Зміст
Добірка наукової літератури з теми "Courbes géodésiques"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Courbes géodésiques".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Courbes géodésiques"
Pakalnyté, Jolita, and Algimantas Pranas Urbonas. "La géométrie de l'espace des éléments d'appuis Yn." Lietuvos matematikos rinkinys, no. III (December 17, 1999): 193–201. http://dx.doi.org/10.15388/lmd.1999.35565.
Повний текст джерелаAudin, Michèle. "Structure de contact sur certains espaces de courbes hyperelliptiques et variables d'action pour les géodésiques de l'ellipsoïde." Comptes Rendus de l'Académie des Sciences - Series I - Mathematics 326, no. 5 (March 1998): 567–72. http://dx.doi.org/10.1016/s0764-4442(98)85008-8.
Повний текст джерелаBonahon, Francis, and Jean-Pierre Otal. "Variétés Hyperboliques À Géodésiques Arbitrairement Courtes." Bulletin of the London Mathematical Society 20, no. 3 (May 1988): 255–61. http://dx.doi.org/10.1112/blms/20.3.255.
Повний текст джерелаSilva, Nelson. "Comportement asymptotique des géodésiques aux bouts d’une courbe algébrique complexe de C2." Matemática Contemporânea 1, no. 11 (1991). http://dx.doi.org/10.21711/231766361991/rmc111.
Повний текст джерелаДисертації з теми "Courbes géodésiques"
Bertrand, Théo. "Méthodes géodésiques et apprentissage pour l’imagerie de microscopie par localisation ultrasonore." Electronic Thesis or Diss., Université Paris sciences et lettres, 2024. http://www.theses.fr/2024UPSLD024.
Повний текст джерелаUltrasound Localization Microscopy is a new method in super-resolved Medical Imaging that allow us to overcome compromise between precision and penetration distance in the tissues for the imaging of the vascular network. This new type of images raises new mathematical questions, especially for the segmentaton and analysis, necessary steps to achieve medical diagnostic of patients. Our work is positioned at the intersection of geodesic and Machine Learning methods. In this thesis, we make three contributions. The first of these is centered on the constraints linked to ULM images and proposes the tracking of the entire vascular tree through the detection of key points of blood vessels appearing on the image. The second contribution of this thesis deals with learning to define Riemannian metrics to handle segmentation tasks on brain MRI data and eye fundus images. The final part of our work focuses on an inverse problem for reconstructing contrast agent trajectories in medical images in the context of grid-free super-resolution
Farah, Farah. "Etude des courbes extrémales et optimales d'un lagrangien régulier avec contraintes non holonomes." Chambéry, 2009. http://www.theses.fr/2009CHAMS012.
Повний текст джерелаGiven a lagrangian on a subbundle of the tangent bundle of a manifold, classical Pontryagine's maximum principle allows us to give a good definition of extremals curves of this lagrangian. For a regular lagrangian, we study the relation between «lagrangian formalism», and «hamiltonian formalism» through a Legendre transform. We can also construct an intrinsic «pseudo-connection» in a special subbundle, which «geodesics» are exactly the extremal curves of this lagrangian. We give sufficient conditions for such extremal curve to be (locally) minimizing for a lagrangian. Finally, we apply our results in the context of «sub-pseudo-riemannian metrics»
Rodriguez, Olivier. "Familles à un paramètre de surfaces en genre 2." Phd thesis, Université Montpellier II - Sciences et Techniques du Languedoc, 2010. http://tel.archives-ouvertes.fr/tel-00546119.
Повний текст джерелаBallihi, Lahoucine. "Biométrie faciale 3D par apprentissage des caractéristiques géométriques : Application à la reconnaissance des visages et à la classification du genre." Phd thesis, Université des Sciences et Technologie de Lille - Lille I, 2012. http://tel.archives-ouvertes.fr/tel-00726299.
Повний текст джерелаChen, Da. "Nouveaux modèles de chemins minimaux pour l'extraction de structures tubulaires et la segmentation d'images." Thesis, Paris Sciences et Lettres (ComUE), 2016. http://www.theses.fr/2016PSLED037/document.
Повний текст джерелаIn the fields of medical imaging and computer vision, segmentation plays a crucial role with the goal of separating the interesting components from one image or a sequence of image frames. It bridges the gaps between the low-level image processing and high level clinical and computer vision applications. Among the existing segmentation methods, minimal geodesics have important theoretical and practical advantages such as the global minimum of the geodesic energy and the well-established fast marching method for numerical solution. In this thesis, we focus on the Eikonal partial differential equation based geodesic methods to investigate accurate, fast and robust tubular structure extraction and image segmentation methods, by developing various local geodesic metrics for types of clinical and segmentation tasks. This thesis aims to applying different geodesic metrics based on the Eikonal framework to solve different image segmentation problems especially for tubularity segmentation and region-based active contours models, by making use of more information from the image feature and prior clinical knowledges. The designed geodesic metrics basically take advantages of the geodesic orientation or anisotropy, the image feature consistency, the geodesic curvature and the geodesic asymmetry property to deal with various difficulties suffered by the classical minimal geodesic models and the active contours models. The main contributions of this thesis lie at the deep study of the various geodesic metrics and their applications in medical imaging and image segmentation. Experiments on medical images and nature images show the effectiveness of the presented contributions
Sprynski, Nathalie. "RECONSTRUCTION DE COURBES ET SURFACES A PARTIR DE DONNEES TANGENTIELLES." Phd thesis, 2007. http://tel.archives-ouvertes.fr/tel-00164447.
Повний текст джерела