Florida, 2005. http://purl.fcla.edu/fcla/etd/SFE0001019.
Повний текст джерелаGiarnieri, Ilenia. "Kraft lignin depolymerization to added-value building blocks by electrooxidation over Ni and Cu electrocatalysts." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/24402/.
Повний текст джерелаChen, Wen-Yu, and 陳玟郁. "Cu(I)-mediating Pt reduction to form Pt-nanoparticle-embedded Nafion composites and their electrocatalytic O2 reduction." Thesis, 2015. http://ndltd.ncl.edu.tw/handle/37732141788256658047.
Повний текст джерела國立中興大學
化學系所
103
A Cu+ ion-mediating Pt reduction used to prepare nanoparticle Pt-embedded Nafion (NF(Ptnano)) composites with well-dispersed and protective agent-free Pt nanocrystals with narrow particle size(~2.1 nm) distribution is described. Cu+ accumulated in Nafion via the electrochemical reduction of Cu2+ serves as a movable mediator to reduce PtCl42- to Pt. The NF(Ptnano) composites were probed as a function of composition and particle size distribution using powder X-ray diffraction (XRD),transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and electrochemical characterization. The Pt nanoparticles distributed in the Nafion film electrically communicate with the electrode without any mediators or carbon support. The highly catalytic performance of the NF(Ptnano) composite as a potential electrocatalytic material for facilitation of the oxygen reduction reaction (ORR) was demonstrated. The electrocatalytic activity of Pt-embedded Nafion catalysts for ORR was investigated with cyclic voltammetry and rotating disc electrode (RDE) voltammetry experiments.
Yahg, Hui-Wen, and 楊惠文. "Cu(I)-mediating Au reduction to form Au-nanoparticle-embedded Nafion composites applied for highly selective detection of arsenic(III)." Thesis, 2016. http://ndltd.ncl.edu.tw/handle/13555172531941257327.
Повний текст джерела國立中興大學
化學系所
104
A Cu(I)-ion-mediating Au reduction is proposed for preparing an Au-nanoparticle-embedded nafion (NF(Aunano)) composite. The NF(Aunano) composite consisted of highly dense, well-dispersed, and protecting-agent-free Au nanocrystals with a narrow particle size (4.8±0.1 nm) distribution. The NF(Aunano) composite was characterized as a function of composition and particle size distribution using powder X-ray diffraction, transmission electron microscopy, and electrochemical measurements. It was demonstrated that the NF(Aunano) composite provided high activity in the redox behavior of As(III), and was used as a potential sensing material with low Au loading for As(III) detection. An NF(Aunano)-composite-modified electrode is easy to prepare and regenerate. The dynamic range of a calibration curve from 0.1 to 12.0 μg/L (from 1.3 to 160 nM), y=23.98x (in μA/μM)+0.42 (R2=0.999), showed linear behavior with a slope of 23.98 μA/μM. The detection limit is as low as 0.047 μg/L (0.63 nM). The chelating agent ethylenediaminetetraacetate (EDTA) can selectively chelate with interfering metal ions, forming bulky complexes or bulky anions that are excluded from the NF film. The presence of EDTA effectively eliminated interference from several metal ions, particularly Cu(II) and Hg(II), which are generally considered to be major interferents in the electroanalysis of As(III). This method was applicable to As(III) analysis in three real water samples, namely groundwater, lake, and drinking waters.
MAREPALLY, BHANU CHANDRA. "Production of Solar Fuels using CO2." Doctoral thesis, 2017. http://hdl.handle.net/11570/3107057.
Повний текст джерелаIn view of the recent alarming rate of depletion of fossil fuel reserves and the drastic rise in the CO2 levels in the atmosphere leading to global warming and severe climate changes, tapping into all kinds of renewable energy sources has been among the top priorities in the research fields across the globe. One of the many such pathways is CO2 reduction to fuels using renewable energies, more commonly referred as artificial photosynthetic cells or artificial leaves or photo-electro-catalytic (PEC) cells. The key objective of the present PhD work was to conduct in-depth studies on two different electro-catalytic CO2 reduction systems: electrolyte-less cell (gas phase) and electrolytic cell (liquid phase). In particular, a novel lab scale liquid phase cell, on the similar lines of the previously realized gas phase cell at the University of Messina, was developed and used to convert electro-catalytically CO2 to more value-added products. The work was carried out at the Laboratory CASPE/INSTM of the University of Messina (Department of Electronic Engineering, Industrial Chemistry and Engineering). During the second year, a six-month period was spent at the École supérieure de chimie, physique, électronique de Lyon (CPE Lyon), where organometallic routes were explored for the synthesis of novel composite materials to be used as electrocatalysts in the CO2 reduction process. Experimental tests were carried out on various types of catalysts in both the gas and liquid phase cells to understand the different selectivity, productivity and the reaction products obtained. Liquid phase, in fact, has been the most studied process in literature, but some issues mainly related to CO2 solubility and types of products formed (i.e. mainly formic acid), have never be allowed to pass the lab scale stage. The general aim of this PhD was to prepare novel metal doped nanocarbon substrates, which are very different with respect to the conventional metal bulk layers used as electrocatalysts in CO2 reduction, and test them both in gas phase (to take advantage of these conditions, i.e easy recovery and improved quality of the products) and in liquid phase (to have a better comparison with conditions typically adopted in literature). For the studies on the electro-catalytic reduction of CO2 in gas phase cell, a series of electrodes (based on Cu, Fe, Pt and Cu/Fe metal nanoparticles – NPs - deposited on carbon nanotubes – CNTs - or carbon black and then placed at the interface between a Nafion membrane and a gas diffusion-layer) were prepared. The results, evidencing the various types of products formed and their different productivities, are very promising. Under electrolyte-less conditions, the formation of ≥C1 products (such as ethanol, acetone and isopropanol) were observed, the highest being for Fe and closely followed by Pt, evidencing that also non-noble metals can be used as efficient catalysts under these conditions. To enhance the productivities of the CO2 reduction, a different set of electrodes were also prepared based on substituted Zeolitic Imidazolate (SIM-1) type MOF coatings during a stay at CPE Lyon and Institut de recherches sur la catalyse et l'environnement de Lyon (IRCELYON). Particularly, the catalysts tested were MOF-based Fe-CNTs, Pt-CNTs and Cu/Fe-CNTs. There was a significant change in the reaction products and in the selectivity towards the end-products. Particularly, especially for the MOF modified Pt based catalyst, there was an increase in the C-products and also a better selectivity towards higher C-products. Moving to the studies on the electro-catalytic reduction of CO2 in liquid phase cell, a similar set of electrodes were prepared. Initially, electrodes based on metal NPs of Cu, Fe, Pt, Ru and Co deposited on CNTs or carbon black were studied for their CO2 reduction capability. The relative order of productivity in CO2 electro-catalytic reduction in these series of electrodes was found to be different between the gas and liquid phase cells indicating the different reaction pathways. For liquid phase conditions, in terms of net C-products, catalytic electrodes based on Pt topped the class, closely followed by Ru and Cu, while Fe got the lowest position. The probable underlying reaction mechanism was also provided. In order to improve further the performances of the CO2 reduction in liquid phase conditions, a metal NPs size dependant study on the electro-catalytic reduction of CO2 to fuels was carried out. This study was performed using electrodes based on metal NPs of Ru, Fe, Pt and Cu loaded on CNTs and then transferred on a gas diffusion layers (GDL). Varied sized metal NPs have been synthesized using different techniques: (i) impregnation route to achieve NPs in the size range of 10-50 nm; (ii) organometallic approach to synthesize uniform and ultrafine NPs in the size range of 1-5 nm (i.e., Fe NPs were synthesized through a novel synthesis route to attain 13 nm NPs);(iii) Nanowire (NW) top-down approach to obtain ultrafine copper metal NPs in the size range of 2-3.8 nm. Particularly, the novelty of nanowire approach is the ability to obtain very small metal NPs starting from the synthesis of Cu NWs and then transferring the Cu onto the carbon surface, taking advantage of the different inter-forces of between Cu NWs and the functional groups present on the partially oxidized CNT surface. Furthermore, unlike the case of organo-metallic approach, this approach allows a preparation under air avoiding the use of potentially demanding inert atmospheric conditions. The enhancements in the fuel productivity were found to be 5-30 times higher for the smaller metal NPs obtained via organo-metallic route or nanowire route as compared to the larger metal NPs obtained via impregnation route. The results signify that the smaller sized metal NPs loading on the CNTs have a prevailing role in the catalytic performance and the selectivity towards different products. Moreover, the percentage of metal NPs loading was significantly reduced from 10 to 1-2 wt. % producing higher or equivalent fuels for small NPs as compared to the larger NPs. The reusability of the working electrodes and long reaction times (until 24 hours) were also probed. A different set of electrodes based on nano-foams on metal foils, were also investigated to achieve further improvements in the electro-reduction of CO2 to fuels. These nano-foams or dendrites were prepared by electrochemical deposition technique. Optimization studies on the deposition of these foams were performed initially to fix the set of preparation conditions. Moreover, voltage optimization study was performed using cyclic voltammetry and full CO2 reduction tests to find the optimum voltage for the process. The nano-foam electrodes tested include Cu and Fe foams on Cu foil, Fe foil, Al foil, Inconel foil and Al grid/mesh. The enhancements in the fuel productivity for various foams were in the range of 2-10 times greater as compared to the highest net fuel productivity achieved using metal NPs doped carbon catalytic electrodes, from all the previous studies. Various characterizations and analysis tools were used to analyse the catalysts qualitatively and quantitatively, which include Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), Atomic Absorption Spectroscopy (AAS), X-ray diffraction (XRD), X-ray Photo-electron spectroscopy (XPS), and Brunauer-Emmett-Teller (BET). To determine the fuel productivities, Ion Chromatography (IC), Gas Chromatography-Mass Spectrometer (GC-MS), Gas Chromatography (GC) were used.
Compte tenu du récent taux alarmant d'épuisement des réserves de combustibles fossiles et de l'augmentation drastique des niveaux de CO2 dans l'atmosphère qui a conduit au réchauffement de la planète et à des changements climatiques sévères, l'exploitation de toutes sortes d'énergies renouvelables a été la Parmi les principales priorités de la recherche Champs à travers le monde. L'une des nombreuses voies de ce genre est la réduction du CO2 aux combustibles utilisant des énergies renouvelables, plus communément appelées cellules photosynthétiques artificielles ou feuilles artificielles ou cellules photoélectro-catalytiques (PEC). L'objectif principal de ce travail était de réaliser des études approfondies sur les différents systèmes de réduction électro-catalytique du CO2, à savoir les cellules sans électrolyte (phase gazeuse) et les cellules électrolytiques (phase liquide). Dans ce processus, nous avons conçu une nouvelle cellule en phase liquide à échelle de laboratoire sur les lignes similaires de la cellule de phase gazeuse de modèle précédemment modélisée. Des essais expérimentaux sur la réduction du CO2 ont été réalisés sur différents types de catalyseurs dans les deux cellules afin de comprendre la sélectivité, la productivité et les produits de réaction obtenus. L'obtention de résultats de test dans les deux cellules nous a permis d'effectuer une comparaison décente avec les résultats de réduction électro-catalytique de CO2 existants dans la littérature. Des essais expérimentaux ont été réalisés sur différents types de catalyseurs à la fois dans les cellules en phase gazeuse et en phase liquide pour comprendre la sélectivité, la productivité et les produits de réaction obtenus. La phase liquide, en fait, a été le processus le plus étudié dans la littérature, mais certaines questions liées principalement à la solubilité du CO2 et aux types de produits formés (c'est-à-dire principalement l'acide formique) n'ont jamais été autorisées à franchir le stade de l'échelle du laboratoire. L'objectif général de ce doctorat était de préparer de nouveaux substrats de nanocarbone dopés par des métaux, qui sont très différents par rapport aux couches en vrac métalliques conventionnelles utilisées comme électrocatalyseurs dans la réduction de CO2, et de les tester en phase gazeuse (pour profiter de ces conditions, Une récupération facile et une qualité améliorée des produits) et en phase liquide (pour une meilleure comparaison avec les conditions typiquement adoptées dans la littérature). Pour les études sur la réduction électro-catalytique du CO2 en phase gazeuse, une série d'électrodes (à base de nanoparticules de Cu, Fe, Pt et CuFe déposées sur des nanotubes de carbone ou de noir de carbone puis placées à l'interface entre une membrane Nafion et Une électrode à couche de diffusion de gaz). Les résultats démontrent le type divers de produits formés et leurs productivités. Dans des conditions sans électrolyte, la formation de produits ≥C1 tels que l'éthanol, l'acétone et l'isopropanol a été observée la plus élevée étant pour Fe et suivie de près par Pt. Pour améliorer les productivités de la réduction du CO2, un ensemble différent d'électrodes a été préparé sur la base de revêtements MOF de type imidazolate de type zéolitique substitué (SIM-1) lors d'un séjour au CPE Lyon et à l'Institut de recherches sur la catalyse et l'environnement de Lyon (IRCELYON). Les catalyseurs testés étaient Fe-CNT, Pt-CNT et CuFe-CNT basés sur MOF. Il y a eu un changement significatif dans les produits de réaction et aussi, la sélectivité vis-à-vis des produits finaux. Pour le catalyseur à base de Pt modifié, MOF, il y avait une augmentation des produits C et également une sélectivité différente tandis que pour le catalyseur à base de Fe, il y avait une légère diminution des produits C. En se reportant aux études sur la réduction électro-catalytique du CO2 dans une cellule en phase liquide, un ensemble similaire d'électrodes a été préparé afin d'obtenir une bonne comparaison des résultats dans les expériences en phase gazeuse. Initialement, des électrodes à base de nanoparticules métalliques (Cu, Fe, Pt, Ru, Co) déposées sur des nanotubes de carbone ou du noir de carbone ont été étudiées pour leur capacité de réduction du CO2. L'ordre relatif de productivité dans la réduction électrocatalytique de CO2 dans ces séries d'électrodes a été trouvé différent entre les cellules en phase gazeuse et en phase liquide indiquant les différentes voies de réaction. Pour les conditions de phase liquide, en termes de produits C nets, les électrodes catalytiques à base de Pt sont en tête de la catégorie, suivies de près par Ru et Cu, tandis que Fe a obtenu la position la plus basse. Le mécanisme réactionnel sous-jacent probable a également été fourni. Afin d'améliorer encore les performances de la réduction du CO2 dans les conditions de phase liquide, une étude de la nanoparticules métalliques (NPs) dépendant de la taille de la réduction électro-catalytique du CO2 aux combustibles a été réalisée. Ceci a été réalisé à l'aide d'électrodes à base de nanoparticules métalliques (Ru, Fe, Pt et Cu) chargées sur les nanotubes de carbone (CNT) transférés sur les couches de diffusion gazeuse (GDL). On a synthétisé des nanoparticules de métal de différentes tailles en utilisant différentes techniques de synthèse: (i) l'itinéraire d'imprégnation pour obtenir des NP dans la plage de tailles de 10 à 50 nm; (Ii) Approche organométallique pour synthétiser des NPs uniformes et ultrafines dans la plage de tailles de 1-5 nm. Fe ont été synthétisés par une nouvelle voie de synthèse et des conditions pour atteindre des NP de 1 à 3 nm. (Iii) Approche de haut en bas de Nanowire pour obtenir des NP métalliques de cuivre ultrafin dans la plage de taille de 2-3,8 nm. En particulier, la nouveauté de l'aide de nanofils est la capacité à obtenir des particules de très petite taille d'abord la synthèse du Cu NFs, puis de les mettre en contact avec le support carboné et de faciliter son transfert, cela grâce à des forces d'attraction intermoléculaires des groupes fonctionnels présent sur le CNT partiellement oxydée. En outre, contrairement à la synthèse organométallique, cette approche permet d'effectuer les réactions dans l'air et non pas dans une atmosphère inerte. Les améliorations de la productivité du combustible ont été trouvées être au moins 5 à 30 fois plus élevées pour les NP métalliques de plus petite taille obtenus par voie organo-métallique ou par nanofil, par rapport aux NP métalliques plus grands obtenus par voie d'imprégnation. Les résultats indiquent que les NP métalliques de plus petite taille chargés sur les CNT jouent un rôle prédominant dans la performance catalytique et la sélectivité vis-à-vis de différents produits. En outre, le pourcentage de charge de NP métalliques a été réduit de façon significative de 10% à 1-2% en poids, produisant des carburants plus élevés ou équivalents pour de petites NP en comparaison avec les NP plus grandes. De plus, comme on a observé clairement la productivité en H2 qui a augmenté de nombreux facteurs pour les NP plus petits sur les plus grandes NP. La réutilisabilité des électrodes de travail et les longs temps de réaction ont également été sondés. Un ensemble différent d'électrodes à base de nano-mousses sur des feuilles métalliques a également été étudié afin d'obtenir des améliorations beaucoup plus importantes de l'électro-réduction de CO2 aux carburants. Ces nano-mousses ou dendrites ont été préparées par une technique de dépôt électrochimique. Des études d'optimisation sur le dépôt de ces mousses ont été effectuées initialement pour fixer l'ensemble des conditions de préparation. De plus, une étude d'optimisation de la tension a été réalisée en utilisant la voltamétrie cyclique et des tests de réduction de CO2 complets pour fixer une tension optimale pour les réactions. Les électrodes nano-mousses testées incluent (mousses Cu, Fe sur feuille Cu, feuille Fe, feuille Al, feuille Inconel et grille Al). Les améliorations de la productivité du combustible pour diverses mousses se situaient dans la plage de 2 à 10 fois par rapport à la productivité nette de combustible la plus élevée obtenue en utilisant des électrodes catalytiques en carbone dopé par des NP métalliques. Différentes caractérisations et outils d'analyse ont été utilisés pour analyser les catalyseurs qualitativement et quantitativement qui incluent la microscopie électronique à transmission (TEM), la microscopie électronique à balayage (SEM), la spectroscopie d'absorption atomique (AAS), la diffraction des rayons X (XRD) La spectroscopie électronique (XPS) et Brunauer-Emmett-Teller (BET) et pour déterminer les productivités des combustibles, chromatographie ionique (IC), chromatographie gazeuse-spectromètre de masse (GC-MS), chromatographie gazeuse.
Книги з теми "Cu foam"
Anghelescu, Șerban, and Răzvan Supuran. Mețeriașii: (foae cu mîini). București]: Casa de Pariuri Literare, 2011.
Знайти повний текст джерелаHoward, Elizabeth P., Leon N. Geffen, and Sophie Hogeveen. InterRAI Check-Up (CU) Assessment Form, Korean Edition. interRAI, 2024.
Знайти повний текст джерелаЧастини книг з теми "Cu foam"
Park, Soo Han, Yong Su Um, and Bo Young Hur. "Rheological Properties of Molten Al-Cu Alloys for Manufacturing Metallic Foam." In Solid State Phenomena, 656–60. Stafa: Trans Tech Publications Ltd., 2006. http://dx.doi.org/10.4028/3-908451-26-4.656.
Повний текст джерелаLokhande, Prasad E., Umesh S. Chavan, S. V. Deokar, Mukul Ingale, and Himanshu Khadase. "Copper Oxide Synthesis on Cu Foam by Chemical Bath Deposition with Surfactant for Supercapacitor." In Advances in Energy Research, Vol. 1, 345–57. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-2666-4_34.
Повний текст джерелаTripathi, Nitish Kumar, Prafulla P. Shevkar, Chitransh Atre, and Baburaj A. Puthenveettil. "Design to Avoid Dry Out in a Flat Heat Pipe Based on Cu Foam." In Lecture Notes in Mechanical Engineering, 195–200. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-7827-4_16.
Повний текст джерелаCostanza, Girolamo, Francesco Mantineo, Andrea Sili, and Maria Elisa Tata. "Chacterization of Cu Tube Filled with al Alloy Foam by Means of X-Ray Computer Tomography." In TMS 2014: 143rd Annual Meeting & Exhibition, 613–20. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-48237-8_74.
Повний текст джерелаCostanza, Girolamo, Francesco Mantineo, Andrea Sili, and Maria Elisa Tata. "Characterization of Cu Tube Filled with Al Alloy Foam by Means of X-Ray Computer Tomography." In TMS 2014 Supplemental Proceedings, 613–20. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118889879.ch74.
Повний текст джерелаSommadossi, S., P. K. Khanna, S. K. Bhatnagar, L. Lityńska, P. Zięba, W. Gust, and E. J. Mittemijer. "Development of Cu/Cu Interconnections Using an Indium Interlayer." In Metal Matrix Composites and Metallic Foams, 214–18. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/3527606203.ch38.
Повний текст джерелаPardasani, R. T., and P. Pardasani. "Effective magnetic moment of [{Cu(NCO)(OCH2CH2NEt2)}4] (triclinic form)." In Magnetic Properties of Paramagnetic Compounds, 4887. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-23675-4_4466.
Повний текст джерелаDlubek, Günter, Sebastian Depetasse, Alexander Sourkov, and Norbert Meyendorf. "Positron Annihilation Studies of Early Stages of Precipitation in High-Strength 2024 Al-Cu-Mg Alloy." In Metal Matrix Composites and Metallic Foams, 17–22. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/3527606203.ch4.
Повний текст джерелаDeJong, T. M. "Uptake and assimilation of nutrient resources." In Concepts for understanding fruit trees, 18–21. Wallingford: CABI, 2022. http://dx.doi.org/10.1079/9781800620865.0003.
Повний текст джерелаShinozaki, K., and K. Koyama. "Development of Al/Cu Dissimilar Brazing Joint Controlled Form of Intermetallic Compound." In THERMEC 2006, 4075–80. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-428-6.4075.
Повний текст джерелаТези доповідей конференцій з теми "Cu foam"
Yang, Le, Jianbo Xin, Zhen Pan, Ke Li, Sushi Liu, Jicun Lu, and Yang Liu. "Mechanism Study of the Cu Foam Reinforced Sandwich Structure of Cu Sintered Joints." In 2024 25th International Conference on Electronic Packaging Technology (ICEPT), 1–4. IEEE, 2024. http://dx.doi.org/10.1109/icept63120.2024.10668641.
Повний текст джерелаT, Petrov, I. Markova Deneva, Chauvet O, and Denev I. "Synthesis and Study of Porous Carbon Foam/Cu (Cu-Sn) Nanoparticles Composites for Electrode Materials." In 9th International Conference on Multi-Material Micro Manufacture. Singapore: Research Publishing Services, 2012. http://dx.doi.org/10.3850/978-981-07-3353-7_266.
Повний текст джерелаHe, Huang, Shangyu Huang, and Yong Xiao. "Cu interconnects soldered with a novel Sn-based composite solder reinforced by Ni-Cu alloy foam." In 2020 21st International Conference on Electronic Packaging Technology (ICEPT). IEEE, 2020. http://dx.doi.org/10.1109/icept50128.2020.9202641.
Повний текст джерелаSharma, Vyas Mani, Vikranth Racherla, and Surjya Kanta Pal. "Fabrication of Copper Foam Plate Using Friction Sintering." In ASME 2019 14th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/msec2019-2952.
Повний текст джерелаHe, Huang, Kewei Tan, Yingxian He, Lei Zhao, Wen Wang, and Yong Xiao. "The microstructure of Cu joint soldered with a new Cu coated Ni foam reinforced Sn composite solder." In 2023 24th International Conference on Electronic Packaging Technology (ICEPT). IEEE, 2023. http://dx.doi.org/10.1109/icept59018.2023.10492134.
Повний текст джерелаArrivo, Lucas, Steven Schon, and Aaron P. Wemhoff. "Measuring the Thermal Contact Resistance Between Cu Foams and Substrates for On-Chip Cooling Applications in Data Centers." In ASME 2021 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/ipack2021-73015.
Повний текст джерелаWang, Qiwei, Yong Xiao, and Xingyi Zhang. "Ultrasound-assisted soldering of Cu alloy using a Ni-foam reinforced Sn composite solder." In 2017 18th International Conference on Electronic Packaging Technology (ICEPT). IEEE, 2017. http://dx.doi.org/10.1109/icept.2017.8046584.
Повний текст джерелаPetrov, T., V. Milanova, I. Denev, and I. Markova. "Electrochemical Behavior of Porous Nanocomposites Based on Carbon Foam and Intermetallic Cu-Sn Nanoparticles." In 10th International Conference on Multi-Material Micro Manufacture. Singapore: Research Publishing Services, 2013. http://dx.doi.org/10.3850/978-981-07-7247-5-332.
Повний текст джерелаZhu, Yichen, Cunwei Wei, Liyun Li, Huijun Cao, and Zhihao Zhang. "Rapid manufacturing of complete intermetallic joints using Cu/Sn foam composite by ultrasonic- assisted soldering." In 2020 21st International Conference on Electronic Packaging Technology (ICEPT). IEEE, 2020. http://dx.doi.org/10.1109/icept50128.2020.9202530.
Повний текст джерелаHe, Huang, Shangyu Huang, and Yong Xiao. "Microstructure evolution and mechanical properties of Cu interconnects bonded with Ni-foam reinforced pure Sn solder." In 2019 20th International Conference on Electronic Packaging Technology(ICEPT). IEEE, 2019. http://dx.doi.org/10.1109/icept47577.2019.245222.
Повний текст джерелаЗвіти організацій з теми "Cu foam"
Leybourne, M. I., J. M. Peter, M A Schmidt, D. Layton-Matthews, A. Voinot, and L. Mathieu. Geochemical evidence for a magmatic contribution to the metal budget of the Windy Craggy Cu-Co(±Zn) volcanogenic massive-sulfide deposit, northwestern British Columbia. Natural Resources Canada/CMSS/Information Management, 2022. http://dx.doi.org/10.4095/328018.
Повний текст джерелаCorriveau, L., and E. G. Potter. Advancing exploration for iron oxide-copper-gold and affiliated deposits in Canada: context, scientific overview, outcomes, and impacts. Natural Resources Canada/CMSS/Information Management, 2024. http://dx.doi.org/10.4095/332495.
Повний текст джерелаChefetz, Benny, Baoshan Xing, Leor Eshed-Williams, Tamara Polubesova, and Jason Unrine. DOM affected behavior of manufactured nanoparticles in soil-plant system. United States Department of Agriculture, January 2016. http://dx.doi.org/10.32747/2016.7604286.bard.
Повний текст джерела