Добірка наукової літератури з теми "Cross-flow water turbin"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Cross-flow water turbin".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Cross-flow water turbin"

1

Darwito, Lilik, Hendri Nurdin, Purwantono Purwantono, and Andre Kurniawan. "Analysis of Power and Efficiency of Cross-flow Turbine Due to Changes in Runner Rotation." MOTIVECTION : Journal of Mechanical, Electrical and Industrial Engineering 4, no. 1 (February 25, 2022): 9–16. http://dx.doi.org/10.46574/motivection.v4i1.108.

Повний текст джерела
Анотація:
The Cross-flow turbine is one type of hydroelectric power plant that is frequently used. This is an experimental study with the goal of analyzing the power and efficiency produced by the turbine as a result of runner rotation adjustments. The runner rotation variations used are 261 rpm, 300 rpm, 320 rpm, 340 rpm, 360 rpm, 380 rpm, 392 rpm, and 423 rpm with a head as high as 5 meters and an incoming water discharge of 0.2 m3/s. The best results shown when runner rotate at 423 rpm. It's showed the maximum power 788.85 Watt and best efficiency 80.49%. The power and efficiency produced by a runner are proportional to the rotational speed of the runner; the higher the runner's rotation, the greater the power and efficiency produced. To summarize, the best way to achieve the best turbine performance is to maximize runner rotation. Salah satu jenis pembangkit listrik tenaga air yang sering digunakan adalah turbin tipe Cross-flow. Penelitian ini berupa penelitian eksperimen yang bertujuan untuk menganalisis daya dan efisiensi yang dihasilkan turbin akibat perubahan putaran runner. Variasi putaran runner yang digunakan yaitu 261 rpm, 300 rpm, 320 rpm, 340 rpm, 360 rpm, 380 rpm, 392 rpm, dan 423 rpm dengan head setinggi 5 meter serta debit air yang masuk 0,2 m3/s. Hasil penelitian menunjukkan daya dan efisiensi maksimum didapatkan pada putaran runner 423 rpm yaitu 788,85 Watt dengan efisiensi 80,49%. Terbukti bahwa daya dan efisiensi sebanding dengan kecepatan putaran runner, semakin tinggi putaran runner maka daya dan efisiensi yang dihasilkan juga semakin besar. Dapat disimpulkan, untuk mendapatkan kinerja turbin yang maksimal yaitu dengan memaksimalkan putaran runner.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Laksmana, Satria Candra, A'rasy Fahruddin, and Ali Akbar. "Pengaruh Sudut Pengarah Aliran Pada Turbin Air Crossflow Tingkat Dua Terhadap Putaran dan Daya." R.E.M. (Rekayasa Energi Manufaktur) Jurnal 3, no. 1 (October 11, 2018): 35. http://dx.doi.org/10.21070/r.e.m.v3i1.1591.

Повний текст джерела
Анотація:
The potential of hydro energy is very large both for large scale and for small scale. Until now, the need for energy continues to increase, so that energy is a very important element in the development of a country or a region. Cross-flow turbines are one type of turbine that is often used for PLTMH. In this study planning a cross-flow water turbine applied to the height and amount of water per second in the irrigation channel water flow, this water flow will rotate the turbine shaft to produce mechanical energy. With variations in the direction of the turbine flow direction, namely 30o, 35o, and 40o, and the same variation of water discharge 10,5 L / s, 21 L / s and 31,5 L / s to determine the effect on the rotation and the power produced. In this study with 12 turbine blades, 30o blade angle, 40o flow direction angle, and 31.5 L / s water discharge obtained the highest first stage turbine rotation value is 478 rpm. Whereas at the flow direction angle of 30o with the same water discharge which is 31.5 L / s so that the first stage of the turbine is obtained is 296 rpm.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Darmawan, Steven, Abrar Riza, M. Sobron Y. Lubis, Stevanus Aditya Winardi, and Reuben Christianto. "UNJUK KERJA TURBIN CROSS-FLOW DENGAN SIMULASI CFD PADA NOSEL DAN MANUFAKTUR PADA RUNNER." Jurnal Muara Sains, Teknologi, Kedokteran dan Ilmu Kesehatan 5, no. 2 (October 30, 2021): 443. http://dx.doi.org/10.24912/jmstkik.v5i2.11904.

Повний текст джерела
Анотація:
Covid-19 pandemic has lead disruption in energy sector, new-and-renewable energy demand is increasing, which show that renewable energy is promisable to be developed. As one of the hydraulic turbine, the cross-flow turbine is prospective primve mover in line with the 7th goal of the SDG’s Goals. Cross-flow turbine is radial atmospheric turbine which generates power by converting hydraulic energy from water to mechanical energy on the shaft by using nozzle and runner. The advantages make this device is became famous, including simple construction and geometry, low maintenance & cost and can be used at wide range operation scheme. However, the cross-flow turbine system is also known to have low efficiency. Based on this condition, this research is aims to improve the efficiency with design the nozzle and to manufacture the runner with two material. The operating condition is set to 1 phase water as working fluid with 1,4 L/s of flow. Nozzle design conducted with CFD 3D simulation from 3 different model. Runner manufacturing is conducted numerically with CAM simulation and experimentally by using CNC machining with Stainless Stell 304 and Aluminium 6061. CFD simulation on the nozzle shows that nozzle model 3 with total length of 400 mm, width 124 mm and throat radius 75 mm.resulting the maximum outlet velocity to the runner 0,135 m/s. Manufacturing of the runner and experiment on the system with nozzle model 3 show that the runner with SS 304 is able to generates larger power to 8,38 Watt,100% larger than the Aluminium 6061.Keywords: Renewable Energy, Cross-flow turbine, CFD, CAMAbstrakPandemi Covid-19 mengakibatkan disrupsi pada sektor energi, dimana konsumsi energi baru dan terbarukan mengalami kenaikan. Fenomena ini menunjukkan bahwa energi terbarukan menjanjikan untuk terus dikembangkan. Sesuai dengan goal ke-7 dari SDG’s oleh PBB, turbin cross-flow merupakan turbin radial yang menghasilkan daya melalui konversi energi hidrolik dari air sebagai sumber energi terbarukan, menjadi energi mekanis pada poros melalui penggunaan nosel dan runner, banyak digunakan karena beberapa kelebihannya, antara lain konstruksi yang sederhana dan simetris hanya memerlukan biaya perawatan yang rendah dan sederhana serta dapat digunakan pada rentang beban yang cukup besar. Namun demikian, turbin cross-flow secara umum memiliki nilai efisiensi yang lebih rendah. Efisiensi sistem dapat ditingkatkan dengan penggunaan material runner yang seusai. Penelitian ini bertujuan untuk melakukan perancangan terhadap nosel dan proses manufaktur runner cross-flow sehingga dapat diperoleh geometri nosel serta jenis material dan proses manufaktur runner yang sesuai untuk rentang operasi, yaitu aliran air 1 fasa dengan debit 1,4 L/s. Pengembangan nosel dilakukan dengan menggunakan metode CFD pada 3 model geometri. Pengembangan terhadap runner meliputi simulasi CAM dan manufaktur pada 2 jenis material, yaitu SS 304 dan Aluminium 6061. Hasil simulasi CFD 3D menunjukkan bahwa nosel model 3 dengan dimensi panjang total 400mm, lebar 124 mm, dan radius pada throat 75mm menghasilkan kecepatan pada sisi outlet sebesar 0,135 m/s. Hasil simulasi CAM dan Manufaktur terhadap runner serta eksperimen terhadap sistem dengan nosel model 3 menunjukkan bahwa bahwa runner dengan material SS 304 menghasilkan daya, yaitu 8.38 Watt, 100% lebih besar dibandingkan dengan runner dengan material Aluminium 6061.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Wijaya, Rudi Kusuma, and Iwan Kurniawan. "Study Experimental Darrieus Type-H Water Turbines Using NACA 2415 Standard Hydrofoil Blade." Jurnal Pendidikan Teknik Mesin Undiksha 9, no. 2 (August 31, 2021): 109–23. http://dx.doi.org/10.23887/jptm.v9i2.29257.

Повний текст джерела
Анотація:
Telah dilakukan kaji eksperimental turbin air Darrieus tipe-H menggunakan blade hydrofoil standar NACA 2415 untuk mengetahui nilai torsi statik dan dinamik yang dihasilkan turbin air Darrieus tipe-H 3 blade dan 6 blade, pengujian menggunakan water tunnel dimensi 6m x 0.6m x 1m. Variasi tiga blade dan enam blade, dengan diameter turbin 0.44 m x 0.15 m pada turbin luar dan 0.18 x 0.14 m pada turbin bagian dalam, panjang chord 0.10 m dengan variasi sudut serang 0º sampai dengan 360º, variasi kecepatan air pertama 0.3 m/s, variasi kecepatan aliran air kedua 0.65 m/s. Kecepatan air 0.3 m/s enam blade, torsi statik 0.3 Nm, torsi dinamik nya 0.384 Nm, kecepatan air 0,65 m/s torsi dinamik 0.432 Nm dan torsi statik nya 0.384 Nm, pengujian turbin Darrieus tiga blade kecepatan air 0,3 m/s nilai torsi dinamik 0.336 Nm dan dengan kecepatan yang sama torsi statik nya 0.264 Nm. Pada kecepatan air 0.65 m/s nilai torsi dinamik sebesar 0.384 Nm, dan nilai torsi statik 0.336 Nm. Dari data hasil pengukuran tersebut dapat disimpulkan bahwa variasi turbin enam blade memiliki nilai torsi statik dan torsi dinamik yang lebih tinggi dari pada turbin tiga blade, jumlah blade sangat berpengaruh terhadap daya serap energi kinetik air untuk di konversikan menjadi torsi statik maupun torsi dinamik.Kata kunci : Turbin Hydrokinetic, Darrieus, Torsi Statik,Torsi DinamikAn experimental study of the H-type Darrieus water turbine was carried out using a standard NACA 2415 hydrofoil blade to determine the value of static and dynamic torque generated by the 3-blade and 6-blade Darrieus H-type water turbine, testing using a water tunnel dimensions of 6m x 0.6m x 1m. Variation of three blades and six blades, with a turbine diameter of 0.44 mx 0.15 m on the outer turbine and 0.18 x 0.14 m on the inner turbine, chord length 0.10 m with variations in angle of attack 0º to 360º, variation of first water velocity 0.3 m / s second water flow velocity 0.65 m / s. Water velocity 0.3 m / s six blades, static torque 0.3 Nm, dynamic torque 0.384 Nm, water velocity 0.65 m / s dynamic torque 0.432 Nm and static torque 0.384 Nm, Darrieus three blade turbine test water speed 0.3 m / s dynamic torque value of 0.336 Nm and with the same speed its static torque is 0.264 Nm. At 0.65 m / s water velocity, the dynamic torque value is 0.384 Nm, and the static torque value is 0.336 Nm. From the measurement data, it can be concluded that the six-blade turbine variation has a higher value of static torque and dynamic torque than the three-blade turbine, the number of blades greatly influences the absorption of water kinetic energy to be converted into static torque and dynamic torque. Keywords: Hydrokinetic Turbine, Darrieus, static torque, dynamic torqueDAFTAR RUJUKANKirke, B.K. (2011). Tests on ducted and bare helical and straight blade Darrieus hydrokinetic turbines, 36, pp.3013-3022Dominy, R., Lunt, P., Bickerdyke A., Dominy, J. (2007). Self-starting capability of a Darrieus turbine. Proc Inst Mech Eng (IMechE) ePart A: J Power Energy ;221: 111-120Decoste, Josh. (2004). Self-Starting Darrieus Wind Turbine. Department of Mechanical Engineering, Dalhousie University.Febrianto, A., & Santoso, A. (2016). “Analisa Perbandingan Torsi Dan rpm Tipe Darrieus Terhadap Efisiensi Turbin”. Fakultas Teknologi Kelautan, Institut Teknologi Sepuluh Nopember (ITS)Febriyanto, N. (2014). “Studi Perbandingan Karakteristik Airfoil NACA 0012 Dengan NACA 2410 Terhadap Koefisien Lift dan Koefisien Drag Pada Berbagai Variasi Sudut Serang Dengan CFD” Fakultas teknik, Universitas Muhammadiyah SurakartaSaputra, G. (2016). Kaji Eksperimental Turbin Angin Darrieus-H Dengan Bilah Tipe NACA 2415. Universitas Riau, JOM Teknik Mesin vol. 3 No. 1.Hafied, B. (2018). Kaji Eksperimental Torsi Statik Dan Torsi Dinamik Hidrokinetik Turbin Savonius Single Stage Type Bach Tiga Sudu. Tugas Akhir Teknik Mesin. Fakultas Teknik Universitas Riau.Hau, E. (2005). Wind Turbines: Fundamentals, Technologies, Aplication, Economics. Springer. Berlin.Kaprawi. (2011), Pengaruh Geometri Blade Dari Turbin Air Darrieus Terhadap Kinerjany. Prosiding Seminar Nasional AVoER ke-3 PalembangKhan, M. J., Bhuyan, G., Iqbal M. T., & Quaicoe J.E. (2009). Hydrokinetic Energy Conversion Systems and Assessment of Horizontal and Vertical Axis Turbines for River and Tidal: Applications A Technology Status Review. Applied Energy, 86, 1823-1835.Lain, S., & Osario, C. (2010). Simulation and Evaluation of a Sraight Bladed Darrieus Type Cross Flow Marine Turbine. Journal of Scientific & Research, Vol. 69 p.906-912Marizka, L. D. (2010). Analisis Kinerja Turbin Hydrokinetic Poros Vertical Dengan Modifikasi Rotor Savonius L Untuk Optimasi Kinerja Turbin. Tugas Akhir Sains Fisika. FMIPA-Universitas Sebelas Maret.Malge, P. (2015).Analysis of Lift and Drag Forces at Different Azimuth Angle of Innovative Vertical Axis Wind Turbine.International Journal of Energy Engineering 4(5-8).Teja, P., D. (2017). Studi Numerik Turbin Angin Darrieus – Savonius Dengan Penambahan Stage Rotor Darrieus. Institut Teknologi Sepuluh Nopember, Surabaya.Zobaa, A. F., & Bansal, R. C. (2011). Handbook of Renewable Energy Technology. USA: World Scientific Publishing Co. Pte. Ltd.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Alim, Saharul. "APLIKASI MOTOR INDUKSI SEBAGAI GENERATOR PADA SISTEM PEMBANGKIT TENAGA MIKROHIDRO MODEL DRUM." Jurnal DISPROTEK 10, no. 2 (October 14, 2021): 107–29. http://dx.doi.org/10.34001/jdpt.v10i2.2520.

Повний текст джерела
Анотація:
ABSTRACT Salah satu alternatif solusi pada pemanfaatan sumber energi baru dan terbarukan yang peneliti acu adalah penelitian tentang rancang bangun turbin cross flow sebagai penggerak mula sistem PTMMD yang dilakukan Bachtiar (2009). PTMMD adalah Pembangkit Tenaga Mikrohidro Model Drum yang terdiri dari saluran masuk, drum penampung, saluran limpah, saluran keluar, panel beban, dan penggerak mula turbin cross flow yang ditransmisikan pada motor induksi dengan puli-belt. PTMMD ini dirancang dengan head 2,5 m, debit air 20 lt/s, penggerak mula turbin cross flow dengan diameter runner 80 mm dan panjang runner 130 mm serta daya rencana 400 Watt. Dua buah motor induksi berkapasitas 0,25 HP dan 0,5 HP digunakan untuk membangkitkan keluaran daya listrik. Hasil penelitian menunjukkan bahwa motor induksi 0,25 HP dapat menghasilkan keluaran listrik satu fase dengan konfiguurasi C-2C sebesar 79,2 Watt dan tiga fase dengan konfigurasi bintang sebesar 80,16 Watt. Motor induksi 0,5 HP dapat menghasilkan keluaran listrik satu fase dengan konfigurasi C-2C sebesar 74,05 Watt dan tiga fase dengan konfigurasi delta sebesar 68,71 Watt. Efisiensi maksimum dapat ditunjukkan saat menggunakan motor induksi 0,25 HP dengan kapasitor 8 µF dikonfigurasi C-2C dan bintang. Keywords: PTMMD, motor induksi, kapasitor. ABSTRAK One of alternative solutions on the utilization of renewable energy sources is about the design of cross flow turbine as prime mover in PTMMD system which was performed by Bachtiar (2009). PTMMD is a microhydro power plant drum model consisting of an inlet channel, the drum, an overflow channel, an outlet channel, a load panel, and a cross flow turbine as the prime mover to an induction motor through a pulley-belt. This PTMMD is designed with 2.5 m water head, 20 liters/s discharge, 80 mm diameter cross flow runner turbine, 130 mm long runner, and 400 Watt expected power output. Two induction motor of capacity 0.25 HP and 0.5 HP were used to generate the electric power output. The experiments showed that the 0.25 HP induction motor can produce 79.2 Watts in one phase C-2C configuration and 80.16 Watts in three phase star configuration of maximum electric output and the 0.5 HP induction motor can produce 74.05 Watts in one phase C-2C configuration and 68.71 Watts in three phase delta configuration of maximum electric output. The maximum efficiency can be showed at the time using 0.25 HP induction motor and which is close in one phase C-2C configuration and three phase star configuration with 8 µF compensating capacitor. . Kata kunci: PTMMD, induction motor, capasitor.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Agit Prakoso, Sayyid Alkahfi, Tri Mulyanto, and Sunyoto . "Perancangan Dan Simulasi Performa Prototipe Turbin Air Tidal Tipe Propeler Naca S814 Sebagai Sumber Energi Petani Tambak Garam Daerah Cirebon." Jurnal Pendidikan Teknik Mesin Undiksha 10, no. 1 (March 31, 2022): 86–103. http://dx.doi.org/10.23887/jptm.v10i1.45389.

Повний текст джерела
Анотація:
Telah dilakukan perancangan dan pengujian performa turbin air tidal untuk penggerak pompa di tambak garam menggunakan blade hydrofoil standar NACA S814 untuk menghasilkan desain turbin tidal, optimasi bilah turbin tidal dan juga coefficient of power (Cp) pada turbin tidal. Perancangan geometri turbin tidal menggunakan rumus yang tersedia dan pengujian turbin tidal menggunakan bantuan software Qblade. Variasi kecepatan aliran air yang pertama 1 m/s, Variasi kecepatan aliran air yang kedua 1,536 m/s, Variasi kecepatan aliran air yang ketiga 2,072 m/s, Variasi kecepatan aliran air yang keempat 2,608 m/s, Variasi kecepatan aliran air yang kelima 3,144 m/s, Variasi kecepatan aliran air yang keenam 3,68 m/s. Hasil perancangan yang didapatkan adalah panjang chord 0,02 m, panjang blade 0,4 m, diameter poros 0,16 m, diameter bilah 1,1 m, jumlah blade 3. Hasil dari pengujian performa dari turbin tidal untuk masing-masing varian kecepatan adalah 22,474; 9,136; 4,703; 2,642; 1,539; 0,900. Dari data hasil pengujian tersebut diolah dengan menggunakan metoda ANOVA. Kesimpulan yang didapatkan adalah karena nilai F (kecepatan) =2,219512 F crit =2,53355 maka tidak terdapat perbedaan hasil uji pada varian kecepatan dan karena nilai F (uji) =25,59739 F crit =2,42052 maka terdapat perbedaan hasil uji pada varian hasil.Kata kunci: ANOVA, Coefficient of Power,Turbin Tidal, QbladeThe design and performance test of a tidal water turbine for pump driving in salt ponds has been carried out using a standard NACA S814 hydrofoil blade to produce a tidal turbine design, optimization of tidal turbine blades, and also the coefficient of power (Cp) on a tidal turbine. Tidal turbine geometry design using the available formulas and tidal turbine testing using the Qblade software. The first variation of airflow velocity is 1 m/s, the variation of the second airflow velocity is 1.536 m/s, the variation of the third airflow velocity is 2.072 m/s, the variation of the fourth airflow velocity is 2.608 m/s, the fifth variation of airflow velocity is 3.144 m/s, Variation of water flow velocity 3.68 m/s. The design results obtained are chord length 0.02 m, blade length 0.4 m, shaft diameter 0.16 m, blade diameter 1.1 m, number of blades 3. The results of testing the performance of the tidal turbine for each speed variant are 22.474; 9.136; 4,703; 2,642; 1,539; 0.900. From the test results, data are processed using the ANOVA method. The conclusion obtained is because the value of F (speed) = 2.219512 < F crit = 2.53355 then there is no difference in the test results on the speed variant and because the value of F (test) = 25.59739 > F crit = 2.42052 then there is the difference in test results on the variance of results.Keywords : ANOVA, Coefficient of Power, Tidal Turbine, QbladeDAFTAR RUJUKANBaihaqiy, A. R. (2017). Prototype Pembangkit Listrik Tenaga Pasang Surut Air Laut Di Kelurahan Tugurejo Kecematan Tugu Kota Semarang. Universitas Negri Semarang.FE, M. N. S. (2016). Rancang Bangun Simulasi Turbin Air Cross Flow. Jurnal Pendidikan Teknik Mesin, 1(2).Febrianto, A., & Santoso, A. (2017). Analisa perbandingan torsi dan rpm turbin tipe darrieus terhadap efisiensi turbin. Jurnal Teknik ITS, 5(2).Fridayana, E. N. (2018). Analisis Kinerja Aerodinamik dari Vertical Axis Wind Turbine (VAWT) Darrieus Tipe H-Rotor dengan Pendekatan Computational Fluid Dynamic (CFD). Institut Teknologi Sepuluh Nopember,Ginting, J. W., & Setiawan, I. K. D. (2018). Kinerja Prototipe Papan Osilasi Pada Pompa Flap Tenaga Gelombang Untuk Pemanfaatan Mata Air Di Pantai Banyu Asri, Kota Singaraja-Bali. Jurnal Teknik Hidraulik, 9(2).Kurniawan, A., Jaziri, A. A., Amin, A. A., & Salamah, L. N. m. (2019). Indeks Kesesuaian Garam (IKG) Untuk Menentukan Kesesuaian Lokasi Produksi Garam; Analisis Lokasi Produksi Garam Di Kabupaten Tuban Dan Kabupaten Probolinggo. JFMR (Journal of Fisheries and Marine Research), 3(2), 236-244.Lopulalan, R. M. (2016). Desain blade turbin pembangkit listrik tenaga arus laut di Banyuwangi berbasis CFD. Institut Teknologi Sepuluh Nopember Surabaya,Oktavianto, D., Budiarto, U., & Kiryanto, K. (2017). Analisa Pengaruh Variasi Bentuk Sudu, Sudut Serang dan Kecepatan Arus Pada Turbin Arus Tipe Sumbu Vertikal Terhadap Daya yang Dihasilkan Oleh Turbin. Jurnal Teknik Perkapalan, 5(2).Patittingi, F. (2012). Dimensi hukum pulau-pulau kecil di Indonesia: studi atas penguasaan dan pemilikan tanah: Rangkang Education.Priliawan, R. A. (2016). Pengaruh Jumlah Sudu Turbin Wells Dan Variasi Gelombang Laut Terhadap Performa Prototype Pembangkit Listrik Tenaga Gelombang Laut Sistem Oscillating Water Column (OWC).Sapto, A. D., & Rumakso, H. P. (2021). Uji Coba Performa Bentuk Airfoil Menggunakan Software Qblade Terhadap Turbin Angin Tipe Sumbu Horizontal. Jurnal Teknik Mesin, 10(1).Sari, Y. R., & Rani, M. (2021). Penerapan Logika Fuzzy Metode Mamdani Dalam Menyelesaikan Masalah Produksi Garam Nasional. JATISI (Jurnal Teknik Informatika dan Sistem Informasi), 8(1), 341-356.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Insani, Chairil. "RANCANG BANGUN TURBIN REAKSI PADA SUNGAI TAMAN KOTA 2 DENGAN MODEL ALIRAN VORTEX." Jurnal Teknik Mesin ITI 5, no. 2 (June 30, 2021): 79. http://dx.doi.org/10.31543/jtm.v5i2.587.

Повний текст джерела
Анотація:
Electricity is a necessity that must exist today, its use is always subject to binding. Most of the electricity comes from fossil energy-based power plants such as PLTU. Therefore, a solution was made by making a vortex water turbine to produce electrical energy. Utilizing a river flow with a small head of water, the water will enter the cross section. The flow will form a vortex because the shape of the section and the draft tube makes the lower side of the section have lower pressure. The vortex turbine will be designed to use a permanent magnet 150 watt AC generator. With a cross section of 60 x 55 x 150cm, draft tube 9.6 mm and turbine blade 30 x 50cm made of aluminum. On the framework will be used a 3 x 3.5 cm strip plate which is rolled. In order to withstand the impact of water on the blade, a 7 mm shaft is used and a nominal bearing life of 10274 hours. The resulting rotation is continued with a pulley with a diameter of 30 mm, 180 mm and with a belt type V material JIS K 6323 A 34.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

ÖĞÜÇLÜ, Özer. "HELİSEL ÇAPRAZ AKIŞLI SU TÜRBİNİNİN PERFORMANS ANALİZİ VE OPTİMİZASYONU." Mühendislik Bilimleri ve Tasarım Dergisi 10, no. 2 (June 30, 2022): 605–19. http://dx.doi.org/10.21923/jesd.816160.

Повний текст джерела
Анотація:
Bu çalışmada, bir helisel çapraz akışlı su türbininin performans analizini, Comsol Multiphysics kullanılarak incelemek için bir Hesaplamalı Akışkanlar Dinamiği modeli tasarlanmıştır. Bir helisel çapraz akışlı su türbininin güç çıkışı ve tork gibi ana performans özelliklerini tahmin etmek için, simülasyon için kullanılması doğru, hızlı ve oldukça basit olan sayısal bir model geliştirilmiştir. Türbin etrafındaki akış alanı, bir k-ω türbülans modeli ve kararlı durum formülasyonu kullanılarak Comsol CFD Modülündeki Rotating Machinery özelliği ile çözülmüştür. Navier-Stokes denklemleri, iç alanda dönen bir çerçeve içinde ve dış alanda sabit koordinatlarda düzenlenen modelde kullanılmıştır. İç ve dış alan arasındaki sınır koşulu, momentumu iç bölgedeki akışkana aktaran bir süreklilik sınır koşuludur. Bu model ayrıca, bu çalışma için hesaplama süresini önemli ölçüde hızlandıran Frozen Rotor çalışma yöntemini kullanır. Ardından Comsol Optimizasyon Modülü ile çapraz akışlı su türbininin performansını artırmak için yeni bir açısal hız profili araştırılmıştır. Böylece değişken hızlı bir türbin kontrol yöntemi geliştirilmiştir. Bu kontrol yönteminin performansı, sabit açısal hız kontrol yöntemi altında çalışan bir türbin ile karşılaştırılmıştır. Yeni açısal hız kontrol yöntemi türbin veriminde, sabit hız kontrol metodu ile karşılaştırıldığında, %3'lük bir artış sağlamıştır.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Li, Yan Rong, Yasuyuki Nishi, Terumi Inagaki, and Kentarou Hatano. "Study on the Flow Field of an Undershot Cross-Flow Water Turbine." Applied Mechanics and Materials 620 (August 2014): 285–91. http://dx.doi.org/10.4028/www.scientific.net/amm.620.285.

Повний текст джерела
Анотація:
The purpose of this investigation is to research and develop a new type water turbine, which is appropriate for low-head open channel, in order to effectively utilize the unexploited hydropower energy of small river or agricultural waterway. The application of placing cross-flow runner into open channel as an undershot water turbine has been under consideration. As a result, a significant simplification was realized by removing the casings. However, flow field in the undershot cross-flow water turbine are complex movements with free surface. This means that the water depth around the runner changes with the variation in the rotation speed, and the flow field itself is complex and changing with time. Thus it is necessary to make clear the flow field around the water turbine with free surface, in order to improve the performance of this type turbine. In this research, the performance of the developed water turbine was determined and the flow field was visualized using particle image velocimetry (PIV) technique. The experimental results show that, the water depth between the outer and inner circumferences of the runner decreases as the rotation speed increases. In addition, the fixed-point velocities with different angles at the inlet and outlet regions of the first and second stages were extracted.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Nishi, Yasuyuki, Terumi Inagaki, Yanrong Li, and Kentaro Hatano. "Study on an Undershot Cross-Flow Water Turbine with Straight Blades." International Journal of Rotating Machinery 2015 (2015): 1–10. http://dx.doi.org/10.1155/2015/817926.

Повний текст джерела
Анотація:
Small-scale hydroelectric power generation has recently attracted considerable attention. The authors previously proposed an undershot cross-flow water turbine with a very low head suitable for application to open channels. The water turbine was of a cross-flow type and could be used in open channels with the undershot method, remarkably simplifying its design by eliminating guide vanes and the casing. The water turbine was fitted with curved blades (such as the runners of a typical cross-flow water turbine) installed in tube channels. However, there was ambiguity as to how the blades’ shape influenced the turbine’s performance and flow field. To resolve this issue, the present study applies straight blades to an undershot cross-flow water turbine and examines the performance and flow field via experiments and numerical analyses. Results reveal that the output power and the turbine efficiency of the Straight Blades runner were greater than those of the Curved Blades runner regardless of the rotational speed. Compared with the Curved Blades runner, the output power and the turbine efficiency of the Straight Blades runner were improved by about 31.7% and about 67.1%, respectively.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Cross-flow water turbin"

1

Zanette, Jerônimo. "Hydroliennes à flux transverse : contribution à l’analyse de l’interaction fluide-structure." Grenoble INPG, 2010. http://www.theses.fr/2010INPG0161.

Повний текст джерела
Анотація:
Cette thèse a été réalisée dans le cadre du Projet HARVEST, programme d'études initié au Laboratoire LEGI de Grenoble visant la production d'électricité à partir d'un concept original d'hydrolienne. Au sein du Projet HARVEST, ce travail constitue une contribution à l'analyse de l'interaction fluide-structure, appuyée sur des outils de simulation numérique disponibles. Une démarche progressive a été mise en place. L'étude porte ainsi tout d'abord sur des configurations bidimensionnelles représentant une coupe transversale de la géométrie réelle. Des géométries tridimensionnelles simplifiées, incluant quelques composants de la turbine, sont ensuite analysées. Enfin, dans la dernière partie de ce manuscrit, le rendement hydrodynamique et les caractéristiques mécaniques d'une géométrie complète de turbine à flux transverse sont présentés. Ce mémoire est clôturé par des conclusions d'ordre méthodologique et technologique des travaux présentés
The general context of the present study is the HARVEST Project, research program initiated at LEGI Laboratory in Grenoble devoted to the development of an original concept of cross-flow water turbine allowing to harness the kinetic energy of rivers and oceans streams. Within the HARVEST Project, this thesis is an important contribution to the analysis of fluid-structure interaction, based on available numerical simulation tools. A gradual approach was implemented. The study is primarily performed on two-dimensional configuration representing a cross section of the real geometry. Simplified three-dimensional geometries, including some components of the turbine, are analyzed after. Finally, in the last part of this manuscript, the hydrodynamic performance and mechanical characteristics of a complete geometry of cross-flow water turbine are presented. This thesis is concluded with methodological and technological considerations
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Pokhrel, Sajjan. "Computational Modeling of A Williams Cross Flow Turbine." Wright State University / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=wright1515428122798392.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Aumelas, Vivien. "Modélisation des hydroliennes à axe vertical libres ou carénées : développement d'un moyen expérimental et d'un moyen numérique pour l'étude de la cavitation." Phd thesis, Université de Grenoble, 2011. http://tel.archives-ouvertes.fr/tel-00635123.

Повний текст джерела
Анотація:
Cette thèse s'inscrit dans le cadre des énergies renouvelables au sein du programme HARVEST centré sur le développement d'un concept d'hydrolienne dérivé des turbines Darrieus et Gorlov. L'ajout d'un dispositif appelé carénage à la turbine permet à celle-ci d'extraire une portion de l'énergie cinétique du courant plus grande. Toutefois ce dernier peut favoriser la cavitation qui nuit à la turbine. Parmi les différents axes du programme, les travaux de thèse se situent dans cette problématique. En régime subcavitant et cavitant, l'analyse de l'hydrolienne a été menée suivant une approche numérique et expérimentale. Pour ce faire deux outils ont été mis en place. Du coté expérimental, le tunnel hydrodynamique du LEGI a été équipé d'une balance qui donne la mesure instantanée des forces et du couple qui s'exercent sur la turbine. Du coté numérique, les efforts ont été orientés sur l'amélioration et le développement du code de calcul universitaire, CAVKA. L'utilisation intensive de ces deux moyens, couplée à des modèles théoriques, a permis de mettre en évidence d'une part le fonctionnement de la turbine libre ou carénée et, d'autre part, les limites de fonctionnement vis-à-vis de la cavitation.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Hauck, Matthieu. "Optimisation de l'architecture et de la commande de la chaîne électrique d'une hydrolienne fluviale : conception et réalisation." Phd thesis, Université de Grenoble, 2011. http://tel.archives-ouvertes.fr/tel-00732840.

Повний текст джерела
Анотація:
Le but de cette thèse est le développement et l'optimisation de la chaine électrique d'une hydrolienne fluviale. L'approche est d'abord traitée en simulation pour ensuite finir par la conception et la mise au point d'un prototype. La partie simulation concerne la modélisation des ensembles turbines, génératrices et électronique de puissance mais aussi le développement des diverses lois de commandes. Ces commandes peuvent intervenir à différents niveaux du contrôle jusqu'à la supervision complète du système, permettant de gérer des défauts, des algorithmes de MPPT (extraction maximale de puissance), des synchronisations entre colonne, ... Le prototype d'hydrolienne fluviale sera ensuite présenté, de la mise au point des parties mécaniques jusqu'aux résultats expérimentaux. Les travaux nombreux autour de ce prototype ont permis d'obtenir des résultats satisfaisants et encourageants qui corroborent la théorie.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Andreica, Ana Maria. "Optimisation énergétique de chaînes de conversion hydroliennes : modélisation, commandes, et réalisations expérimentales." Grenoble INPG, 2009. https://theses.hal.science/tel-00876949.

Повний текст джерела
Анотація:
Les hydroliennes représentent une des ressources d'énergie renouvelable qui a encore besoin d'études exploratoires et d'une réelle finalité pratique. Les hydroliennes sont des turbines qui récupèrent l'énergie cinétique des courants fluviaux ou marins. Equivalentes quelque part aux éoliennes, elles seront plus compactes à puissance égale car l'eau est mille fois plus dense que l'air. L'étude présentée dans le cadre de cette thèse s'inscrit dans un programme de recherche multidisciplinaire et a pour objet le concept HARVEST basé sur une structure verticale nommée colonne qui est composée d'un empilement de turbines "Achard" solidaires sur un même axe de rotation. Cette thèse fait partie des travaux menés sur les aspects génération électrique et porte sur les possibilités de contrôle commande et de pilotage pour les hydroliennes en mode connecté au réseau de puissance infinie ou en mode ilôté
Cross-flow water turbines represent a potential renewable energy resource which needs more exploring study and eventually real scale finality. Cross-flow water turbines harvest the water kinetic energy. Somehow equivalents to wind turbines these water turbines are more compact at equal power as water is a thousand times denser than air. The study here presented is part of a multidisciplinary research program focused on the HARVEST concept. The latter is based on vertical structure composed of piled up Achard turbines locked on the same rotational shaft. This Ph. D. Thesis concerns electrical generation issues and its main developed topics are control possibilities of this generation system in a grid connected or islanded mode of operation
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Cross-flow water turbin"

1

Saini, Gaurav, and R. P. Saini. "Performance Study of Cross Flow Hybrid Hydrokinetic Turbine." In Water Science and Technology Library, 249–57. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-59148-9_17.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Yadav, Virendra Kumar, and S. K. Singal. "Performance Analysis of Cross-Flow Turbine: Variation in Shaft Diameter." In Water Science and Technology Library, 487–97. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55125-8_42.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Pellone, Christian, Thierry Maitre, and Ervin Amet. "3D RANS Modeling of a Cross Flow Water Turbine." In Advances in Hydroinformatics, 405–18. Singapore: Springer Singapore, 2013. http://dx.doi.org/10.1007/978-981-4451-42-0_33.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Furukawa, A., Y. Takamatsu, K. Okuma, and K. Takenouchi. "Optimum Design of the Darrieus-Type Cross Flow Water Turbine for Low Head Water Power." In Renewable Energy, Technology and the Environment, 2824–28. Elsevier, 1992. http://dx.doi.org/10.1016/b978-0-08-041268-9.50078-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Furukawa, Akinori, and Kusuo Okuma. "On Applicability of Darrieus-type Cross Flow Water Turbine for Abandoned Hydro and Tidal Powers." In World Renewable Energy Congress VI, 2622–25. Elsevier, 2000. http://dx.doi.org/10.1016/b978-008043865-8/50577-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Cross-flow water turbin"

1

Mathioulakis, D., and D. E. Papantonis. "LDA flow-field measurements on a BANKI (cross-flow) water turbine." In Laser Anemometry: Advances and Applications--Fifth International Conference, edited by J. M. Bessem, R. Booij, H. W. H. E. Godefroy, P. J. de Groot, K. K. Prasad, F. F. M. de Mul, and E. J. Nijhof. SPIE, 1993. http://dx.doi.org/10.1117/12.150574.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Andreica, M., S. Bacha, D. Roye, I. Munteanu, A. I. Bratcu, and J. Guiraud. "Stand-alone operation of cross-flow water turbines." In 2009 IEEE International Conference on Industrial Technology - (ICIT). IEEE, 2009. http://dx.doi.org/10.1109/icit.2009.4939558.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Andreica, M., S. Bacha, D. Roye, I. Munteanu, A. I. Bratcu, and J. Guiraud. "Cross-flow water turbines control under grid disturbances." In 2009 IEEE Bucharest PowerTech (POWERTECH). IEEE, 2009. http://dx.doi.org/10.1109/ptc.2009.5282264.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Wijaya, Ibra Ilham, and Samsul Kamal. "Computer program application to design a cross-flow water turbine." In THERMOFLUID XI: Proceedings of the 11th International Conference on Thermofluids 2020. AIP Publishing, 2021. http://dx.doi.org/10.1063/5.0073981.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Manteufel, Randall D., and Daniel G. Vecera. "Consideration of Uncertainties in Compact Cross-Flow Heat Exchanger Design for Gas Turbine Engine Application." In ASME Turbo Expo 2013: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/gt2013-95139.

Повний текст джерела
Анотація:
Recent experimental work characterized the performance of a unique cross-flow heat exchanger design for application of cooling compressor bleed air using liquid jet fuel before it is consumed in the gas turbine combustor. The proposed design has micro-channels for liquid fuel and cools air flowing in passages created using rows of intermittent fins. The design appears well suited for aircraft applications because it is compact and light-weight. A theoretical model is reported to be in good agreement with experimental measurements using air and water, thus providing a design tool to evaluate variations in the heat exchanger dimensions. This paper presents an evaluation of the heat exchanger performance with consideration of uncertainties in both model parameters and predicted results. The evaluation of the design is proposed to be reproduced by students in a thermal-fluids design class. The heat exchanger performance is reevaluated using the effectiveness–NTU approach and shown to be consistent with the method reported in the original papers. Results show that the effectiveness is low and in the range of 20 to 30% as well as the NTU which ranges from 0.25 to 0.50 when the heat capacity ratio is near unity. The thermal resistance is dominated by the hot gas convective resistance. The uncertainties attributed to fluid properties, physical dimensions, gas pressure, and cold fluid flow rate are less significant when compared to uncertainties associated with hot fluid flow rate, hot fluid inlet temperature, cold fluid inlet temperature, and convective correlation for gas over a finned surface. The model shows which heat transfer mechanisms are most important in the performance of the heat exchanger.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Bates, Patrick, Jerod Ketchum, Richard Kimball, and Michael Peterson. "Experimental Characterization of High Solidity Cross-Flow and Axial Flow Tidal Turbines." In SNAME 29th American Towing Tank Conference. SNAME, 2010. http://dx.doi.org/10.5957/attc-2010-033.

Повний текст джерела
Анотація:
This paper outlines the experimental testing of high solidity cross-flow type hydrokinetic turbines in the towing tank at the University of Maine and axial flow turbines tested at MIT. These turbines are being developed for commercial scale tidal energy production at megawatt scale tidal energy sites. Details of the testing apparatus, experimental methods, instrumentation and data are presented. Hydrokinetic turbines extract the kinetic energy of a flowing stream and therefore differ from the more conventional head based hydroelectric turbine systems. Hydrokinetic energy farms have more resemblance to a wind farm placed underwater. The testing of such devices in scale model in Tow tanks presents special problems but is similar in many respects to the testing and characterization of propeller performance. Tow tanks provide excellent simulation of a flowing stream, providing a valuable experimental tool in the development of high performance, efficient hydrokinetic turbines. Important to the characterization of hydrokinetic turbines is the power extraction efficiency (in the form of power coefficient) versus the turbine tip speed ratio. In order to fully characterize the cross-flow turbine, a highly quality sensitive dynamometer and load control system has been implemented which addresses the issue of starting and maintaining a constant load on the turbine during the tow tank run. This system allows for a full range of performance data to be collected at a range of loading conditions. In addition the force data on the rotor is encoded so the phase-averaged force data versus rotation position can be collected. The details of the design of the instrumentation and control system are presented along with samples of the data collected. In addition the development and construction of a similar dynamometer for the testing of axial flow turbines is presented. Data is presented for a cross-flow turbine of relatively high blade solidity ratio (blade area greater than 20% of cylinder area). Though data for lower solidity ratio cross flow turbines have been frequently published, this work presents data for turbines with high blade area that are being developed for hydrokinetic applications. The data is being used to validate and improve numerical design models based on the vortex lattice method as a design tool for high solidity ratio tidal turbines. Prior numerical models were accurate in predicting performance of low solidity designs but suffered when solidity exceeded 20%. Results of the numerical models versus experimental data are presented for both overall performance measures as well as detailed phase averaged forces. Test data is also presented for an axial flow turbine designed by the numerical code OpenProp. The turbine was tested on the Axial flow dynamometer at the MIT water tunnel. The testing methodologies presented in this paper are also being utilized to draft engineering guidelines and procedures for the testing of scale model hydrokinetic turbines. Some discussion of the standards development activities underway and the relevance of this work to those efforts is discussed.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Jen, Chang-Wei, and Walter V. Rauf. "Use of Cross Flow Fuel Filtration for Gas Turbine Engines." In ASME Turbo Expo 2007: Power for Land, Sea, and Air. ASMEDC, 2007. http://dx.doi.org/10.1115/gt2007-27474.

Повний текст джерела
Анотація:
U.S. Navy surface combatants use pre-filters and filter separators in the fuel oil service system to filter out sediment and water in order to meet the fuel oil cleanliness requirements to operate the gas turbine engines and generators. The ships have reported high usage rates of the pre-filters necessitating the replacement of the pre-filter elements. High replacement rates of the elements obviously increases the burden on ships force but it also increases the operating costs due to the cost of the replacement elements and the storage, handling and disposal of the hazardous material generated. One of the causes of the poor quality fuel oil is the purifier’s inability to remove all sediment and water from the fuel oil when transferring fuel from storage to service. A prototype two-stage self-cleaning cross flow filtration unit was installed in parallel with a fuel oil purifier on a surface combatant. This unit was operated during a deployment cycle and had a through put in excess of one million gallons of fuel. The purpose of this paper is to discuss the background leading to the design of the unit, the installation, operation, data, results and future design changes.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Chattha, Javed A., Mohammad S. Khan, Syed T. Wasif, Osama A. Ghani, Mohammad O. Zia, and Zohaib Hamid. "Design of a Cross Flow Turbine for a Micro-Hydro Power Application." In ASME 2010 Power Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/power2010-27184.

Повний текст джерела
Анотація:
The total installed capacity of the hydropower stations in Pakistan is about 7,000 MW which is about 20% of the total available hydro power potential. For possible micro-hydro stations, a potential of about 1300 MW exists at a number of low head and high flow rate sites. Work has been reported by Chattha et al. [1, 2] related to installation of a micro-hydro power station at one of the typical sites. An axial flow pump-as-turbine (PaT) was installed to generate electrical power at the micro-hydro station. The site selected for this work is quite typical and efforts are now being made to utilize the maximum potential of the site conditions. The PaT only utilizes about half of the available flow of water and a spillway was constructed at this site to divert the excess amount of water. The diverted water flows back to the main stream after bypassing the PaT. Work is now being carried out to explore the installation of a turbine in the spillway to harness the energy potential of the diverted water stream. This work includes selection, design, fabrication and installation of a turbine in order to generate electrical power utilizing the energy of water diverted to the spillway. A 100 ft3/sec flow rate with about 11 ft head is available at the spillway side. Considering these site conditions and indigenous fabrication expertise, cross flow type turbine has been selected for installation. Cross flow turbines are being manufactured in Pakistan and are usually quite successful for micro-hydro systems. Based on the available site conditions, a cross flow turbine has been designed. The diameter and length of the turbine runner have been calculated. Furthermore, the number of blades and radius of curvature have been determined along with other design parameters. The designed turbine is expected to produce about 50 kW of power. The complete design of the turbine, based on the available site conditions is presented in this paper.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Hosseini, Arian, and Navid Goudarzi. "CFD Analysis of a Cross-Flow Turbine for Wind and Hydrokinetic Applications." In ASME 2018 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/imece2018-88469.

Повний текст джерела
Анотація:
Tidal current and wind energies have become dominant sources of renewable energies in the modern culture. In this work, the aerodynamic characteristics of a novel hybrid vertical axis turbine (VAT) have been studied in flow fields of water and air using CFD analyses. A parametric study was conducted on the hybrid rotor design with the goal of optimizing the solidity ratio to cover a wide operation range, increase initial torque and maintain high coefficient of power values. The hybrid turbine design with a solidity ratio of 0.5 demonstrated improvements to the self-startup feature and achieved the highest coefficient of power (Cp) values of 44.5% and 50% in air and water flows, respectively. The results were in favor of utilizing this design in flow fields of water and air as an enhancement to previous literature. Further studies are required to assess the aerodynamic properties of the model in 3D CFD analyses.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Seralathan, Sivamani, Micha Premkumar Thomai, Rian Leevinson Jayakumar, Basireddy Venkata Lokesh Reddy, and Hariram Venkatesan. "Experimental and Numerical Assessment of Cross Flow Vertical Axis Wind Turbine." In ASME 2019 Gas Turbine India Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/gtindia2019-2427.

Повний текст джерела
Анотація:
Abstract Due to increase in energy demand along with environmental awareness, the attention is shifting towards renewable energy sources. A wind turbine developed from Banki water turbine is used in this study as it starts at low-wind speeds and has high starting torque. Experimental investigations are carried out on a test rig equipped with open jet wind tunnel with wind velocity varying from 7 to 11 m/s. Later, 3D steady-state numerical analyses are performed using ANSYS CFX for better understanding of the flow physics of cross flow VAWT. The experimental investigations revealed that cross flow VAWT has a good self-starting ability at relatively low-wind speeds. A peak power coefficient (Cp, max) value of 0.059 is observed for the tip speed ratio (λ) of 0.30. As the tip speed ratio is raised further, the Cp value is observed to decrease gradually. The numerical simulations reveal the reason for the drop in Cp value. This is due to lessening of positive interaction between the flow and cross flow VAWT blades at higher λ due to vortex formation. The torque coefficient is found to decrease almost linearly from a peak value of around 0.49 at λ = 0 to a value of 0 around λ = 0.60. Polar plot between angle and torque shows that torque output of the turbine is nearly same in all directions which reinforce the potency of cross flow VAWT to be omni-directional as it produces the same performance regardless of wind directions.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії