Статті в журналах з теми "Cross-flow water turbin"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Cross-flow water turbin.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Cross-flow water turbin".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Darwito, Lilik, Hendri Nurdin, Purwantono Purwantono, and Andre Kurniawan. "Analysis of Power and Efficiency of Cross-flow Turbine Due to Changes in Runner Rotation." MOTIVECTION : Journal of Mechanical, Electrical and Industrial Engineering 4, no. 1 (February 25, 2022): 9–16. http://dx.doi.org/10.46574/motivection.v4i1.108.

Повний текст джерела
Анотація:
The Cross-flow turbine is one type of hydroelectric power plant that is frequently used. This is an experimental study with the goal of analyzing the power and efficiency produced by the turbine as a result of runner rotation adjustments. The runner rotation variations used are 261 rpm, 300 rpm, 320 rpm, 340 rpm, 360 rpm, 380 rpm, 392 rpm, and 423 rpm with a head as high as 5 meters and an incoming water discharge of 0.2 m3/s. The best results shown when runner rotate at 423 rpm. It's showed the maximum power 788.85 Watt and best efficiency 80.49%. The power and efficiency produced by a runner are proportional to the rotational speed of the runner; the higher the runner's rotation, the greater the power and efficiency produced. To summarize, the best way to achieve the best turbine performance is to maximize runner rotation. Salah satu jenis pembangkit listrik tenaga air yang sering digunakan adalah turbin tipe Cross-flow. Penelitian ini berupa penelitian eksperimen yang bertujuan untuk menganalisis daya dan efisiensi yang dihasilkan turbin akibat perubahan putaran runner. Variasi putaran runner yang digunakan yaitu 261 rpm, 300 rpm, 320 rpm, 340 rpm, 360 rpm, 380 rpm, 392 rpm, dan 423 rpm dengan head setinggi 5 meter serta debit air yang masuk 0,2 m3/s. Hasil penelitian menunjukkan daya dan efisiensi maksimum didapatkan pada putaran runner 423 rpm yaitu 788,85 Watt dengan efisiensi 80,49%. Terbukti bahwa daya dan efisiensi sebanding dengan kecepatan putaran runner, semakin tinggi putaran runner maka daya dan efisiensi yang dihasilkan juga semakin besar. Dapat disimpulkan, untuk mendapatkan kinerja turbin yang maksimal yaitu dengan memaksimalkan putaran runner.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Laksmana, Satria Candra, A'rasy Fahruddin, and Ali Akbar. "Pengaruh Sudut Pengarah Aliran Pada Turbin Air Crossflow Tingkat Dua Terhadap Putaran dan Daya." R.E.M. (Rekayasa Energi Manufaktur) Jurnal 3, no. 1 (October 11, 2018): 35. http://dx.doi.org/10.21070/r.e.m.v3i1.1591.

Повний текст джерела
Анотація:
The potential of hydro energy is very large both for large scale and for small scale. Until now, the need for energy continues to increase, so that energy is a very important element in the development of a country or a region. Cross-flow turbines are one type of turbine that is often used for PLTMH. In this study planning a cross-flow water turbine applied to the height and amount of water per second in the irrigation channel water flow, this water flow will rotate the turbine shaft to produce mechanical energy. With variations in the direction of the turbine flow direction, namely 30o, 35o, and 40o, and the same variation of water discharge 10,5 L / s, 21 L / s and 31,5 L / s to determine the effect on the rotation and the power produced. In this study with 12 turbine blades, 30o blade angle, 40o flow direction angle, and 31.5 L / s water discharge obtained the highest first stage turbine rotation value is 478 rpm. Whereas at the flow direction angle of 30o with the same water discharge which is 31.5 L / s so that the first stage of the turbine is obtained is 296 rpm.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Darmawan, Steven, Abrar Riza, M. Sobron Y. Lubis, Stevanus Aditya Winardi, and Reuben Christianto. "UNJUK KERJA TURBIN CROSS-FLOW DENGAN SIMULASI CFD PADA NOSEL DAN MANUFAKTUR PADA RUNNER." Jurnal Muara Sains, Teknologi, Kedokteran dan Ilmu Kesehatan 5, no. 2 (October 30, 2021): 443. http://dx.doi.org/10.24912/jmstkik.v5i2.11904.

Повний текст джерела
Анотація:
Covid-19 pandemic has lead disruption in energy sector, new-and-renewable energy demand is increasing, which show that renewable energy is promisable to be developed. As one of the hydraulic turbine, the cross-flow turbine is prospective primve mover in line with the 7th goal of the SDG’s Goals. Cross-flow turbine is radial atmospheric turbine which generates power by converting hydraulic energy from water to mechanical energy on the shaft by using nozzle and runner. The advantages make this device is became famous, including simple construction and geometry, low maintenance & cost and can be used at wide range operation scheme. However, the cross-flow turbine system is also known to have low efficiency. Based on this condition, this research is aims to improve the efficiency with design the nozzle and to manufacture the runner with two material. The operating condition is set to 1 phase water as working fluid with 1,4 L/s of flow. Nozzle design conducted with CFD 3D simulation from 3 different model. Runner manufacturing is conducted numerically with CAM simulation and experimentally by using CNC machining with Stainless Stell 304 and Aluminium 6061. CFD simulation on the nozzle shows that nozzle model 3 with total length of 400 mm, width 124 mm and throat radius 75 mm.resulting the maximum outlet velocity to the runner 0,135 m/s. Manufacturing of the runner and experiment on the system with nozzle model 3 show that the runner with SS 304 is able to generates larger power to 8,38 Watt,100% larger than the Aluminium 6061.Keywords: Renewable Energy, Cross-flow turbine, CFD, CAMAbstrakPandemi Covid-19 mengakibatkan disrupsi pada sektor energi, dimana konsumsi energi baru dan terbarukan mengalami kenaikan. Fenomena ini menunjukkan bahwa energi terbarukan menjanjikan untuk terus dikembangkan. Sesuai dengan goal ke-7 dari SDG’s oleh PBB, turbin cross-flow merupakan turbin radial yang menghasilkan daya melalui konversi energi hidrolik dari air sebagai sumber energi terbarukan, menjadi energi mekanis pada poros melalui penggunaan nosel dan runner, banyak digunakan karena beberapa kelebihannya, antara lain konstruksi yang sederhana dan simetris hanya memerlukan biaya perawatan yang rendah dan sederhana serta dapat digunakan pada rentang beban yang cukup besar. Namun demikian, turbin cross-flow secara umum memiliki nilai efisiensi yang lebih rendah. Efisiensi sistem dapat ditingkatkan dengan penggunaan material runner yang seusai. Penelitian ini bertujuan untuk melakukan perancangan terhadap nosel dan proses manufaktur runner cross-flow sehingga dapat diperoleh geometri nosel serta jenis material dan proses manufaktur runner yang sesuai untuk rentang operasi, yaitu aliran air 1 fasa dengan debit 1,4 L/s. Pengembangan nosel dilakukan dengan menggunakan metode CFD pada 3 model geometri. Pengembangan terhadap runner meliputi simulasi CAM dan manufaktur pada 2 jenis material, yaitu SS 304 dan Aluminium 6061. Hasil simulasi CFD 3D menunjukkan bahwa nosel model 3 dengan dimensi panjang total 400mm, lebar 124 mm, dan radius pada throat 75mm menghasilkan kecepatan pada sisi outlet sebesar 0,135 m/s. Hasil simulasi CAM dan Manufaktur terhadap runner serta eksperimen terhadap sistem dengan nosel model 3 menunjukkan bahwa bahwa runner dengan material SS 304 menghasilkan daya, yaitu 8.38 Watt, 100% lebih besar dibandingkan dengan runner dengan material Aluminium 6061.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Wijaya, Rudi Kusuma, and Iwan Kurniawan. "Study Experimental Darrieus Type-H Water Turbines Using NACA 2415 Standard Hydrofoil Blade." Jurnal Pendidikan Teknik Mesin Undiksha 9, no. 2 (August 31, 2021): 109–23. http://dx.doi.org/10.23887/jptm.v9i2.29257.

Повний текст джерела
Анотація:
Telah dilakukan kaji eksperimental turbin air Darrieus tipe-H menggunakan blade hydrofoil standar NACA 2415 untuk mengetahui nilai torsi statik dan dinamik yang dihasilkan turbin air Darrieus tipe-H 3 blade dan 6 blade, pengujian menggunakan water tunnel dimensi 6m x 0.6m x 1m. Variasi tiga blade dan enam blade, dengan diameter turbin 0.44 m x 0.15 m pada turbin luar dan 0.18 x 0.14 m pada turbin bagian dalam, panjang chord 0.10 m dengan variasi sudut serang 0º sampai dengan 360º, variasi kecepatan air pertama 0.3 m/s, variasi kecepatan aliran air kedua 0.65 m/s. Kecepatan air 0.3 m/s enam blade, torsi statik 0.3 Nm, torsi dinamik nya 0.384 Nm, kecepatan air 0,65 m/s torsi dinamik 0.432 Nm dan torsi statik nya 0.384 Nm, pengujian turbin Darrieus tiga blade kecepatan air 0,3 m/s nilai torsi dinamik 0.336 Nm dan dengan kecepatan yang sama torsi statik nya 0.264 Nm. Pada kecepatan air 0.65 m/s nilai torsi dinamik sebesar 0.384 Nm, dan nilai torsi statik 0.336 Nm. Dari data hasil pengukuran tersebut dapat disimpulkan bahwa variasi turbin enam blade memiliki nilai torsi statik dan torsi dinamik yang lebih tinggi dari pada turbin tiga blade, jumlah blade sangat berpengaruh terhadap daya serap energi kinetik air untuk di konversikan menjadi torsi statik maupun torsi dinamik.Kata kunci : Turbin Hydrokinetic, Darrieus, Torsi Statik,Torsi DinamikAn experimental study of the H-type Darrieus water turbine was carried out using a standard NACA 2415 hydrofoil blade to determine the value of static and dynamic torque generated by the 3-blade and 6-blade Darrieus H-type water turbine, testing using a water tunnel dimensions of 6m x 0.6m x 1m. Variation of three blades and six blades, with a turbine diameter of 0.44 mx 0.15 m on the outer turbine and 0.18 x 0.14 m on the inner turbine, chord length 0.10 m with variations in angle of attack 0º to 360º, variation of first water velocity 0.3 m / s second water flow velocity 0.65 m / s. Water velocity 0.3 m / s six blades, static torque 0.3 Nm, dynamic torque 0.384 Nm, water velocity 0.65 m / s dynamic torque 0.432 Nm and static torque 0.384 Nm, Darrieus three blade turbine test water speed 0.3 m / s dynamic torque value of 0.336 Nm and with the same speed its static torque is 0.264 Nm. At 0.65 m / s water velocity, the dynamic torque value is 0.384 Nm, and the static torque value is 0.336 Nm. From the measurement data, it can be concluded that the six-blade turbine variation has a higher value of static torque and dynamic torque than the three-blade turbine, the number of blades greatly influences the absorption of water kinetic energy to be converted into static torque and dynamic torque. Keywords: Hydrokinetic Turbine, Darrieus, static torque, dynamic torqueDAFTAR RUJUKANKirke, B.K. (2011). Tests on ducted and bare helical and straight blade Darrieus hydrokinetic turbines, 36, pp.3013-3022Dominy, R., Lunt, P., Bickerdyke A., Dominy, J. (2007). Self-starting capability of a Darrieus turbine. Proc Inst Mech Eng (IMechE) ePart A: J Power Energy ;221: 111-120Decoste, Josh. (2004). Self-Starting Darrieus Wind Turbine. Department of Mechanical Engineering, Dalhousie University.Febrianto, A., & Santoso, A. (2016). “Analisa Perbandingan Torsi Dan rpm Tipe Darrieus Terhadap Efisiensi Turbin”. Fakultas Teknologi Kelautan, Institut Teknologi Sepuluh Nopember (ITS)Febriyanto, N. (2014). “Studi Perbandingan Karakteristik Airfoil NACA 0012 Dengan NACA 2410 Terhadap Koefisien Lift dan Koefisien Drag Pada Berbagai Variasi Sudut Serang Dengan CFD” Fakultas teknik, Universitas Muhammadiyah SurakartaSaputra, G. (2016). Kaji Eksperimental Turbin Angin Darrieus-H Dengan Bilah Tipe NACA 2415. Universitas Riau, JOM Teknik Mesin vol. 3 No. 1.Hafied, B. (2018). Kaji Eksperimental Torsi Statik Dan Torsi Dinamik Hidrokinetik Turbin Savonius Single Stage Type Bach Tiga Sudu. Tugas Akhir Teknik Mesin. Fakultas Teknik Universitas Riau.Hau, E. (2005). Wind Turbines: Fundamentals, Technologies, Aplication, Economics. Springer. Berlin.Kaprawi. (2011), Pengaruh Geometri Blade Dari Turbin Air Darrieus Terhadap Kinerjany. Prosiding Seminar Nasional AVoER ke-3 PalembangKhan, M. J., Bhuyan, G., Iqbal M. T., & Quaicoe J.E. (2009). Hydrokinetic Energy Conversion Systems and Assessment of Horizontal and Vertical Axis Turbines for River and Tidal: Applications A Technology Status Review. Applied Energy, 86, 1823-1835.Lain, S., & Osario, C. (2010). Simulation and Evaluation of a Sraight Bladed Darrieus Type Cross Flow Marine Turbine. Journal of Scientific & Research, Vol. 69 p.906-912Marizka, L. D. (2010). Analisis Kinerja Turbin Hydrokinetic Poros Vertical Dengan Modifikasi Rotor Savonius L Untuk Optimasi Kinerja Turbin. Tugas Akhir Sains Fisika. FMIPA-Universitas Sebelas Maret.Malge, P. (2015).Analysis of Lift and Drag Forces at Different Azimuth Angle of Innovative Vertical Axis Wind Turbine.International Journal of Energy Engineering 4(5-8).Teja, P., D. (2017). Studi Numerik Turbin Angin Darrieus – Savonius Dengan Penambahan Stage Rotor Darrieus. Institut Teknologi Sepuluh Nopember, Surabaya.Zobaa, A. F., & Bansal, R. C. (2011). Handbook of Renewable Energy Technology. USA: World Scientific Publishing Co. Pte. Ltd.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Alim, Saharul. "APLIKASI MOTOR INDUKSI SEBAGAI GENERATOR PADA SISTEM PEMBANGKIT TENAGA MIKROHIDRO MODEL DRUM." Jurnal DISPROTEK 10, no. 2 (October 14, 2021): 107–29. http://dx.doi.org/10.34001/jdpt.v10i2.2520.

Повний текст джерела
Анотація:
ABSTRACT Salah satu alternatif solusi pada pemanfaatan sumber energi baru dan terbarukan yang peneliti acu adalah penelitian tentang rancang bangun turbin cross flow sebagai penggerak mula sistem PTMMD yang dilakukan Bachtiar (2009). PTMMD adalah Pembangkit Tenaga Mikrohidro Model Drum yang terdiri dari saluran masuk, drum penampung, saluran limpah, saluran keluar, panel beban, dan penggerak mula turbin cross flow yang ditransmisikan pada motor induksi dengan puli-belt. PTMMD ini dirancang dengan head 2,5 m, debit air 20 lt/s, penggerak mula turbin cross flow dengan diameter runner 80 mm dan panjang runner 130 mm serta daya rencana 400 Watt. Dua buah motor induksi berkapasitas 0,25 HP dan 0,5 HP digunakan untuk membangkitkan keluaran daya listrik. Hasil penelitian menunjukkan bahwa motor induksi 0,25 HP dapat menghasilkan keluaran listrik satu fase dengan konfiguurasi C-2C sebesar 79,2 Watt dan tiga fase dengan konfigurasi bintang sebesar 80,16 Watt. Motor induksi 0,5 HP dapat menghasilkan keluaran listrik satu fase dengan konfigurasi C-2C sebesar 74,05 Watt dan tiga fase dengan konfigurasi delta sebesar 68,71 Watt. Efisiensi maksimum dapat ditunjukkan saat menggunakan motor induksi 0,25 HP dengan kapasitor 8 µF dikonfigurasi C-2C dan bintang. Keywords: PTMMD, motor induksi, kapasitor. ABSTRAK One of alternative solutions on the utilization of renewable energy sources is about the design of cross flow turbine as prime mover in PTMMD system which was performed by Bachtiar (2009). PTMMD is a microhydro power plant drum model consisting of an inlet channel, the drum, an overflow channel, an outlet channel, a load panel, and a cross flow turbine as the prime mover to an induction motor through a pulley-belt. This PTMMD is designed with 2.5 m water head, 20 liters/s discharge, 80 mm diameter cross flow runner turbine, 130 mm long runner, and 400 Watt expected power output. Two induction motor of capacity 0.25 HP and 0.5 HP were used to generate the electric power output. The experiments showed that the 0.25 HP induction motor can produce 79.2 Watts in one phase C-2C configuration and 80.16 Watts in three phase star configuration of maximum electric output and the 0.5 HP induction motor can produce 74.05 Watts in one phase C-2C configuration and 68.71 Watts in three phase delta configuration of maximum electric output. The maximum efficiency can be showed at the time using 0.25 HP induction motor and which is close in one phase C-2C configuration and three phase star configuration with 8 µF compensating capacitor. . Kata kunci: PTMMD, induction motor, capasitor.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Agit Prakoso, Sayyid Alkahfi, Tri Mulyanto, and Sunyoto . "Perancangan Dan Simulasi Performa Prototipe Turbin Air Tidal Tipe Propeler Naca S814 Sebagai Sumber Energi Petani Tambak Garam Daerah Cirebon." Jurnal Pendidikan Teknik Mesin Undiksha 10, no. 1 (March 31, 2022): 86–103. http://dx.doi.org/10.23887/jptm.v10i1.45389.

Повний текст джерела
Анотація:
Telah dilakukan perancangan dan pengujian performa turbin air tidal untuk penggerak pompa di tambak garam menggunakan blade hydrofoil standar NACA S814 untuk menghasilkan desain turbin tidal, optimasi bilah turbin tidal dan juga coefficient of power (Cp) pada turbin tidal. Perancangan geometri turbin tidal menggunakan rumus yang tersedia dan pengujian turbin tidal menggunakan bantuan software Qblade. Variasi kecepatan aliran air yang pertama 1 m/s, Variasi kecepatan aliran air yang kedua 1,536 m/s, Variasi kecepatan aliran air yang ketiga 2,072 m/s, Variasi kecepatan aliran air yang keempat 2,608 m/s, Variasi kecepatan aliran air yang kelima 3,144 m/s, Variasi kecepatan aliran air yang keenam 3,68 m/s. Hasil perancangan yang didapatkan adalah panjang chord 0,02 m, panjang blade 0,4 m, diameter poros 0,16 m, diameter bilah 1,1 m, jumlah blade 3. Hasil dari pengujian performa dari turbin tidal untuk masing-masing varian kecepatan adalah 22,474; 9,136; 4,703; 2,642; 1,539; 0,900. Dari data hasil pengujian tersebut diolah dengan menggunakan metoda ANOVA. Kesimpulan yang didapatkan adalah karena nilai F (kecepatan) =2,219512 F crit =2,53355 maka tidak terdapat perbedaan hasil uji pada varian kecepatan dan karena nilai F (uji) =25,59739 F crit =2,42052 maka terdapat perbedaan hasil uji pada varian hasil.Kata kunci: ANOVA, Coefficient of Power,Turbin Tidal, QbladeThe design and performance test of a tidal water turbine for pump driving in salt ponds has been carried out using a standard NACA S814 hydrofoil blade to produce a tidal turbine design, optimization of tidal turbine blades, and also the coefficient of power (Cp) on a tidal turbine. Tidal turbine geometry design using the available formulas and tidal turbine testing using the Qblade software. The first variation of airflow velocity is 1 m/s, the variation of the second airflow velocity is 1.536 m/s, the variation of the third airflow velocity is 2.072 m/s, the variation of the fourth airflow velocity is 2.608 m/s, the fifth variation of airflow velocity is 3.144 m/s, Variation of water flow velocity 3.68 m/s. The design results obtained are chord length 0.02 m, blade length 0.4 m, shaft diameter 0.16 m, blade diameter 1.1 m, number of blades 3. The results of testing the performance of the tidal turbine for each speed variant are 22.474; 9.136; 4,703; 2,642; 1,539; 0.900. From the test results, data are processed using the ANOVA method. The conclusion obtained is because the value of F (speed) = 2.219512 < F crit = 2.53355 then there is no difference in the test results on the speed variant and because the value of F (test) = 25.59739 > F crit = 2.42052 then there is the difference in test results on the variance of results.Keywords : ANOVA, Coefficient of Power, Tidal Turbine, QbladeDAFTAR RUJUKANBaihaqiy, A. R. (2017). Prototype Pembangkit Listrik Tenaga Pasang Surut Air Laut Di Kelurahan Tugurejo Kecematan Tugu Kota Semarang. Universitas Negri Semarang.FE, M. N. S. (2016). Rancang Bangun Simulasi Turbin Air Cross Flow. Jurnal Pendidikan Teknik Mesin, 1(2).Febrianto, A., & Santoso, A. (2017). Analisa perbandingan torsi dan rpm turbin tipe darrieus terhadap efisiensi turbin. Jurnal Teknik ITS, 5(2).Fridayana, E. N. (2018). Analisis Kinerja Aerodinamik dari Vertical Axis Wind Turbine (VAWT) Darrieus Tipe H-Rotor dengan Pendekatan Computational Fluid Dynamic (CFD). Institut Teknologi Sepuluh Nopember,Ginting, J. W., & Setiawan, I. K. D. (2018). Kinerja Prototipe Papan Osilasi Pada Pompa Flap Tenaga Gelombang Untuk Pemanfaatan Mata Air Di Pantai Banyu Asri, Kota Singaraja-Bali. Jurnal Teknik Hidraulik, 9(2).Kurniawan, A., Jaziri, A. A., Amin, A. A., & Salamah, L. N. m. (2019). Indeks Kesesuaian Garam (IKG) Untuk Menentukan Kesesuaian Lokasi Produksi Garam; Analisis Lokasi Produksi Garam Di Kabupaten Tuban Dan Kabupaten Probolinggo. JFMR (Journal of Fisheries and Marine Research), 3(2), 236-244.Lopulalan, R. M. (2016). Desain blade turbin pembangkit listrik tenaga arus laut di Banyuwangi berbasis CFD. Institut Teknologi Sepuluh Nopember Surabaya,Oktavianto, D., Budiarto, U., & Kiryanto, K. (2017). Analisa Pengaruh Variasi Bentuk Sudu, Sudut Serang dan Kecepatan Arus Pada Turbin Arus Tipe Sumbu Vertikal Terhadap Daya yang Dihasilkan Oleh Turbin. Jurnal Teknik Perkapalan, 5(2).Patittingi, F. (2012). Dimensi hukum pulau-pulau kecil di Indonesia: studi atas penguasaan dan pemilikan tanah: Rangkang Education.Priliawan, R. A. (2016). Pengaruh Jumlah Sudu Turbin Wells Dan Variasi Gelombang Laut Terhadap Performa Prototype Pembangkit Listrik Tenaga Gelombang Laut Sistem Oscillating Water Column (OWC).Sapto, A. D., & Rumakso, H. P. (2021). Uji Coba Performa Bentuk Airfoil Menggunakan Software Qblade Terhadap Turbin Angin Tipe Sumbu Horizontal. Jurnal Teknik Mesin, 10(1).Sari, Y. R., & Rani, M. (2021). Penerapan Logika Fuzzy Metode Mamdani Dalam Menyelesaikan Masalah Produksi Garam Nasional. JATISI (Jurnal Teknik Informatika dan Sistem Informasi), 8(1), 341-356.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Insani, Chairil. "RANCANG BANGUN TURBIN REAKSI PADA SUNGAI TAMAN KOTA 2 DENGAN MODEL ALIRAN VORTEX." Jurnal Teknik Mesin ITI 5, no. 2 (June 30, 2021): 79. http://dx.doi.org/10.31543/jtm.v5i2.587.

Повний текст джерела
Анотація:
Electricity is a necessity that must exist today, its use is always subject to binding. Most of the electricity comes from fossil energy-based power plants such as PLTU. Therefore, a solution was made by making a vortex water turbine to produce electrical energy. Utilizing a river flow with a small head of water, the water will enter the cross section. The flow will form a vortex because the shape of the section and the draft tube makes the lower side of the section have lower pressure. The vortex turbine will be designed to use a permanent magnet 150 watt AC generator. With a cross section of 60 x 55 x 150cm, draft tube 9.6 mm and turbine blade 30 x 50cm made of aluminum. On the framework will be used a 3 x 3.5 cm strip plate which is rolled. In order to withstand the impact of water on the blade, a 7 mm shaft is used and a nominal bearing life of 10274 hours. The resulting rotation is continued with a pulley with a diameter of 30 mm, 180 mm and with a belt type V material JIS K 6323 A 34.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

ÖĞÜÇLÜ, Özer. "HELİSEL ÇAPRAZ AKIŞLI SU TÜRBİNİNİN PERFORMANS ANALİZİ VE OPTİMİZASYONU." Mühendislik Bilimleri ve Tasarım Dergisi 10, no. 2 (June 30, 2022): 605–19. http://dx.doi.org/10.21923/jesd.816160.

Повний текст джерела
Анотація:
Bu çalışmada, bir helisel çapraz akışlı su türbininin performans analizini, Comsol Multiphysics kullanılarak incelemek için bir Hesaplamalı Akışkanlar Dinamiği modeli tasarlanmıştır. Bir helisel çapraz akışlı su türbininin güç çıkışı ve tork gibi ana performans özelliklerini tahmin etmek için, simülasyon için kullanılması doğru, hızlı ve oldukça basit olan sayısal bir model geliştirilmiştir. Türbin etrafındaki akış alanı, bir k-ω türbülans modeli ve kararlı durum formülasyonu kullanılarak Comsol CFD Modülündeki Rotating Machinery özelliği ile çözülmüştür. Navier-Stokes denklemleri, iç alanda dönen bir çerçeve içinde ve dış alanda sabit koordinatlarda düzenlenen modelde kullanılmıştır. İç ve dış alan arasındaki sınır koşulu, momentumu iç bölgedeki akışkana aktaran bir süreklilik sınır koşuludur. Bu model ayrıca, bu çalışma için hesaplama süresini önemli ölçüde hızlandıran Frozen Rotor çalışma yöntemini kullanır. Ardından Comsol Optimizasyon Modülü ile çapraz akışlı su türbininin performansını artırmak için yeni bir açısal hız profili araştırılmıştır. Böylece değişken hızlı bir türbin kontrol yöntemi geliştirilmiştir. Bu kontrol yönteminin performansı, sabit açısal hız kontrol yöntemi altında çalışan bir türbin ile karşılaştırılmıştır. Yeni açısal hız kontrol yöntemi türbin veriminde, sabit hız kontrol metodu ile karşılaştırıldığında, %3'lük bir artış sağlamıştır.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Li, Yan Rong, Yasuyuki Nishi, Terumi Inagaki, and Kentarou Hatano. "Study on the Flow Field of an Undershot Cross-Flow Water Turbine." Applied Mechanics and Materials 620 (August 2014): 285–91. http://dx.doi.org/10.4028/www.scientific.net/amm.620.285.

Повний текст джерела
Анотація:
The purpose of this investigation is to research and develop a new type water turbine, which is appropriate for low-head open channel, in order to effectively utilize the unexploited hydropower energy of small river or agricultural waterway. The application of placing cross-flow runner into open channel as an undershot water turbine has been under consideration. As a result, a significant simplification was realized by removing the casings. However, flow field in the undershot cross-flow water turbine are complex movements with free surface. This means that the water depth around the runner changes with the variation in the rotation speed, and the flow field itself is complex and changing with time. Thus it is necessary to make clear the flow field around the water turbine with free surface, in order to improve the performance of this type turbine. In this research, the performance of the developed water turbine was determined and the flow field was visualized using particle image velocimetry (PIV) technique. The experimental results show that, the water depth between the outer and inner circumferences of the runner decreases as the rotation speed increases. In addition, the fixed-point velocities with different angles at the inlet and outlet regions of the first and second stages were extracted.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Nishi, Yasuyuki, Terumi Inagaki, Yanrong Li, and Kentaro Hatano. "Study on an Undershot Cross-Flow Water Turbine with Straight Blades." International Journal of Rotating Machinery 2015 (2015): 1–10. http://dx.doi.org/10.1155/2015/817926.

Повний текст джерела
Анотація:
Small-scale hydroelectric power generation has recently attracted considerable attention. The authors previously proposed an undershot cross-flow water turbine with a very low head suitable for application to open channels. The water turbine was of a cross-flow type and could be used in open channels with the undershot method, remarkably simplifying its design by eliminating guide vanes and the casing. The water turbine was fitted with curved blades (such as the runners of a typical cross-flow water turbine) installed in tube channels. However, there was ambiguity as to how the blades’ shape influenced the turbine’s performance and flow field. To resolve this issue, the present study applies straight blades to an undershot cross-flow water turbine and examines the performance and flow field via experiments and numerical analyses. Results reveal that the output power and the turbine efficiency of the Straight Blades runner were greater than those of the Curved Blades runner regardless of the rotational speed. Compared with the Curved Blades runner, the output power and the turbine efficiency of the Straight Blades runner were improved by about 31.7% and about 67.1%, respectively.
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Nishi, Yasuyuki, Terumi Inagaki, Yanrong Li, Ryota Omiya, and Junichiro Fukutomi. "Study on an undershot cross-flow water turbine." Journal of Thermal Science 23, no. 3 (May 13, 2014): 239–45. http://dx.doi.org/10.1007/s11630-014-0701-y.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Gómez, Vanessa Ruiz, Edison A. Palacio Higuita, and Aldo Germán Benavides Morán. "Computational analysis of a cross flow turbine performance." MATEC Web of Conferences 240 (2018): 03011. http://dx.doi.org/10.1051/matecconf/201824003011.

Повний текст джерела
Анотація:
In the electrical energy generation context in Colombia, the water resources represent the 64% of the potential generated according to UPME in the 2015 year; becoming into a solution to the growing energy demand and to the supply of energy in non-interconnected zones. The cross-flow turbines as Michell-Banki type, become an efficient and economically attractive choice. This paper shows the fluiddynamic performance of a laboratory’s model turbine under several operating conditions. The development of this analysis is supported by the results of experimental tests, uses the computational fluid dynamics as a tool for modelling, estimate, and analyse the turbine behaviour under different operating conditions, with ANSYS-Fluent software; the computational model considers the most important geometric aspects of the turbine and the opening percentage effect of the guide blade. The water flow through the rotor is approach through a turbulence model as κ – ε type. The numerical study results agree satisfactorily with the turbine performance observed in the laboratory.
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Tanaka, T., K. Otsuka, M. Goto, and S. Iio. "Flow characteristics around a guide vane in cross-flow turbine." Journal of Physics: Conference Series 2217, no. 1 (April 1, 2022): 012061. http://dx.doi.org/10.1088/1742-6596/2217/1/012061.

Повний текст джерела
Анотація:
Abstract A swing-type guide vane is the most popular in a cross-flow turbine, which controls the water flow rate into the turbine. The flow under the guide vane may turn away from the optimum direction in partial load operation by the flow separation from the guide vane leading edge. Maintaining the ideal velocity triangle at the runner inlet is essential to improve the turbine efficiency and to avoid noise and vibration for partial load operation. It is essential to reveal how the angle and shape of those guide vanes affect the flow behavior at the runner inlet and turbine performance. Therefore, this study focuses on the flow characteristics around the guide vane and at the cross-flow runner inlet. The authors verify the evaluation by CFD simulation and compare turbine performance and internal flow between different operating conditions with two guide vanes, the swing-type, and circular segment type. As a result, it is revealed that the swing-type guide vane affects the flow direction, and especially the flow angle is far from the optimum at partial operation. The circular segment type shows superior performance at partial load than the swing-type guide vane.
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Wahjudi, Arif, I. Made Londen Batan, Bagus Mertha Pradnyana, and Windy Rusweki. "Image Processing Implementation in Measurement of Cross-Flow Water Turbine Geometry." Applied Mechanics and Materials 493 (January 2014): 570–75. http://dx.doi.org/10.4028/www.scientific.net/amm.493.570.

Повний текст джерела
Анотація:
Recently, many studies have been done to look for renewable energy sources such as kinetic energy from marine or fluvial currents. In its utilization, water turbine plays an important role for taking energy from water current. One of the water turbine types is Cross Flow Water Turbine (CFWT). The performance of the CFWT depends on its geometry. Unfortunately, its geometry is very difficult to be measured using conventional measurement because it has complex geometry. Hence, a non-conventional measurement system based on image processing is proposed in this study to deal with the measurement difficulty of the CFWT geometry.
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Andrianus, Andrianus, Steven Darmawan, and Abrar Riza. "RANCANG BANGUN PROTOTYPE HYDRO TURBINE JENIS CROSS-FLOW UNTUK PERKOTAAN." POROS 17, no. 1 (December 11, 2021): 43. http://dx.doi.org/10.24912/poros.v17i1.15399.

Повний текст джерела
Анотація:
The problem of fossil fuel crisis, both petroleum and coal, and the phenomenon of climatechange due to global warming, trigger the use of renewable energy that can overcome these problems.Cross-flow water turbine is one of the machine that can be used to produce small scale electric energy insmall scope. This turbine can be used in urban areas to assist industrial activities and their usefulness indaily life. The use of the right materials and strong construction can produce a good shape so that thiswater turbine is not only make efficient energy but also efficient and ergonomic in its use. This study isconducted theoretically to a cross-flow turbine which assumed to operate at 10m water height with 1.4L/s, outer diameter 150mm and 75mm thickness. The turbine consist of 15 blades with angle of attack ofthe blades is 30o. The results show that the turbine generate 119 Watt
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Stroita, Daniel, and Adriana Manea. "Frequency modelling and dynamic identification of cross-flow water turbines." Thermal Science, no. 00 (2021): 354. http://dx.doi.org/10.2298/tsci201017354s.

Повний текст джерела
Анотація:
The Cross-Flow turbines cover from the point of view hydraulic power the running domain of some well-known turbines such as Pelton, Francis or Kaplan. This type of turbine has a simple construction, long life and low execution cost, which makes it very suitable for on and off grid small to medium hydro power plants. It is quite difficult to establish an exact theoretical dynamic model for this type of turbines, due to the complex flow phenomenon (bi phase flow water and air). In order to obtain the exact dynamic behavior of the hydraulic machine, experimental dynamic identification will be done. In automation, the dynamic properties, represent the fundamental characteristic of the object which must be regulated. When the dynamic properties of the regulated object are obtained experimentally, we analyze the characteristics of the transient regime, which appears because of the application at the system inlet of some stochastic or deterministic signals (sine waves for our case). The hydraulic turbine is modeled as an informational quadrupole having the inlet parameters the movement of the wicket gate and the turbine head and outlet parameters the torque and the speed. In this paper it will be presented the frequency modelling of the cross flow turbine and the validation of the mathematical model through experimental dynamic identification.
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Khosrowpanah, Shahram, A. A. Fiuzat, and Maurice L. Albertson. "Experimental Study of Cross‐Flow Turbine." Journal of Hydraulic Engineering 114, no. 3 (March 1988): 299–314. http://dx.doi.org/10.1061/(asce)0733-9429(1988)114:3(299).

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Fukutomi, Junichiro, Yoshiyuki Nakase, Masashi Ichimiya, and Akihiro Orino. "Running Characteristics of a Cross-Flow Water Turbine in Oscillating Flow." Transactions of the Japan Society of Mechanical Engineers Series B 61, no. 582 (1995): 572–78. http://dx.doi.org/10.1299/kikaib.61.572.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Desai, Venkappayya R., and Nadim M. Aziz. "An Experimental Investigation of Cross-Flow Turbine Efficiency." Journal of Fluids Engineering 116, no. 3 (September 1, 1994): 545–50. http://dx.doi.org/10.1115/1.2910311.

Повний текст джерела
Анотація:
An experimental investigation was conducted to study the effect of some geometric parameters on the efficiency of the cross-flow turbine. Turbine models were constructed with three different numbers of blades, three different angles of water entry to the runner, and three different inner-to-outer diameter ratios. Nozzles were also constructed for the experiments to match the three different angles of water entry to the runner. A total of 27 runners were tested with the three nozzles. The results of the experiments clearly indicated that efficiency increased with increase in the number of blades. Moreover, it was determined that an increase in the angle of attack beyond 24 deg does not improve the maximum turbine efficiency. In addition, as a result of these experiments, it was determined that for a 24 deg angle of attack 0.68 was the most efficient inner-to-outer diameter ratio, whereas for higher angles of attack the maximum efficiency decreases with an increase in the diameter ratio from 0.60 to 0.75.
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Purwantono, Purwantono, Bahrul Amin, Abdul Aziz, Jasman Jasman, and Andre Kurniawan. "Performance test of Pikohidro Cross flow Water Turbine using multilevel double penstock." Teknomekanik 2, no. 2 (December 15, 2019): 76–80. http://dx.doi.org/10.24036/tm.v2i2.4172.

Повний текст джерела
Анотація:
This study aims to examine the performance of pico hydro scale cross flow water turbines using multilevel double penstock as a conductor of water flow. Multilevel double penstock is used to reduce the transportation process from highways that are affordable to four-wheeled vehicles / cars to the location of the installation of the turbine. This condition causes the need for small-scale water turbine designs with lightweight construction with a kock down system. Overall the picohidro scale turbine construction is needed relatively cheaper transportation costs, so that people who have not been reached by the PLN network can be touched by small and cheap electricity. Turbine construction data has a runner diameter of 170 mm, body dimensions 200 mm x 300 mm x 250 mm, frame 250 mm x 800 mm. Pool tando 600 mm x 1200 mm and penstock length 16m. The power produced is theoretically around 2500 watts, with a data flow of 50 liters / second and a water level of 8 m. 65% efficiency. The research method is analyzing the double penstock water flow, by making paralon pipes in stages, ranging from 5 incci diameter, 4 inches and 3 inches, flow analysis approach using a gradient line, where the incoming water velocity and water velocity come out until entering the transmitting pipe. The performance results of this turbine provide an average actual power of up to 2000 watts. The stability of the inlet water condition is used by the Tando pond as a water bath. If there is excess water in the sediment tank, the water gate is used out, where excess water will automatically flow into the exhaust channel.
Стилі APA, Harvard, Vancouver, ISO та ін.
21

ISHIMATSU, Katsuya, and Toyoyasu OKUBAYASHI. "1019 Numerical Trial for the Cross Flow Water Turbine." Proceedings of the Fluids engineering conference 2013 (2013): _1019–01_—_1019–02_. http://dx.doi.org/10.1299/jsmefed.2013._1019-01_.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Ormandzhiev, K., S. Yordanov, and S. Stoyanov. "Synthesis of Fuzzy Controller for Cross-Flow Water Turbine." Information Technologies and Control 15, no. 1 (March 1, 2017): 9–16. http://dx.doi.org/10.1515/itc-2017-0017.

Повний текст джерела
Анотація:
Abstract The paper deals with a developed mathematical model describing the operation of automatic system for controlling of cross-flow water turbine in laboratory conditions. Fuzzy governor is synthesized and the transient processes in the system are compared toward these ones during utilization of classical PD controller. The results from numerical experiment are presented in graphical form.
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Kitahora, Takaya, Junichi Kurokawa, and Tomitarou Toyokura. "Radial Thrust of Low-Head Cross-Flow Water Turbine." Transactions of the Japan Society of Mechanical Engineers Series B 61, no. 588 (1995): 3012–17. http://dx.doi.org/10.1299/kikaib.61.3012.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

NISHI, Yasuyuki, Terumi INAGAKI, Ryota OMIYA, and Junichiro FUKUTOMI. "Performance and Internal Flow of an Undershot-Type Cross-Flow Water Turbine." TRANSACTIONS OF THE JAPAN SOCIETY OF MECHANICAL ENGINEERS Series B 79, no. 800 (2013): 521–32. http://dx.doi.org/10.1299/kikaib.79.521.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

SHIKAMA, Hayato, Nobuyuki FUJISAWA, and Takayuki YAMAGATA. "Visualization and PIV Measurement of Internal Flow of Cross-Flow Water Turbine." Proceedings of Conference of Hokuriku-Shinetsu Branch 2021.58 (2021): B043. http://dx.doi.org/10.1299/jsmehs.2021.58.b043.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Stroita, Daniel Catalin, Adriana Sida Manea, and Anghel Cernescu. "Blade Polymeric Material Study of a Cross-Flow Water Turbine Runner." Materiale Plastice 56, no. 2 (June 30, 2019): 366–69. http://dx.doi.org/10.37358/mp.19.2.5187.

Повний текст джерела
Анотація:
Although Romania has a consistent hydro energetic potential, till now is valuated just approximate 30 percent of it. On the big rivers there are already installed high power hydro plants, but a lot of small and medium rivers are not valuated energetically. Installing a new high power hydro plant tends to affect the zone, being necessary a lot of changes in the environment. The Cross-Flow hydraulic turbines don�t need very complex hydro settlements, being very suitable for small and medium power hydro plants. Also a quite big potential in the use this type of hydraulic machines is the energy recovery in the water treatment and sewage plants. The turbine�s blades surfaces enters in contact with the pressurized water jet. The water jet creates a hydrodynamic force that tends to stress the blade. Mainly the Cross-flow turbine blades are made from steel. This article presents the hydrodynamic design and the possibility of using new polymeric material Delrin �AF for the Cross-Flow turbine runner blades, together with the stress analysis.
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Vallet, Maria, Iulian Munteanu, Antoneta Iuliana Bratcu, Seddik Bacha, and Daniel Roye. "Synchronized control of cross-flow-water-turbine-based twin towers." Renewable Energy 48 (December 2012): 382–91. http://dx.doi.org/10.1016/j.renene.2012.05.013.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

WANG, Tianbo, Takayuki YAMAGATA, and Nobuyuki FUJISAWA. "Numerical Simulation on Performance of a Cross-Flow Water Turbine." Proceedings of Conference of Hokuriku-Shinetsu Branch 2018.55 (2018): F025. http://dx.doi.org/10.1299/jsmehs.2018.55.f025.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Sammartano, Vincenzo, Gabriele Morreale, Marco Sinagra, and Tullio Tucciarelli. "Numerical and experimental investigation of a cross-flow water turbine." Journal of Hydraulic Research 54, no. 3 (March 16, 2016): 321–31. http://dx.doi.org/10.1080/00221686.2016.1147500.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Rahmani, Hamid, Mojtaba Biglari, Mohammad Sadegh Valipour, and Kamran Lari. "Assessment of the numerical and experimental performance of screw tidal turbines." Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 232, no. 7 (January 22, 2018): 912–25. http://dx.doi.org/10.1177/0957650917753778.

Повний текст джерела
Анотація:
This study was aimed at the numerical and experimental modeling of water flow during collision between water and vertical screw turbine blades with different cross sections (i.e. Darrieus, spoon, and airfoil). ANSYS Fluent was used to model water flow under tidal currents in a flume, and mesh independence was ensured after the selection of appropriate geometry. The collision problem was then solved in the transient state, and results on the momentum and power generated by different inlet velocities and different blade cross sections were analyzed. The findings showed that torque and turbine power increased with increasing inlet velocity. Subsequently, a turbine was experimentally created, with cross sections drawn in the numerical model and tested under the same conditions as that imposed on the model. Installing a multimeter on the turbine enabled the generation of turbine power in different dimensions. The resultant power increased with rising turbine dimensions. After obtaining the numerical and experimental results, the value of the output power of the turbine was validated. The validation indicated a 7% difference in output power between the numerical and experimental results, indicating acceptable accuracy.
Стилі APA, Harvard, Vancouver, ISO та ін.
31

OMIYA, Ryota, Yasuyuki NISHI, Terumi INAGAKI, Tsutomu TACHIKAWA, Masao KOTERA, and Junichiro FUKUTOMI. "1929 Study on Internal Flow of an Undershot Type Cross-Flow Water Turbine." Proceedings of Conference of Kanto Branch 2012.18 (2012): 603–4. http://dx.doi.org/10.1299/jsmekanto.2012.18.603.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Hoznedl, Michal. "Experimental steam turbine T10MW cold end cooling by water spraying." MATEC Web of Conferences 345 (2021): 00010. http://dx.doi.org/10.1051/matecconf/202134500010.

Повний текст джерела
Анотація:
The paper deals with steam flow in experimental turbine T10MW, located in Škoda laboratory. The flow was examined for low or negative outputs of the turbine, i.e. for the so called last stages ventilation. The flow path of the turbine was in the Boiler Feed Pump Turbine (BFPT) version. It had all together 4 stages out of which two were last stages with the outlet to the condenser. In the area of each of the two outlets cooling nozzles were located with water for cooling the outlet steam flow and the area of last blades root cross-sections. Cooling of these areas is necessary due to the compression heat that occurs in the off design (ventilation) regimes. Various proportional amounts of cooling water and flowing steam were tested experimentally in constant pressure behind both last stages. Due to the fact that the flow path and the exhaust hood were fitted with many static pressure taps, thermometers and with the possibility of probing the temperature field along the outlet cross-section height, a number of results were achieved. These were mainly the turbine outputs, steam flows through the blades and cooling nozzles, determination of saturation limits in individual places at the outlet as well as temperature differences measured by the probe and stable thermometers. It was found out that the amount of cooling water was oversized for blade roots cooling, while the flow at the tip was cooled only minimally. The results are beneficial both in terms of further research of steam turbines in low regimes because this is how most newly produced machines are operated and for the designers of these machines.
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Dewangan, Devnarayan, and Saurabh Kumar. "An Experimental Study on Performance Analysis of Cross-Flow Water Turbine." International Journal of Technology 6, no. 1 (2016): 49. http://dx.doi.org/10.5958/2231-3915.2016.00008.0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

MOTOHASHI, Hajime, Makoto GOTO, and Shoichi TAN. "1321 Experimental Study on a Cross Flow Type Impulse Water Turbine." Proceedings of the Fluids engineering conference 2001 (2001): 189. http://dx.doi.org/10.1299/jsmefed.2001.189.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

TAKAMATSU, Yasuo, Akinori FURUKAWA, Kusuo OKUMA, and Yasuhiko SHIMOGAWA. "Study on Hydrodynamic Performance of Darrieus-type Cross-flow Water Turbine." Bulletin of JSME 28, no. 240 (1985): 1119–27. http://dx.doi.org/10.1299/jsme1958.28.1119.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Adeyanju, Anthony A., and K. Manohar. "The Performance of a Cross-flow Turbine as a Function of Flowrates and Guide Vane Angles." HighTech and Innovation Journal 3, no. 1 (March 1, 2022): 56–64. http://dx.doi.org/10.28991/hij-2022-03-01-06.

Повний текст джерела
Анотація:
This study looked at the effects of flow rates and guide vane angles on the performance of a cross flow turbine, which can be used to generate energy and hydraulic power with low head and low flow rates of water. A fluid dynamic analysis was performed on the cross-flow turbine with the aid of finite element techniques. The simulation was solved after validating the convergence of the provided model and its boundary conditions, with the outputs being the velocity profiles of the flow in the rotor and the pressure distribution on the rotor surface during its rotations. Experimental evaluation of the cross-flow turbine guide vane positions at a flow rate of 0.8, 0.6, and 0.5 m3/s was conducted, and it was discovered that a maximum turbine speed of 482 rpm and a generator speed of 1920 rpm were produced at the rotor shaft at a flow rate of 0.8 m3/s with a head of 25 m, and this data was validated by the results produced from the simulation. Doi: 10.28991/HIJ-2022-03-01-06 Full Text: PDF
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Sinaga, Jorfri Boike, Azhar Azhar, Novri Tanti, and Sugiman Sugiman. "Perancangan Model Pembangkit Listrik Dengan Menggunakan Teknologi Pompa Tanpa Motor (Hydraulic Ram Pump)." MECHANICAL 8, no. 2 (April 15, 2018): 57. http://dx.doi.org/10.23960/mech.v8.i2.201709.

Повний текст джерела
Анотація:
This paper presents the design of parameters of hydraulic ram pump and hydraulic turbine to use the energy of flowing water for water supply to generate electrical power and irrigation. Design of parameters of hydraulic ram pump with head of water supply of 1,5 m was obtained: 1,25 in. diameter and 8 m length of drive pipe, 200 gr and 4,6 cm of weight and diameter of impulse valve, 4.200 cm3 of air chamber volume. The testing results of the hydraulic ram pump model shown that water could be pumped as far as the height of 7 m and 8 m, with the volume flow rate of 2,755 lit/men and 1,73 lit/men. Design of geometric parameters of cross flow hydraulic turbine with head of water supply of 1,75 m was obtained: 12 cm and 8 cm of external and internal diameter, 25 cm of runner width, and 18 of runner number. The testing results of the cross flow hydraulic turbine shown that power could be generated 83,47 W with the volume flow rate of 0,01 lit/s and the efficiency of 71,05 % at 799 rpm. The testing result also shown that with using volume flow rate of 0,003 lit/s, this turbine could be generated 23,39 W with the efficiency of 46,64 %. Technically the technology of hydraulic ram pump can be developped and used to supply of water for irrigation and generating of electrical power.
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Schneider-Binder, Erika. "Ecological conditions of the Waterchestnut (Trapa natans L.) in the Danube Delta (Romania)." Transylvanian Review of Systematical and Ecological Research 23, no. 3 (November 1, 2021): 1–16. http://dx.doi.org/10.2478/trser-2021-0017.

Повний текст джерела
Анотація:
Abstract The diversity of water body types in the Danube Delta offers appropriate ecological niches for the colonisation of frequently large stands of the waterchestnut (Trapa natans). Their phytocoenoses were observed in slowly running and standing waters from clear, sediment-poor, to turbid and sediment-rich waters on muddy ground. Trapa natans occurs in standing, and slowly running, waters and is well adapted to fluctuation of water level changes. The water dynamics is responsible for the composition of accompanying species of the phytocoenoses. The particular zonation, demonstrated by a cross section shows the adaption to the structure and the water flow of certain water bodies. Comparing older and newer research data, a decline of the populations of waterchestnuts became visible.
Стилі APA, Harvard, Vancouver, ISO та ін.
39

De Andrade, Jesús, Christian Curiel, Frank Kenyery, Orlando Aguillón, Auristela Vásquez, and Miguel Asuaje. "Numerical Investigation of the Internal Flow in a Banki Turbine." International Journal of Rotating Machinery 2011 (2011): 1–12. http://dx.doi.org/10.1155/2011/841214.

Повний текст джерела
Анотація:
The paper refers to the numerical analysis of the internal flow in a hydraulic cross-flow turbine type Banki. A 3D-CFD steady state flow simulation has been performed using ANSYS CFX codes. The simulation includes nozzle, runner, shaft, and casing. The turbine has a specific speed of 63 (metric units), an outside runner diameter of 294 mm. Simulations were carried out using a water-air free surface model and k-εturbulence model. The objectives of this study were to analyze the velocity and pressure fields of the cross-flow within the runner and to characterize its performance for different runner speeds. Absolute flow velocity angles are obtained at runner entrance for simulations with and without the runner. Flow recirculation in the runner interblade passages and shocks of the internal cross-flow cause considerable hydraulic losses by which the efficiency of the turbine decreases significantly. The CFD simulations results were compared with experimental data and were consistent with global performance parameters.
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Nishi, Yasuyuki, Yuichiro Yahagi, Takashi Okazaki, and Terumi Inagaki. "Effect of flow rate on performance and flow field of an undershot cross-flow water turbine." Renewable Energy 149 (April 2020): 409–23. http://dx.doi.org/10.1016/j.renene.2019.12.023.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

OMIYA, Ryota, Yasuyuki NISHI, Terumi INAGAKI, and Junichiro FUKUTOMI. "0912 Effect of Flow Rate on Internal Flow of an Undershot Type Cross-Flow Water Turbine." Proceedings of the Fluids engineering conference 2012 (2012): 355–56. http://dx.doi.org/10.1299/jsmefed.2012.355.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Sinagra, M., V. Sammartano, C. Aricò, and A. Collura. "Experimental and Numerical Analysis of a Cross-Flow Turbine." Journal of Hydraulic Engineering 142, no. 1 (January 2016): 04015040. http://dx.doi.org/10.1061/(asce)hy.1943-7900.0001061.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Doan, Minh N., Yuriko Kai, Takuya Kawata, and Shinnosuke Obi. "Flow Field Measurement of Laboratory-Scaled Cross-Flow Hydrokinetic Turbines: Part I—The Near-Wake of a Single Turbine." Journal of Marine Science and Engineering 9, no. 5 (May 1, 2021): 489. http://dx.doi.org/10.3390/jmse9050489.

Повний текст джерела
Анотація:
Recent developments in marine hydrokinetic (MHK) technology have put the cross-flow (often vertical-axis) turbines at the forefront. MHK devices offer alternative solutions for clean marine energy generation as a replacement for traditional hydraulic turbines such as the Francis, Kaplan, and Pelton. Following previous power measurements of laboratory-scaled cross-flow hydrokinetic turbines in different configurations, this article presents studies of the water flow field immediately behind the turbines. Two independent turbines, which operated at an average diameter-based Reynolds number of approximately 0.2×105, were driven by a stepper motor at various speeds in a closed circuit water tunnel with a constant freestream velocity of 0.316 m/s. The wakes produced by the three NACA0012 blades of each turbine were recorded with a monoscopic particle image velocimetry technique and analyzed. The flow structures with velocity, vorticity, and kinetic energy fields were correlated with the turbine power production and are discussed herein. Each flow field was decomposed into the time averaged, periodic, and random components for all the cases. The results indicate the key to refining the existed turbine design for enhancement of its power production and serve as a baseline for future comparison with twin turbines in counter-rotating configurations.
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Kang, Hong-Goo, Young-Ho Lee, Chan-Joo Kim, and Hyo-Dong Kang. "Design Optimization of a Cross-Flow Air Turbine for an Oscillating Water Column Wave Energy Converter." Energies 15, no. 7 (March 26, 2022): 2444. http://dx.doi.org/10.3390/en15072444.

Повний текст джерела
Анотація:
A cross-flow air turbine, which is a self-rectifying, air-driven turbine, was designed and proposed for the power take-off (PTO) system of an oscillating water column (OWC) wave energy converter (WEC). To predict the complicated non-linear behavior of the air turbine in the OWC, numerical and experimental investigations were accomplished. The geometries of the nozzle and the rotor of the turbine were optimized under steady-flow conditions, and the performance analysis of the model in bi-directional flows was conducted by commercial computational fluid dynamics (CFD) code ANSYS CFX. Experimentation on the full-scale turbine was then undertaken in a cylindrical-type wave simulator that generated reciprocating air flows, to validate the numerical model. The optimized model had a peak cycle-averaged efficiency of 0.611, which is 1.7% larger than that of the reference model, and a significantly improved band width with an increase in flow coefficients. Under reciprocating-flow conditions, the optimized model had a more improved operating range with high efficiency compared to the performance derived from the steady-flow analysis, but the peak cycle-averaged efficiency was decreased by 4.3%. The numerical model was well matched to the experimental results with an averaged difference of 3.5%. The proposed optimal design having structural simplicity with high performance can be a good option to efficiently generate electricity.
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Rochman, Sagita, and Andy Hermawan. "Design and Construction of Screw Type Micro Hydro Power Plant." BEST : Journal of Applied Electrical, Science, & Technology 4, no. 1 (March 22, 2022): 21–26. http://dx.doi.org/10.36456/best.vol4.no1.5444.

Повний текст джерела
Анотація:
The development of renewable energy is growing rapidly along with technological developments. One application of renewable energy is hydroelectric power (Water Turbine Generator). This study aims to design and manufacture a MHP using a permanent magnet generator with a screw type turbine and determine the output power generated from a MHP generator using a screw type turbine. In this research, an efficient and efficient MHP with screw type turbine will be developed. This research will be implemented in Doplang Tretek, Prambon Subdistrict, Sidoarjo Regency. MHP is a power plant whose driving force comes from water flowing from the highlands to the lowlands. By utilizing the water discharge PLTMH can function to produce electricity which is driven through a turbine and rotates a generator. The main components of MHP are turbine, generator, and water discharge. If one of these components is not present, the MHP cannot function. By utilizing MHP we can enjoy electricity for free, the power generated by MHP is still small <0.5-100kW. From the design of the PLTMH generator using a screw type turbine the output voltage is 9 volts with a water flow of 557 m3/s. The greater the flow of water flowing in the cross section of the turbine, the faster the resulting rpm.
Стилі APA, Harvard, Vancouver, ISO та ін.
46

SUZUKI, Ryota, Yasuyuki NISHI, Yuichiro YAHAGI, Takashi OKAZAKI, and Terumi INAGAKI. "Performance Analysis of an Undershot Cross-Flow Water Turbine with Straight Blades." Proceedings of Ibaraki District Conference 2017.25 (2017): 301. http://dx.doi.org/10.1299/jsmeibaraki.2017.25.301.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

OMIYA, Ryota, Yasuyuki NISHI, Terumi INAGAKI, and Junichiro FUKUTOMI. "403 Internal Flow of an Undershot Type Cross-Flow Water Turbine at Off-Design Points." Proceedings of Ibaraki District Conference 2012.20 (2012): 97–98. http://dx.doi.org/10.1299/jsmeibaraki.2012.20.97.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Laín, Santiago, Pablo Cortés, and Omar Darío López. "Numerical Simulation of the Flow around a Straight Blade Darrieus Water Turbine." Energies 13, no. 5 (March 3, 2020): 1137. http://dx.doi.org/10.3390/en13051137.

Повний текст джерела
Анотація:
In this study, three-dimensional transient numerical simulations of the flow around a cross flow water turbine of the type H-Darrieus are performed. The hydrodynamic characteristics and performance of the turbine are investigated by means of a time-accurate unsteady Reynolds-averaged Navier–Stokes (URANS) commercial solver (ANSYS-Fluent v. 19) where the time dependent rotor-stator interaction is described by the sliding mesh approach. The transition shear stress transport turbulence model has been employed to represent the turbulent dynamics of the underlying flow. Computations are validated versus previous experimental work in terms of the turbine efficiency curve showing good agreement between numerical and experimental values. The behavior of the power and force coefficients as a function of turbine angular speed is analyzed. Moreover, visualizations and analyses of the instantaneous vorticity iso-surfaces developing at different blade rotational velocities are presented including a few movies as additional material. Finally, the fluid variables fields are averaged along a turbine revolution and are compared with the steady predictions of simplified steady approaches based on the blade element momentum theory and the double multiple streamtube method (BEM-DMS).
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Pereira, Nuno H. C., and J. E. Borges. "Prediction of the Cross-Flow Turbine Efficiency with Experimental Verification." Journal of Hydraulic Engineering 143, no. 1 (January 2017): 04016075. http://dx.doi.org/10.1061/(asce)hy.1943-7900.0001234.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Sammartano, Vincenzo, Costanza Aricò, Marco Sinagra, and Tullio Tucciarelli. "Cross-Flow Turbine Design for Energy Production and Discharge Regulation." Journal of Hydraulic Engineering 141, no. 3 (March 2015): 04014083. http://dx.doi.org/10.1061/(asce)hy.1943-7900.0000977.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії