Статті в журналах з теми "Cross-domain fault diagnosis"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Cross-domain fault diagnosis".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.
Wang, Xiaodong, Feng Liu, and Dongdong Zhao. "Cross-Machine Fault Diagnosis with Semi-Supervised Discriminative Adversarial Domain Adaptation." Sensors 20, no. 13 (July 4, 2020): 3753. http://dx.doi.org/10.3390/s20133753.
Повний текст джерелаZhang, Yongchao, Zhaohui Ren, and Shihua Zhou. "A New Deep Convolutional Domain Adaptation Network for Bearing Fault Diagnosis under Different Working Conditions." Shock and Vibration 2020 (July 24, 2020): 1–14. http://dx.doi.org/10.1155/2020/8850976.
Повний текст джерелаMeng, Yu, Jianping Xuan, Long Xu, and Jie Liu. "Dynamic Reweighted Domain Adaption for Cross-Domain Bearing Fault Diagnosis." Machines 10, no. 4 (March 30, 2022): 245. http://dx.doi.org/10.3390/machines10040245.
Повний текст джерелаChang, Hong-Chan, Ren-Ge Liu, Chen-Cheng Li, and Cheng-Chien Kuo. "Fault Diagnosis of Induction Motors under Limited Data for across Loading by Residual VGG-Based Siamese Network." Applied Sciences 14, no. 19 (October 4, 2024): 8949. http://dx.doi.org/10.3390/app14198949.
Повний текст джерелаLi, Dan, Yudong Xu, Yuxun Zhou, Chao Gou, and See-Kiong Ng. "Cross Domain Data Generation for Smart Building Fault Detection and Diagnosis." Mathematics 10, no. 21 (October 26, 2022): 3970. http://dx.doi.org/10.3390/math10213970.
Повний текст джерелаWang, Yuanfei, Shihao Li, Feng Jia, and Jianjun Shen. "Multi-Domain Weighted Transfer Adversarial Network for the Cross-Domain Intelligent Fault Diagnosis of Bearings." Machines 10, no. 5 (April 29, 2022): 326. http://dx.doi.org/10.3390/machines10050326.
Повний текст джерелаZhang, Long, Hao Zhang, Qian Xiao, Lijuan Zhao, Yanqing Hu, Haoyang Liu, and Yu Qiao. "Numerical Model Driving Multi-Domain Information Transfer Method for Bearing Fault Diagnosis." Sensors 22, no. 24 (December 13, 2022): 9759. http://dx.doi.org/10.3390/s22249759.
Повний текст джерелаJang, Gye-Bong, and Sung-Bae Cho. "Cross-Domain Adaptation Using Domain Interpolation for Rotating Machinery Fault Diagnosis." IEEE Transactions on Instrumentation and Measurement 71 (2022): 1–17. http://dx.doi.org/10.1109/tim.2022.3204093.
Повний текст джерелаShang, Qianming, Tianyao Jin, and Mingsheng Chen. "A New Cross-Domain Motor Fault Diagnosis Method Based on Bimodal Inputs." Journal of Marine Science and Engineering 12, no. 8 (August 1, 2024): 1304. http://dx.doi.org/10.3390/jmse12081304.
Повний текст джерелаWang, Huaqing, Zhitao Xu, Xingwei Tong, and Liuyang Song. "Cross-Domain Open Set Fault Diagnosis Based on Weighted Domain Adaptation with Double Classifiers." Sensors 23, no. 4 (February 14, 2023): 2137. http://dx.doi.org/10.3390/s23042137.
Повний текст джерелаLiu, Guokai, Weiming Shen, Liang Gao, and Andrew Kusiak. "Automated broad transfer learning for cross-domain fault diagnosis." Journal of Manufacturing Systems 66 (February 2023): 27–41. http://dx.doi.org/10.1016/j.jmsy.2022.11.003.
Повний текст джерелаZhang, Hongpeng, Xinran Wang, Cunyou Zhang, Wei Li, Jizhe Wang, Guobin Li, and Chenzhao Bai. "Dynamic Condition Adversarial Adaptation for Fault Diagnosis of Wind Turbine Gearbox." Sensors 23, no. 23 (November 23, 2023): 9368. http://dx.doi.org/10.3390/s23239368.
Повний текст джерелаBai, Jie, Xuan Liu, Bingjie Dou, Xiaohui Yang, Bo Chen, Yaowen Zhang, Jiayu Zhang, Zhenzhong Wang, and Hongbo Zou. "A Fault Diagnosis Method for Pumped Storage Unit Stator Based on Improved STFT-SVDD Hybrid Algorithm." Processes 12, no. 10 (September 30, 2024): 2126. http://dx.doi.org/10.3390/pr12102126.
Повний текст джерелаChen, Zhuyun, Guolin He, Jipu Li, Yixiao Liao, Konstantinos Gryllias, and Weihua Li. "Domain Adversarial Transfer Network for Cross-Domain Fault Diagnosis of Rotary Machinery." IEEE Transactions on Instrumentation and Measurement 69, no. 11 (November 2020): 8702–12. http://dx.doi.org/10.1109/tim.2020.2995441.
Повний текст джерелаLiu, Fuqiang, Wenlong Deng, Chaoqun Duan, Yi Qin, Jun Luo, and Huayan Pu. "Duplex adversarial domain discriminative network for cross-domain partial transfer fault diagnosis." Knowledge-Based Systems 279 (November 2023): 110960. http://dx.doi.org/10.1016/j.knosys.2023.110960.
Повний текст джерелаLiu, Fuzheng, Faye Zhang, Xiangyi Geng, Lin Mu, Lei Zhang, Qingmei Sui, Lei jia, Mingshun Jiang, and Junwei Gao. "Structural discrepancy and domain adversarial fusion network for cross-domain fault diagnosis." Advanced Engineering Informatics 58 (October 2023): 102217. http://dx.doi.org/10.1016/j.aei.2023.102217.
Повний текст джерелаZhang, Chao, Peng Du, Dingyu Zhou, Zhijie Dong, Shilie He, and Zhenwei Zhou. "Fault Diagnosis of Low-Noise Amplifier Circuit Based on Fusion Domain Adaptation Method." Actuators 13, no. 9 (September 23, 2024): 379. http://dx.doi.org/10.3390/act13090379.
Повний текст джерелаZhou, Hongdi, Tao Huang, Xixing Li, and Fei Zhong. "Cross-domain intelligent fault diagnosis of rolling bearing based on distance metric transfer learning." Advances in Mechanical Engineering 14, no. 11 (November 2022): 168781322211357. http://dx.doi.org/10.1177/16878132221135740.
Повний текст джерелаZhao, Chao, and Weiming Shen. "Dual adversarial network for cross-domain open set fault diagnosis." Reliability Engineering & System Safety 221 (May 2022): 108358. http://dx.doi.org/10.1016/j.ress.2022.108358.
Повний текст джерелаZheng, Huailiang, Rixin Wang, Yuantao Yang, Jiancheng Yin, Yongbo Li, Yuqing Li, and Minqiang Xu. "Cross-Domain Fault Diagnosis Using Knowledge Transfer Strategy: A Review." IEEE Access 7 (2019): 129260–90. http://dx.doi.org/10.1109/access.2019.2939876.
Повний текст джерелаChao, Ko-Chieh, Chuan-Bi Chou, and Ching-Hung Lee. "Online Domain Adaptation for Rolling Bearings Fault Diagnosis with Imbalanced Cross-Domain Data." Sensors 22, no. 12 (June 16, 2022): 4540. http://dx.doi.org/10.3390/s22124540.
Повний текст джерелаFeiyan Fan, Feiyan Fan, Jiazhen Hou Feiyan Fan, and Tanghuai Fan Jiazhen Hou. "Fault Diagnosis under Varying Working Conditions with Domain Adversarial Capsule Networks." 電腦學刊 33, no. 3 (June 2022): 135–46. http://dx.doi.org/10.53106/199115992022063303011.
Повний текст джерелаQin, Y. X., Y. Hong, J. Y. Long, Z. Yang, Y. W. Huang, and C. Li. "Attitude data-based deep transfer capsule network for intelligent fault diagnosis of delta 3D printers." Journal of Physics: Conference Series 2184, no. 1 (March 1, 2022): 012017. http://dx.doi.org/10.1088/1742-6596/2184/1/012017.
Повний текст джерелаKim, Taeyun, and Jangbom Chai. "Pre-Processing Method to Improve Cross-Domain Fault Diagnosis for Bearing." Sensors 21, no. 15 (July 21, 2021): 4970. http://dx.doi.org/10.3390/s21154970.
Повний текст джерелаZhang, Yongchao, Zhaohui Ren, Ke Feng, Kun Yu, Michael Beer, and Zheng Liu. "Universal source-free domain adaptation method for cross-domain fault diagnosis of machines." Mechanical Systems and Signal Processing 191 (May 2023): 110159. http://dx.doi.org/10.1016/j.ymssp.2023.110159.
Повний текст джерелаWang, Yu, Jie Gao, Wei Wang, Xu Yang, and Jinsong Du. "Curriculum learning-based domain generalization for cross-domain fault diagnosis with category shift." Mechanical Systems and Signal Processing 212 (April 2024): 111295. http://dx.doi.org/10.1016/j.ymssp.2024.111295.
Повний текст джерелаZheng, Huailiang, Yuantao Yang, Jiancheng Yin, Yuqing Li, Rixin Wang, and Minqiang Xu. "Deep Domain Generalization Combining A Priori Diagnosis Knowledge Toward Cross-Domain Fault Diagnosis of Rolling Bearing." IEEE Transactions on Instrumentation and Measurement 70 (2021): 1–11. http://dx.doi.org/10.1109/tim.2020.3016068.
Повний текст джерелаZou, Yingyong, Wenzhuo Zhao, Tao Liu, Xingkui Zhang, and Yaochen Shi. "Research on High-Speed Train Bearing Fault Diagnosis Method Based on Domain-Adversarial Transfer Learning." Applied Sciences 14, no. 19 (September 26, 2024): 8666. http://dx.doi.org/10.3390/app14198666.
Повний текст джерелаXie, Fengyun, Gang Li, Qiuyang Fan, Qian Xiao, and Shengtong Zhou. "Optimizing and Analyzing Performance of Motor Fault Diagnosis Algorithms for Autonomous Vehicles via Cross-Domain Data Fusion." Processes 11, no. 10 (September 28, 2023): 2862. http://dx.doi.org/10.3390/pr11102862.
Повний текст джерелаChen, Zihan, and Chao He. "Transformer-Based Unsupervised Cross-Sensor Domain Adaptation for Electromechanical Actuator Fault Diagnosis." Machines 11, no. 1 (January 11, 2023): 102. http://dx.doi.org/10.3390/machines11010102.
Повний текст джерелаZhang, Yizong, Shaobo Li, Ansi Zhang, Chuanjiang Li, and Ling Qiu. "A Novel Bearing Fault Diagnosis Method Based on Few-Shot Transfer Learning across Different Datasets." Entropy 24, no. 9 (September 14, 2022): 1295. http://dx.doi.org/10.3390/e24091295.
Повний текст джерелаWei, Yuqian. "Bearing fault diagnosis based on XWT-CEEMD noise reduction." Journal of Physics: Conference Series 2196, no. 1 (February 1, 2022): 012035. http://dx.doi.org/10.1088/1742-6596/2196/1/012035.
Повний текст джерелаHa, Jong Moon, and Olga Fink. "Domain knowledge-informed synthetic fault sample generation with health data map for cross-domain planetary gearbox fault diagnosis." Mechanical Systems and Signal Processing 202 (November 2023): 110680. http://dx.doi.org/10.1016/j.ymssp.2023.110680.
Повний текст джерелаXiao, Zhiguo, Dongni Li, Chunguang Yang, and Wei Chen. "Fault Diagnosis Method of Special Vehicle Bearing Based on Multi-Scale Feature Fusion and Transfer Adversarial Learning." Sensors 24, no. 16 (August 10, 2024): 5181. http://dx.doi.org/10.3390/s24165181.
Повний текст джерелаMontesuma, Eduardo Fernandes, Michela Mulas, Francesco Corona, and Fred-Maurice Ngole Mboula. "Cross-domain fault diagnosis through optimal transport for a CSTR process." IFAC-PapersOnLine 55, no. 7 (2022): 946–51. http://dx.doi.org/10.1016/j.ifacol.2022.07.566.
Повний текст джерелаTian, Jilun, Jiusi Zhang, Yuchen Jiang, Shimeng Wu, Hao Luo, and Shen Yin. "A novel generalized source-free domain adaptation approach for cross-domain industrial fault diagnosis." Reliability Engineering & System Safety 243 (March 2024): 109891. http://dx.doi.org/10.1016/j.ress.2023.109891.
Повний текст джерелаLi, Guofa, Shaoyang Liu, Jialong He, Liang Wang, Chenchen Wu, and Chenhui Qian. "A multi-domain adversarial transfer network for cross domain fault diagnosis under imbalanced data." Engineering Applications of Artificial Intelligence 136 (October 2024): 108948. http://dx.doi.org/10.1016/j.engappai.2024.108948.
Повний текст джерелаWen, Weigang, Yihao Bai, and Weidong Cheng. "Generative Adversarial Learning Enhanced Fault Diagnosis for Planetary Gearbox under Varying Working Conditions." Sensors 20, no. 6 (March 18, 2020): 1685. http://dx.doi.org/10.3390/s20061685.
Повний текст джерелаShen, Bingbing, Min Zhang, Le Yao, and Zhihuan Song. "Novel Triplet Loss-Based Domain Generalization Network for Bearing Fault Diagnosis with Unseen Load Condition." Processes 12, no. 5 (April 26, 2024): 882. http://dx.doi.org/10.3390/pr12050882.
Повний текст джерелаShe, Daoming, Zhichao Yang, Yudan Duan, Xiaoan Yan, Jin Chen, and Yaoming Li. "A meta transfer learning method for gearbox fault diagnosis with limited data." Measurement Science and Technology 35, no. 8 (May 9, 2024): 086114. http://dx.doi.org/10.1088/1361-6501/ad4665.
Повний текст джерелаZhong, Zhidan, Zhihui Zhang, Yunhao Cui, Xinghui Xie, and Wenlu Hao. "Failure Mechanism Information-Assisted Multi-Domain Adversarial Transfer Fault Diagnosis Model for Rolling Bearings under Variable Operating Conditions." Electronics 13, no. 11 (May 30, 2024): 2133. http://dx.doi.org/10.3390/electronics13112133.
Повний текст джерелаAn, Jing, Ping Ai, and Dakun Liu. "Deep Domain Adaptation Model for Bearing Fault Diagnosis with Domain Alignment and Discriminative Feature Learning." Shock and Vibration 2020 (March 20, 2020): 1–14. http://dx.doi.org/10.1155/2020/4676701.
Повний текст джерелаZhai, Lubin, Xiufeng Wang, Zeyiwen Si, and Zedong Wang. "A Deep Learning Method for Bearing Cross-Domain Fault Diagnostics Based on the Standard Envelope Spectrum." Sensors 24, no. 11 (May 29, 2024): 3500. http://dx.doi.org/10.3390/s24113500.
Повний текст джерелаXu, Shu, Jian Ma, and Dengwei Song. "Open-set Federated Adversarial Domain Adaptation Based Cross-domain Fault Diagnosis." Measurement Science and Technology, July 13, 2023. http://dx.doi.org/10.1088/1361-6501/ace734.
Повний текст джерелаJia, Feng, Yuanfei Wang, Jianjun Shen, Lifei Hao, and Zhaoyu Jiang. "Stepwise feature norm network with adaptive weighting for open set cross-domain intelligent fault diagnosis of bearings." Measurement Science and Technology, February 9, 2024. http://dx.doi.org/10.1088/1361-6501/ad282f.
Повний текст джерелаLi, Can, Guangbin Wang, Shubiao Zhao, Zhixian Zhong, and Ying Lv. "Cross-domain manifold structure preservation for transferable and cross-machine fault diagnosis." Journal of Vibroengineering, August 22, 2024. http://dx.doi.org/10.21595/jve.2024.24067.
Повний текст джерелаMao, Xiaodong. "Cross domain fault diagnosis method based on MLP-mixer network." Journal of Measurements in Engineering, October 30, 2023. http://dx.doi.org/10.21595/jme.2023.23460.
Повний текст джерелаWang, Pei, Jie Liu, Jianzhong Zhou, Ran Duan, and Wei Jiang. "Cross-domain fault diagnosis of rotating machinery based on graph feature extraction." Measurement Science and Technology, November 9, 2022. http://dx.doi.org/10.1088/1361-6501/aca16f.
Повний текст джерелаLu, Weikai, Haoyi Fan, Kun Zeng, Zuoyong Li, and Jian Chen. "Self‐supervised domain adaptation for cross‐domain fault diagnosis." International Journal of Intelligent Systems, September 2, 2022. http://dx.doi.org/10.1002/int.23026.
Повний текст джерелаLiao, Yixiao, Ruyi Huang, Jipu Li, Zhuyun Chen, and Weihua Li. "Dynamic Distribution Adaptation Based Transfer Network for Cross Domain Bearing Fault Diagnosis." Chinese Journal of Mechanical Engineering 34, no. 1 (June 4, 2021). http://dx.doi.org/10.1186/s10033-021-00566-3.
Повний текст джерела