Добірка наукової літератури з теми "Crystalline Curvature Flows"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Crystalline Curvature Flows".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Crystalline Curvature Flows"

1

Andrews, Ben. "Singularities in crystalline curvature flows." Asian Journal of Mathematics 6, no. 1 (2002): 101–22. http://dx.doi.org/10.4310/ajm.2002.v6.n1.a6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Chambolle, Antonin, Massimiliano Morini, Matteo Novaga, and Marcello Ponsiglione. "Existence and uniqueness for anisotropic and crystalline mean curvature flows." Journal of the American Mathematical Society 32, no. 3 (April 11, 2019): 779–824. http://dx.doi.org/10.1090/jams/919.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

BELLETTINI, G., та M. NOVAGA. "APPROXIMATION AND COMPARISON FOR NONSMOOTH ANISOTROPIC MOTION BY MEAN CURVATURE IN ℝN". Mathematical Models and Methods in Applied Sciences 10, № 01 (лютий 2000): 1–10. http://dx.doi.org/10.1142/s0218202500000021.

Повний текст джерела
Анотація:
We prove that a reaction-diffusion inclusion provides a sub-optimal approximation for anisotropic motion by mean curvature in the nonsmooth case. This result is valid in any space dimension and with a time-dependent driving force, provided we assume the existence of a regular flow. The crystalline case is included. As a by-product of our analysis, a comparison theorem between regular flows is obtained. This result implies uniqueness of the original flow.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Narumi, Takatsune, Jun Fukada, Satoru Kiryu, Shinji Toga, and Tomiichi Hasegawa. "Flow Induced Unstable Structure of Liquid Crystalline Polymer Solution in L-Shaped Slit Channels." Journal of Fluids Engineering 130, no. 8 (July 24, 2008). http://dx.doi.org/10.1115/1.2956604.

Повний текст джерела
Анотація:
An experimental study has been conducted on unstable structures induced in two-dimensional slit flows of liquid crystalline polymer solution. 50wt% aqueous solution of hydroxyl-propylcellulose (HPC) was utilized as a test fluid and its flow behavior in L-shaped slit channels with a cross section of 1mm height and 16mm width was measured optically. The inner corner of the L-shaped channel was rounded off in order to clarify the influence of the radius of curvature on the unstable behavior. A conversing curved channel was also tested. The flow patterns of the HPC solution in the channels were visualized with two crossed polarizers and we observed that typical wavy textures generated in the upstream of the corner almost disappeared after the corner flow. However, an unstable texture was developed again only from the inner corner in downstream flow. The fluctuation of the orientation angle and dichroism were also measured with a laser opto-rheometric system and it was found that the unstable behaviors of the HPC solution have periodic oscillatory characteristics at a typical frequency. In the inner side flow after the corner, the periodic motion became larger toward the downstream and then higher harmonic oscillations were superimposed. Larger rounding off of the inner corner suppressed the redevelopment of unstable behavior, and it is considered that the rapid regrowth of unstable behavior was caused by rapid deceleration at the corner flow. Moreover, the unstable structure was stabilized with an accelerated (elongated) region in the corner flow and the converging channel was helpful to obtain a stable structure in the downstream region.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Das, Rishita, Sean D. Peterson, and Maurizio Porfiri. "Stability of schooling patterns of a fish pair swimming against a flow." Flow 3 (2023). http://dx.doi.org/10.1017/flo.2023.25.

Повний текст джерела
Анотація:
Fish often swim in crystallized group formations (schooling) and orient themselves against the incoming flow (rheotaxis). At the intersection of these two phenomena, we investigate the emergence of unique schooling patterns through passive hydrodynamic mechanisms in a fish pair, the simplest subsystem of a school. First, we develop a fluid dynamics-based mathematical model for the positions and orientations of two fish swimming against a flow in an infinite channel, modelling the effect of the self-propelling motion of each fish as a point-dipole. The resulting system of equations is studied to gain an understanding of the properties of the dynamical system, its equilibria and their stability. The system is found to have five types of equilibria, out of which only upstream swimming in in-line and staggered formations can be stable. A stable near-wall configuration is observed only in limiting cases. It is shown that the stability of these equilibria depends on the flow curvature and streamwise interfish distance, below critical values of which, the system may not have a stable equilibrium. The study reveals that simply through passive fluid dynamics, in the absence of any other feedback/sensing, we can justify rheotaxis and the existence of stable in-line and staggered schooling configurations.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Crystalline Curvature Flows"

1

De, gennaro Daniele. "Flots de courbure cristalline et anisotrope, non linéaire et non local." Electronic Thesis or Diss., Université Paris sciences et lettres, 2024. http://www.theses.fr/2024UPSLD020.

Повний текст джерела
Анотація:
Cette thèse est consacrée à l'étude de flots géométriques, avec un accent particulier sur le flot de la courbure moyenne. La thèse est divisée en deux parties thématiques. La première partie, Partie I, contient les Chapitres 2, 3 et 4, et concerne des résultats de convergence pour le schéma des mouvements minimisants, qui est une procédure variationnelle étendant le schéma implicite d'Euler aux évolutions ayant une structure de type flot gradient. Nous mettons en {oe}uvre ce schéma pour des flots, linéaires ou non linéaires, de la courbure anisotrope ou cristalline, non locale ou inhomogène, et nous étudions sa convergence vers des solutions faibles. Au Chapitre 4, nous associons également cette étude à une limite discrète-continue. La deuxième partie, Partie II, est consacrée à l'étude du comportement asymptotique des flots de la courbure avec une contrainte de volume, à la fois en temps discret et en temps continu. Le principal outil technique utilisé est une nouvelle inégalité de {L}ojasiewicz-Simon adaptée à l'étude de ce type d'évolutions
This thesis is devoted to the study of geometric flows, with particular focus on the mean curvature flow. It is divided in two thematic parts. The first part, Part I, contains Chapters 2,3 and 4, and concerns convergence results for the minimizing movements scheme, which is a variational procedure extending Euler's implicit scheme to evolutions having a gradient flow-like structure. We implement this scheme for anisotropic or crystalline, nonlocal or inhomogeneous curvature flows, in linear and nonlinear instances, and study its convergence towards weak solutions to the flows. In Chapter 4 we also pair this study with a discrete-to-continuum limit. The second part, Part II, is devoted to the study of asymptotic behaviour of volume-preserving curvature flows both in the discrete- and continuus-in-time instances. The main technical tool employed is a new {L}ojasiewicz-Simon inequality suited to the study of these kind of evolutions
Стилі APA, Harvard, Vancouver, ISO та ін.
2

CHERMISI, MILENA. "Crystalline flow of planar partitions and a geometric approach for systems of PDEs." Doctoral thesis, Università degli Studi di Roma "Tor Vergata", 2006. http://hdl.handle.net/2108/202647.

Повний текст джерела
Анотація:
La presente tesi tratta due argomenti distinti. Il Capitolo 1 e il Capitolo 2 riguardano problemi di evoluzione di interfacce nel piano. Nel Capitolo 1 viene considerata l’evoluzione di un materiale policristallino con tre (o più) fasi, in presenza di un’anisotropia cristallina (pari) ϕo la cui linea di livello 1, Fϕ :={ϕo ≤1} (Frank diagram), è un poligono regolare di n lati. La funzione duale ϕ : R2 →R definita da ϕ(ξ) := sup{ξ·η : ϕo(η)≤1}´e anch’essa un’anisotropia cristallina e Wϕ := {ϕ ≤ 1} è detta Wulff shape. In particolare, viene studiato il moto per curvatura cristallina di triodi elementari, ossia speciali reti piane di curve che sono frontiere regolari di insiemi rappresentanti tre fasi distinte di un materiale. Un triodo elementare è formato dall’unione di tre curve Lipschitziane, le interfacce, che si intersecano in un unico punto detto giunzione tripla. Ogni interfaccia è l’unione di un segmento di lunghezza finita e di una semiretta che riproduce due lati consecutivi della Wulff shape Wϕ. Viene analizzata l’esitenza locale e globale e la stabilità del flusso. Si dimostra l’esistenza locale di un unico flusso regolare stabile a partire da un dato iniziale regolare stabile: se n, il numero dei lati della Wulff shapeWϕ, è un multiplo di 6 allora il flusso è globale e converge a un flusso omotetico per t →+∞. L’analisi del comportamento del flusso per tempi grandi richiede lo studio della stabilità. La stabilità è l’ingrediente che assicura che nessun segmento si sviluppa dalla giunzione tripla durante il flusso. In generale, il flusso può diventare instabile in un tempo finito: se ciò accade e tutte le lunghezze dei segmenti finiti sono strettamente positive per tale tempo,è possibile costruire un flusso regolare per tempi successivi aggiungendo in corrispondenza della giunzione tripla in una delle tre interfacce un segmento infinitesimo opportuno (o addirittura un arco di curva a curvatura cristallina nulla). ´E anche possibile che durante il flusso uno dei tre segmenti scompaia in un tempo finito. In tal caso, in tale tempo il campo vettoriale di Cahn-Hoffman ha un salto di discontinuità e ai tempi successivi la giunzione tripla si muove traslando lungo la semiretta adiacente. Ognuno di questi flussi ha la proprietà che tutte le curvature cristalline rimangono limitate (persino se un segmento appare o scompare). ´E importante sottolineare che Taylor aveva già predetto la nascita di nuovi segmenti dalla giunzione tripla (senza però dimostrarlo). Viene inoltre considerato il flusso per curvatura cristalina di una partizione regolare stabile formata da due triodi elementari adiacenti. Vengono discussi alcuni esempi di situazioni di colasso che portano a cambi di topologia, come ad esempio la collisione di due giunzioni triple. Questi esempi (come anche il risultato di esistenza per tempi piccoli) mostrano uno dei vantaggi del flusso per curvatura cristallino rispetto, ad esempio, all’usuale moto per curvatura: calcoli espliciti possono essere fatti, e nel caso di non unicità, è possibile confrontare le energie delle diverse evoluzioni (difficile nel caso euclideo). Nel Capitolo 2 viene introdotta, usando la teoria delle funzioni a variazione limitata a valori in S1, la sfera diR2, una nuova classe di funzionali energia definiti su partizioni. Attraverso la variazione prima del funzionale energia, viene fornito un nuovo modello per l’evoluzione di interfacce che parzialmente estende quello introdotto nel Capitolo 1 e che consiste in un problema di frontiera libera definito sulle funzioni a variazione limitata a valori in S1. Questo modello è legato all’evoluzione di materiali policristallini dove è consentito alla Wulff shape di ruotare. Assumendo l’esitenza locale del flusso, si dimostra che durante il flusso curve chiuse convesse rimangono convesse e curve chiuse embedded rimangono embedded. Il secondo argomento della tesi è trattato nel Capitolo 3: l’obiettivo è quello di estendere il metodo delle linee di livello a sistemi di equazioni differenziali alle derivate parziali. Il metodo che viene proposto è consistente con la precedente ricerca portata avanti da Evans per l’equazione del calore e da Giga e Sato per equazioni di Hamilton-Jacobi. Il nostro approccio segue una costruzione geometrica che è legate alla nozione di barriera introdotta da De Giorgi. L’idea principale è quella di forzare un principio di confronto tra varietà di diversa codimensione e richiedere che ogni sottolivello di una soluzione dell’equazione per le linee di livello, detta level set equation, sia una barriera per i grafici di soluzioni del corrispondente sistema. Tale metodo ben si applica a una classe di sistemi di equazioni quasi-lineari del primo ordine. Viene fornita la level set equation associata ad opportuni sitemi di leggi di conservazione del primo ordine, al flusso per curvatura media di una varietà di codimensione arbitraria e a sitemi di equazioni di reazione-diffusione. Infine, viene calcolata la level set equation associata al sistema soddisfatto dalle parametrizzazioni di curve piane che si muovono per curvatura.
The present thesis deals with two different subjects. Chapter 1 and Chapter 2 concern interfaces evolution problems in the plane. In Chapter 1 I consider the evolution of a polycrystalline material with three (or more) phases, in presence of for an even crystalline anisotropy ϕo whose one-sublevel set Fϕ := {ϕo ≤ 1} (the Frank diagram) is a regular polygon of n sides. The dual function ϕ : R2 → R defined by ϕ(ξ) := sup{ξ ·η : ϕo(η) ≤ 1} is crystalline too and Wϕ := {ϕ ≤ 1} is called the Wulff shape. I am particularly interested in the motion by crystalline curvature of special planar networks called elementary triods, namely a regular three-phase boundary given by the union of three Lipschitz curves, the interfaces, intersecting at a point called triple junction. Each interface is the union of a segment of finite length and a half-line, reproducing two consecutive sides of Wϕ. I analyze local and global existence and stability of the flow. I prove that there exists, locally in time, a unique stable regular flow starting from a stable regular initial datum. I show that if n, the number of sides of Wϕ, is a multiple of 6 then the flow is global and converge to a homothetic flow as t → +∞. The analysis of the long time behavior requires the study of the stability. Stability is the ingredient that ensures that no additional segments develop at the triple junction during the flow. In general, the flow may become unstable at a finite time: if this occurs and none of the segments desappears, it is possible to construct a regular flow at subsequent times by adding an infinitesimal segment (or even an arc with zero crystalline curvature) at the triple junction. I also show that a segment may desappear. In such a case, the Cahn-Hoffman vector field Nmin has a jump discontinuity and the triple junction translates along the remaining adjacent half-line at subsequent times. Each of these flows has the property that all crystalline curvatures remain bounded (even if a segment appears or disappears). I want to stress that Taylor already predicted the appearance of new edges from a triple junction. I also consider the crystalline curvature flow starting from a stable ϕ-regular partition formed by two adjacent elementary triods. I discuss some examples of collapsing situations that lead to changes of topology, such as for instance the collision of two triple junctions. These examples (as well as the local in time existence result) show one of the advantages of crystalline flows with respect, for instance, to the usual mean curvature flow: explicit computations can be performed to some extent, and in case of nonuniqueness, a comparison between the energies of different evolutions (difficult in the euclidean case) can be made. In Chapter 2 we introduce, using the theory of S1-valued functions of bounded variations, a class of energy functionals defined on partitions and we produce, through the first variation, a new model for the evolution of interfaces which partially extends the one in Chapter 1 and which consists of a free boundary problem defined on S1-valued functions of bounded variation. This model is related to the evolution of polycrystals where the Wulff shape is allowed to rotate. Assuming the local existence of the flow, we show convexity preserving and embeddedness preserving properties. The second subject of the thesis is considered in Chapter 3 where we aim to extend the level set method to systems of PDEs. The method we propose is consistent with the previous research pursued by Evans for the heat equation and by Giga and Sato for Hamilton-Jacobi equations. Our approach follows a geometric construction related to the notion of barriers introduced by De Giorgi. The main idea is to force a comparison principle between manifolds of different codimension and require each sub-level of a solution of the level set equation to be a barrier for the graph of a solution of the corresponding system. We apply the method for a class of systems of first order quasi-linear equations. We compute the level set equation associated with suitable first order systems of conservation laws, with the mean curvature flow of a manifold of arbitrary codimension and with systems of reaction-diffusion equations. Finally, we provide a level set equation associated with the parametric curvature flow of planar curves.
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Crystalline Curvature Flows"

1

Arous, Gerard Ben, Allen Tannenbaum, and Ofer Zeitouni. "Crystalline Stochastic Systems and Curvature Driven Flows." In Mathematical Systems Theory in Biology, Communications, Computation, and Finance, 41–61. New York, NY: Springer New York, 2003. http://dx.doi.org/10.1007/978-0-387-21696-6_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Ishiwata, Tetsuya, and Shigetoshi Yazaki. "Convexity Phenomena Arising in an Area-Preserving Crystalline Curvature Flow." In Springer Proceedings in Mathematics & Statistics, 35–62. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-0364-7_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Crystalline Curvature Flows"

1

Narumi, Takatsune, Jun Fukada, and Tomiichi Hasegawa. "Flow Induced Unstable Structure of Liquid Crystalline Polymer Solution in L-Shaped Slit Channels." In ASME/JSME 2007 5th Joint Fluids Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/fedsm2007-37169.

Повний текст джерела
Анотація:
An experimental study has been conducted on unstable structures induced in two dimensional slit flows of liquid crystalline polymer solution. 50wt% aqueous solution of hydroxyl-propylcellulose (HPC) was utilized as a test fluid and its flow behavior in L-shaped slit channels with cross section of 1mm height and 16mm width was measured optically. The inner corner of the L-shaped channel was rounded off in order to clarify the influence of the radius of curvature on the unstable behavior. A conversing curved channel was also tested. The flow patterns of HPC solution in the channels were visualized with two crossed polarizers and we observed that typical wavy textures generated in the upstream of the corner almost disappeared after the corner flow. However, an unstable texture was developed again only from the inner corner in downstream flow. The fluctuation of orientation angle and dichroism were also measured with a laser opto-rheometric system and it was found that the unstable behaviors of HPC solution have periodic oscillatory characteristics at a typical frequency. In the inner side flow after the corner, the periodic motion became larger toward the downstream and then higher harmonic oscillations were superimposed. Larger rounding off of the inner corner suppressed the redevelopment of unstable behavior, and it is considered that the rapid re-growth of unstable behavior was caused by rapid deceleration at the corner flow. Moreover, the unstable structure was stabilized with accelerated (elongated) region in the corner flow and the converging channel was helpful to obtain stable structure in the downstream region.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

ISHIWATA, TETSUYA. "MOTION OF NON-CONVEX POLYGON BY CRYSTALLINE CURVATURE FLOW AND ITS GENERALIZATION." In Proceedings of the International Conference on Nonlinear Analysis. WORLD SCIENTIFIC, 2008. http://dx.doi.org/10.1142/9789812709257_0008.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

HIROTA, CHIAKI, ISHIWATA TETSUYA, and YAZAKI SHIGETOSHI. "NOTE ON THE ASYMPTOTIC BEHAVIOR OF SOLUTIONS TO AN ANISOTROPIC CRYSTALLINE CURVATURE FLOW." In Proceedings of the 2004 Swiss-Japanese Seminar. WORLD SCIENTIFIC, 2006. http://dx.doi.org/10.1142/9789812774170_0006.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії