Дисертації з теми "Couplage de schémas numériques"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-50 дисертацій для дослідження на тему "Couplage de schémas numériques".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.
MANCIP, Martial. "Couplage de méthodes numériques pour les lois de conservation. Application au cas de l'injection." Phd thesis, INSA de Toulouse, 2001. http://tel.archives-ouvertes.fr/tel-00001960.
Повний текст джерелаcomplexe - lorsqu'il y a plusieurs modèles physiques à calculer sur des zones difficiles à délimiter, on utilise des méthodes de couplage par recouvrement de domaine.
Nous présentons ici un algorithme, nouveau et performant, calculé grâce à une superposition de deux maillages correspondant à deux schémas différents. On utilise des projections conservatives de la solution d'un maillage vers l'autre.
Cette méthode de décomposition de domaine ne fait
pas intervenir de conditions aux limites artificielles. Elle est basée sur une régularisation de la fonction de Heaviside sur la zone de couplage. Elle est parfaitement conservative et donc bien indiquée pour l'étude des lois de conservation.
L'analyse mathématique est réalisée pour les problèmes hyperboliques, dans le cas scalaire multidimensionnel. Elle est basée sur le convergence des schémas volumes finis. Tout d'abord, on obtient la convergence de la solution mesure grâce aux travaux de Diperna, puis on estime l'erreur de convergence en $h^(^1/_4)$. Une nouvelle estimation de type $H^1$ faible permet d'estimer les erreurs induites par le couplage.
De nombreuses applications numériques en mécanique des fluides avec les tubes à chocs et de détente montrent que la méthode est très stable et conservative. Nous utilisons aussi la méthode sans grille appelée Smooth Particule Hydrodynamics - plus précisément sa nouvelle variante renormalisée - pour calculer la création d'un jet en couplant la méthode volumes finis à la méthode SPH. On montre ainsi la robustesse de l'algorithme de couplage et sa souplesse pour le calcul des écoulement complexes.
Cette étude à fait l'objet d'une collaboration avec l'équipe du Pr. D. Kröner de l'Institut des Mathématiques Appliquées à l'Université de Frieburg (Allemagne).
Steiner, Christophe. "Résolution numérique de l'opérateur de gyromoyenne, schémas d'advection et couplage : applications à l'équation de Vlasov." Thesis, Strasbourg, 2014. http://www.theses.fr/2014STRAD033/document.
Повний текст джерелаThis thesis proposes and analyzes numerical methods for solving the Vlasov equation. This equation models the evolution of a species of charged particles under the effet of an electromagnetic field. The first part is devoted to a mathematical analysis of semi-Lagrangian schemes solving the linear transport equation which is the basic building block of directional splitting methods.Solving methods for the Vlasov equation coupled to the Poisson equation, in the case where only the electric field is considered, are optimized in the second part. This optimization relates to the time of calculation by the use of Graphics Processing Unit (GPU) and the use of an inhomogeneous mesh.In the third and final part, we study a numerical method for calculating the gyroaverage operator involved in gyrokinetic theory. This method will be applied to solve the quasi-neutrality equation
Haddaoui, Khalil. "Méthodes numériques de haute précision et calcul scientifique pour le couplage de modèles hyperboliques." Thesis, Paris 6, 2016. http://www.theses.fr/2016PA066176/document.
Повний текст джерелаThe adaptive numerical simulation of multiscale flows is generally carried out by means of a hierarchy of different models according to the specific scale into play and the level of precision required. This kind of numerical modeling involves complex multiscale coupling problems. This thesis is thus devoted to the development, analysis and implementation of efficient methods for solving coupling problems involving hyperbolic models.In a first part, we develop and analyze a coupling algorithm for one-dimensional Euler systems. Each system of conservation laws is closed with a different pressure law and the coupling interface separating these models is assumed fix and thin. The transmission conditions linking the systems are modelled thanks to a measure source term concentrated at the coupling interface. The weight associated to this measure models the losses of conservation and its definition allows the application of several coupling strategies. Our method is based on Suliciu's relaxation approach. The exact resolution of the Riemann problem associated to the relaxed system allows us to design an extremely accurate scheme for the coupling model. This scheme preserves equilibrium solutions of the coupled problem and can be used for general pressure laws. Several numerical experiments assess the performances of our scheme. For instance, we show that it is possible to control the flow at the coupling interface when solving constrained optimization problems for the weights.In the second part of this manuscript we design two high order numerical schemes based on the discontinuous Galerkin method for the approximation of the initial-boundary value problem associated to Jin and Xin's model. Our first scheme involves only discretization errors whereas the second approximation involves both modeling and discretization errors. Indeed in the second approximation, we replace in some regions the resolution of the relaxation model by the resolution of its associated scalar equilibrium equation. Under the assumption of a possible characteristic coupling interface, we exactly solve the Riemann problem associated to the coupled model. This resolution allows us to design a high order numerical scheme which captures the possible boundary layers at the coupling interface. Finally, the implementation of our methods enables us to analyze quantitatively and qualitatively the modeling and discretization errors involved in the coupled scheme. These errors are functions of the mesh size, the degree of the polynomial approximation and the position of the coupling interface
Leger, Raphaël, and Raphaël Leger. "Couplage pour l'aéroacoustique de schémas aux différences finies en maillage structuré avec des schémas de type éléments finis discontinus en maillage non structuré." Phd thesis, Université Paris-Est, 2011. http://pastel.archives-ouvertes.fr/pastel-00679119.
Повний текст джерелаLéger, Raphaël. "Couplage pour l'aéroacoustique de schémas aux différences finies en maillage structuré avec des schémas de type éléments finis discontinus en maillage non structuré." Thesis, Paris Est, 2011. http://www.theses.fr/2011PEST1030/document.
Повний текст джерелаThis thesis aims at studying coupling techniques between Discontinuous Galerkin (DG) and finite difference (FD) schemes in a non-structured / Cartesian hybrid-mesh context,in the framework of Aeroacoustics computations. The idea behind such an approach is the possibility to locally take advantage of the qualities of each method. In other words, the goal is to be able to deal with complex geometries using a DG scheme on a non-structured mesh in their neighborhood, while solving the rest of the domain using a FD scheme on a cartesian grid, in order to alleviate the needs in computational resources. More precisely, this work aims at designing an hybridization algorithm between these two types of numerical schemes, in the framework of the approximation of the solutions of the Linearized Euler Equations. Then, the numerical behaviour of hybrid solutions is cautiously evaluated. Due to the fact that no theoretical result seems achievable at the present time, this study is mainly based on numerical experiments. What's more, the interest of such an hybridization is illustrated by its application to an acoustic propagation computation in a realistic case
Ould, Salihi Mohamed Lemine. "Couplage de méthodes numériques en simulation directe d'écoulements incompressibles." Phd thesis, Université Joseph Fourier (Grenoble), 1998. http://tel.archives-ouvertes.fr/tel-00004901.
Повний текст джерелаSochala, Pierre. "Méthodes numériques pour les écoulements souterrains et couplage avec le ruissellement." Phd thesis, Ecole des Ponts ParisTech, 2008. http://pastel.archives-ouvertes.fr/pastel-00004625.
Повний текст джерелаBoukadida, Thameur. "Convergence de schémas numériques adaptés à la convection non linéaire bidimensionnelle : application à des couplages de modes en plasma." Bordeaux 1, 1988. http://www.theses.fr/1988BOR10569.
Повний текст джерелаRitzenthaler, Valentin. "Stratégies de couplage des méthodes Compatible Discrete Operators appliquées aux équations de Maxwell dans le domaine temporel." Electronic Thesis or Diss., Toulouse, ISAE, 2024. http://www.theses.fr/2024ESAE0060.
Повний текст джерелаIn numerical simulations of Maxwell's equations, one of the main goals is to accurately represent the physical reality of electromagnetic fields while keeping a low computational cost. Numerous methods exist for solving the system in the time domain, each with its own strengths and weaknesses, depending on the situation. In this thesis, we focus on two coupling strategies of Compatible Discrete Operators (CDO) schemes applied to Maxwell's equations in time domain. The first consists in locally defining the metric of the scheme by considering the mesh geometry. In the second approach, the computational domain is partitioned in two subdomains and the coupling is achieved by defining operators on the interface. To this end, Maxwell's equations are studied in two parts: the topological relations and the constitutive relations. In the CDO framework, the topological relations are formulated using discrete differential operators corresponding to the discretization of the classical vector operators. In order to take into account non-homogeneous boundary conditions, these operators are extended using a dual boundary mesh. The constitutive relations are formulated using discrete Hodge operators. They define the metric of the scheme and depend on the material parameters. The discrete scheme in space and time is then analyzed in terms of stability and consistency. We then test it on different configurations using hybrid meshes
Fernández, Miguel Ángel. "Contributions aux méthodes numériques pour les problèmes couplés et les écoulements incompressibles." Habilitation à diriger des recherches, Université Pierre et Marie Curie - Paris VI, 2010. http://tel.archives-ouvertes.fr/tel-00854590.
Повний текст джерелаFroehly, Algiane. "Couplage d’un schéma aux résidus distribués à l’analyse isogéométrique : méthode numérique et outils de génération et adaptation de maillage." Thesis, Bordeaux 1, 2012. http://www.theses.fr/2012BOR14563/document.
Повний текст джерелаDuring high order simulations, the approximation error may be dominated by the errors linked to the sub-parametric discretization used for the geometry representation. Many works propose to use an isogeometric analysis approach to better represent the geometry and hence solve this problem. In this work, we will present the coupling between the limited stabilized Lax-Friedrichs residual distributed scheme and the isogeometric analysis. Especially, we will build a family of basis functions defined on both triangular and quadrangular elements and allowing the exact representation of conics : the rational Bernstein basis functions. We will then focus in how to generate accurate meshes for isogeometric analysis. Our idea is to create a curved mesh from a classical piecewise-linear mesh of the geometry. We obtain a conforming unstructured mesh which ensures the continuity of the basis functions over the entire mesh. Last, we will detail the curved mesh adaptation methods developed : the order elevation and the isotropic mesh refinement. Of course, the adaptation processes preserve the exact geometry of the initial curved mesh
Blondel, Frédéric. "Couplages instationnaires de la vapeur humide dans les écoulements de turbines à vapeur." Phd thesis, Ecole Centrale de Lyon, 2014. http://tel.archives-ouvertes.fr/tel-00985725.
Повний текст джерелаTherme, Nicolas. "Schémas numériques pour la simulation de l'explosion." Thesis, Aix-Marseille, 2015. http://www.theses.fr/2015AIXM4775/document.
Повний текст джерелаIn nuclear facilities, internal or external explosions can cause confinement breaches and radioactive materials release in the environment. Hence, modeling such phenomena is crucial for safety matters. The purpose of this thesis is to contribute to the creation of efficient numerical schemes to solve these complex models. The work presented here focuses on two major aspects: first, the development of consistent schemes for the Euler equations which model the blast waves, then the buildup of reliable schemes for the front propagation, like the flame front during the deflagration phenomenon. Staggered discretization is used in space for all the schemes. It is based on the internal energy formulation of the Euler system, which insures its positivity and the positivity of the density. A discrete kinetic energy balance is derived from the scheme and a source term is added in the discrete internal energy balance equation to preserve the exact total energy balance. High order, MUSCL-like interpolators are used in the discrete momentum operators. The resulting scheme is consistent (in the sense of Lax) with the weak entropic solutions of the continuous problem. We use the properties of Hamilton-Jacobi equations to build a class of finite volume schemes compatible with a large number of meshes to model the flame front propagation. These schemes satisfy a maximum principle and have important consistency and monotonicity properties. These latters allows to derive a convergence result for the schemes based on Cartesian grids
Dellacherie, Stéphane. "Contribution à l'analyse et à la simulation numériques des équations cinétiques décrivant un plasma chaud." Phd thesis, Université Paris-Diderot - Paris VII, 1998. http://tel.archives-ouvertes.fr/tel-00479816.
Повний текст джерелаLandajuela, Larma Mikel. "Coupling schemes and unfitted mesh methods for fluid-structure interaction." Thesis, Paris 6, 2016. http://www.theses.fr/2016PA066053/document.
Повний текст джерелаThis thesis is devoted to the numerical approximation of mechanical systems involving the interaction of a deformable thin-walled structure with an internal or surrounding incompressible fluid flow. In the first part, we introduce two new classes of explicit coupling schemes using fitted meshes. The methods proposed combine a certain Robin-consistency in the system with (i) a projection-based time-marching in the fluid or (ii) second-order time-stepping in both the fluid and the solid. The stability properties of the methods are analyzed within representative linear settings. This part includes also a comprehensive numerical study in which state-of-the-art coupling schemes (including some of the methods proposed herein) are compared and validated against the results of an experimental benchmark. In the second part, we consider unfitted mesh formulations. The spatial discretization in this case is based on variants of Nitsche’s method with cut elements. We present two new classes of splitting schemes which exploit the aforementioned interface Robin-consistency in the unfitted framework. The semi-implicit or explicit nature of the splitting in time is dictated by the order in which the spatial and time discretizations are performed. In the case of the coupling with immersed structures, weak and strong discontinuities across the interface are allowed for the velocity and pressure, respectively. Stability and error estimates are provided within a linear setting. A series of numerical tests illustrates the performance of the different methods proposed
Dardalhon, Fanny. "Schémas Numériques pour la Simulation des Grandes Echelles." Phd thesis, Aix-Marseille Université, 2012. http://tel.archives-ouvertes.fr/tel-00766722.
Повний текст джерелаFalissard, Fabrice. "Schémas numériques préservant la vorticité en aérodynamique compressible." Phd thesis, Paris, ENSAM, 2006. http://pastel.archives-ouvertes.fr/pastel-00002056.
Повний текст джерелаDzonou, Nganjip Raoul. "Convergence de schémas numériques pour des problèmes d'impact." Saint-Etienne, 2007. http://www.theses.fr/2007STET4002.
Повний текст джерелаThe dynamics of systems with a finite number of degrees of freedom and non trivial inertia matrix which are submitted to a single perfect unilateral constraint is studied. The local impact law consists in the transmission of the tangential component of the velocity and the reflexion of the normal component which is multiplied by the restitution coefficient e Є [0,1]. By adopting the measure-differential formulation of J. J. Moreau, a velocity-based time-stepping method is developed, reminiscent of the catching-up algorithm for sweeping processes. It is shown that the numerical solutions converge to a solution of the problem
Dubois, Joanne. "Modélisation, approximation numérique et couplage du transfert radiatif avec l'hydrodynamique." Thesis, Bordeaux 1, 2009. http://www.theses.fr/2009BOR13962/document.
Повний текст джерелаThe present work is dedicated to the numerical approximation of the M1 moments model solutions for radiative transfer. The objective is to develop efficient and accurate numerical solvers, able to provide with precise and robust computations of flows where radiative transfer effects are important. With this aim, several numerical methods have been considered in order to derive numerical schemes based on Godunov type solvers. A particular attention has been paid to solvers preserving the stationary contact waves. Namely, a relaxation scheme and a HLLC solver are presented in this thesis. The robustness of each of these solvers has been established (radiative energy positivity and radiative flux limitation). Several numerical experiments in one and two space dimensions validate the developed methods and outline their interest
Arnaud, Luc. "Quelques schémas numériques adaptés à l'élastodynamique en configuration axisymétrique." Bordeaux 1, 1990. http://www.theses.fr/1990BOR10550.
Повний текст джерелаCiccoli, Marie Claude. "Schémas numériques efficaces pour le calcul d'écoulements hypersoniques réactifs." Nice, 1992. http://www.theses.fr/1992NICE4574.
Повний текст джерелаHomman, Ahmed. "Développement de schémas numériques d’intégration de méthodes multi-échelles." Thesis, Paris Est, 2016. http://www.theses.fr/2016PESC1040/document.
Повний текст джерелаThis thesis is about the development and analysis of numerical schemes forthe integration of the Dissipative Particle Dynamics with Energy conservation. A presentation and a weak convergence analysis of existing schemes is performed, as well as the introduction and a similar analysis of two new straightforwardly parallelizable schemes. The energy preservation properties of all these schemes are studied followed by a comparative study of their biases on the estimation of the average values of physical observables on equilibrium simulations. The schemes are then tested on shock simulations of DPDE fluids, where we show that our schemes bring an improvement on the accuracy of the description of the behavior of such systems compared to existing straightforwardly parallelizable schemes. Finally, we present an attempt at accelerating a reference DPDE integration scheme on sequential simulations
Madaule, Éric. "Schémas numériques adaptatifs pour les équations de Vlasov-Poisson." Thesis, Université de Lorraine, 2016. http://www.theses.fr/2016LORR0112/document.
Повний текст джерелаMany numerical experiments are performed on the Vlasov-Poisson problem since it is a well known system from plasma physics and a major issue for future simulation of large scale plasmas. Our goal is to develop adaptive numerical schemes using discontinuous Galerkin discretisation combined with semi-Lagrangian description whose mesh refinement based on multi-wavelets. The discontinuous Galerkin formulation enables high-order accuracy with local data for computation. It has recently been widely studied by Ayuso de Dioset al., Rossmanith et Seal, etc. in an Eularian framework, while Guo, Nair and Qiu or Qiu and Shu or Bokanowski and Simarta performed semi-Lagrangian time resolution. We use multi-wavelets framework for the adaptive part. Those have been heavily studied by Alpert et al. during the nineties and the two thousands. Some works merging multi-scale resolution and discontinuous Galerkin methods have been described by Müller and his colleagues in 2014 for non-linear hyperbolic conservation laws in the finite volume framework. In the framework of relativistic Vlasov equation, Besse, Latu, Ghizzo, Sonnendrücker and Bertrand presented the advantage of using adaptive meshes. While they used wavelet decomposition, which requires large data stencil, multi-wavelet decomposition coupled to discontinuous Galerkin discretisation only requires local stencil. This favours the parallelisation but, at the moment, semi-Lagrangian remains an obstacle to highly efficient distributed memory parallelisation. Although most of our work is done in a 1d × 1v phase space, we were able to obtain a few results in a 2d × 2v phase space
Madaule, Éric. "Schémas numériques adaptatifs pour les équations de Vlasov-Poisson." Electronic Thesis or Diss., Université de Lorraine, 2016. http://www.theses.fr/2016LORR0112.
Повний текст джерелаMany numerical experiments are performed on the Vlasov-Poisson problem since it is a well known system from plasma physics and a major issue for future simulation of large scale plasmas. Our goal is to develop adaptive numerical schemes using discontinuous Galerkin discretisation combined with semi-Lagrangian description whose mesh refinement based on multi-wavelets. The discontinuous Galerkin formulation enables high-order accuracy with local data for computation. It has recently been widely studied by Ayuso de Dioset al., Rossmanith et Seal, etc. in an Eularian framework, while Guo, Nair and Qiu or Qiu and Shu or Bokanowski and Simarta performed semi-Lagrangian time resolution. We use multi-wavelets framework for the adaptive part. Those have been heavily studied by Alpert et al. during the nineties and the two thousands. Some works merging multi-scale resolution and discontinuous Galerkin methods have been described by Müller and his colleagues in 2014 for non-linear hyperbolic conservation laws in the finite volume framework. In the framework of relativistic Vlasov equation, Besse, Latu, Ghizzo, Sonnendrücker and Bertrand presented the advantage of using adaptive meshes. While they used wavelet decomposition, which requires large data stencil, multi-wavelet decomposition coupled to discontinuous Galerkin discretisation only requires local stencil. This favours the parallelisation but, at the moment, semi-Lagrangian remains an obstacle to highly efficient distributed memory parallelisation. Although most of our work is done in a 1d × 1v phase space, we were able to obtain a few results in a 2d × 2v phase space
Froehly, Algiane. "Couplage d'un schéma aux résidus distribués à l'analyse isogéométrique : méthode numérique et outils de génération et adaptation de maillage." Phd thesis, Université Sciences et Technologies - Bordeaux I, 2012. http://tel.archives-ouvertes.fr/tel-00765918.
Повний текст джерелаLayouni, Siham. "Etude d'une méthode de volumes finis pour la résolution des équations de Maxwell en deux dimensions d'espace sur des maillages quelconques et couplage avec l'équation de Vlasov." Toulouse 3, 2008. http://thesesups.ups-tlse.fr/562/.
Повний текст джерелаWe develop and study a finite volume method to solve the bidimensional nonstationary Maxwell equations on arbitrary (non-conforming, non-convex, flat. . . ) meshes. We start by the construction of the scheme, which is based on the use of the DDFV discrete operators and a pertinent choice to discretize initial and boundary conditions. Then, we prove that the scheme locally preserves the divergence condition, that a discrete electromagnetic energy is conserved or decreasing (depending on boundary conditions) and that it is positive under a CFL condition. We also show the stability of the scheme under a CFL condition and its convergence for regular and non-regular fields. Then, these results are numerically validated with some tests using different types of meshes. We verify, also, that the use of non-conforming meshes doesn't amplify parasitic reflections. Finally, we coupled the scheme with a PIC method to solve the Maxwell-Vlasov system. We calculate the current density using a generalization of Buneman's method to arbitrary meshes and we prove that discrete charge equations, and thus Gauss' law, are conserved. The coupled problem is numerically validated and the simulation of Landau damping confirms the electric energy decrease with a precision depending on the number of particles per cell
Gougeon, Ludivine. "Comparaison de schémas numériques pour la simulation d'écoulements turbulents réactifs." Phd thesis, Université d'Orléans, 2007. http://tel.archives-ouvertes.fr/tel-00282242.
Повний текст джерелаLe premier code, basé sur des schémas aux différences finies compactes centrées d'ordre 6, très précis et non dissipatifs, permet la simulation numérique directe (DNS) d'écoulements 3D turbulents sans chocs, en géométrie cartésienne. Ce code n'introduit pas de dissipation numérique et sert de référence pour tester l'approche MILES.
Le second code s'appuie sur l'utilisation de méthodes récentes à capture de chocs : les schémas WENO. La formulation aux différences finies des schémas WENO d'ordre 3 à 11 est implémentée dans un code bidimensionnel. Le pouvoir de résolution des schémas WENO des différents ordres est évalué par analyse linéaire. Les problèmes spécifiques au cas multi-espèces sont mis en évidence et la positivité des fractions massiques est respectée grâce à la méthode de Larrouturou. Les différentes reconstructions ainsi que l'ordre du schéma sont évalués sur une série de cas test.
Les deux codes font l'objet d'une comparaison sur la simulation d'une flamme 1D laminaire de prémélange et d'un jet 2D turbulent réactif H2/air. Enfin, les potentialités du schéma WENO sont démontrées sur une onde de détonation puis sur une interaction réactive onde de choc/bulle d'hydrogène.
Mbinky, Estelle. "Adaptation de maillages pour des schémas numériques d'ordre très élevé." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2013. http://tel.archives-ouvertes.fr/tel-00923773.
Повний текст джерелаJung, Jonathan. "Schémas numériques adaptés aux accélérateurs multicoeurs pour les écoulements bifluides." Phd thesis, Université de Strasbourg, 2013. http://tel.archives-ouvertes.fr/tel-00876159.
Повний текст джерелаGougeon, Ludivine. "Comparaison de schémas numériques pour la simulation d’écoulements turbulents réactifs." Orléans, 2007. http://www.theses.fr/2007ORLE2024.
Повний текст джерелаMbinky, Estelle Carine. "Adaptation de maillages pour des schémas numériques d'ordre très élevé." Paris 6, 2013. http://www.theses.fr/2013PA066696.
Повний текст джерелаMesh adaptation is an iterative process which consists in changing locally the size and orientation of the mesh according the behavior of the studied physical solution. It generates the best mesh for a given problem and a fix number of degrees of freedom. Mesh adaptation methods have proven to be extremely effective in reducing significantly the mesh size for a given precision and reaching quickly an second-order asymptotic convergence for problems containing singularities when they are coupled to high order numerical methods. In metric-based mesh adaptation, two approaches have been proposed: Multi-scale methods based on a control of the interpolation error in Lp-norm and Goal oriented methods that control the approximation error of a functional through the use of the adjoint state. However, with the emergence of very high order numerical methods such as the discontinuous Galerkin method, it becomes necessary to take into account the order of the numerical scheme in mesh adaptation process. Mesh adaptation is even more crucial for such schemes as they converge to first-order in flow singularities. Therefore, the mesh refinement at the singularities of the solution must be as important as the order of the method is high. This thesis deals with the extension of the theoretical and numerical results getting in the case of mesh adaptation for piecewise linear solutions to high order piecewise polynomial solutions. These solutions are represented using kth-order Lagrangian finite elements (k ≥ 2). This thesis will focus on modeling the local interpolation error of order k ≥ 3 on a continuous mesh. However, for metric-based mesh adaptation methods, the error model must be a quadratic form, which shows an intrinsic metric space. Therefore, to be able to produce such an area, it is necessary to decompose the homogeneous polynomial and to approximate it by a quadratic form taken at power k. This modeling allows us to define a metric field necessary to communicate with the mesh generator. The decomposition method will be an extension of the diagonalization method to high order homogeneous polynomials. Indeed, in 2D and 3D, symmetric tensor decomposition methods such as Sylvester decomposition and its extension to high dimensions will allow us to decompose locally the error function, then, to deduce the quadratic error model. Then, this local error model is used to control the overall error in Lp-norm and the optimal mesh is obtained by minimizing this error. In this thesis, we seek to demonstrate the kth-order convergence of high order mesh adaptation method for analytic functions and numerical simulations using kth-order solvers (k ≥ 3)
Blachère, Florian. "Schémas numériques d'ordre élevé et préservant l'asymptotique pour l'hydrodynamique radiative." Thesis, Nantes, 2016. http://www.theses.fr/2016NANT4020/document.
Повний текст джерелаThe aim of this work is to design a high-order and explicit finite volume scheme for specific systems of conservation laws with source terms. Those systems may degenerate into diffusion equations under some compatibility conditions. The degeneracy is observed with large source term and/or with late-time. For instance, this behaviour can be seen with the isentropic Euler model with friction or with the M1 model for radiative transfer, or with the radiation hydrodynamics model. We propose a general theory to design a first-order asymptotic preserving scheme (in the sense of Jin) to follow this degeneracy. The scheme is proved to be stable and consistent under a classical hyperbolic CFL condition in both hyperbolic and diffusive regimes, for any 2D unstructured mesh. Moreover, we justify that the developed scheme also preserves the set of admissible states in all regimes, which is mandatory to conserve physical solutions. This construction is achieved by using the non-linear scheme of Droniou and Le Potier as a target scheme for the diffusive equation, which gives the form of the global scheme for the complete system of conservation laws. Then, the high-order scheme is constructed with polynomial reconstructions and the MOOD paradigm as a limiter. The main difficulties are the preservation of the set of admissible states in both regimes on unstructured meshes and to deal with the high-order polynomial reconstruction in the diffusive limit without losing the asymptotic preserving property. Numerical results are provided to validate the scheme in all regimes, with the first and high-order versions
Larcher, Aurélien. "Schémas numériques pour les modèles de turbulence statistiques en un point." Phd thesis, Université de Provence - Aix-Marseille I, 2010. http://tel.archives-ouvertes.fr/tel-00553161.
Повний текст джерелаNguyen, Tan trung. "Schémas numériques explicites à mailles décalées pour le calcul d'écoulements compressibles." Thesis, Aix-Marseille, 2013. http://www.theses.fr/2013AIXM4705/document.
Повний текст джерелаWe develop and analyse explicit in time schemes for the computation of compressible flows, based on staggered in space. Upwinding is performed equation by equation only with respect to the velocity. The pressure gradient is built as the transpose of the natural divergence. For the barotropic Euler equations, the velocity convection is built to obtain a discrete kinetic energy balance, with residual terms which are non-negative under a CFL condition. We then show that, in 1D, if a sequence of discrete solutions converges to some limit, then this limit is the weak entropy solution. For the full Euler equations, we choose to solve the internal energy balance since a discretization of the total energy is rather unnatural on staggered meshes. Under CFL-like conditions, the density and internal energy are kept positive, and the total energy cannot grow. To obtain correct weak solutions with shocks satisfying the Rankine-Hugoniot conditions, we establish a kinetic energy identity at the discrete level, then choose the source term of the internal energy equation to recover the total energy balance at the limit. More precisely speaking, we prove that in 1D, if we assume the L∞ and BV-stability and the convergence of the scheme, passing to the limit in the discrete kinetic and internal energy equations, we show that the limit of the sequence of solutions is a weak solution. Finally, we consider the computation of radial flows, governed by Euler equations in axisymetrical (2D) or spherical (3D) coordinates, and obtain similar results to the previous sections. In all chapters, we show numerical tests to illustrate for theoretical results
Dorogan, Kateryna. "Schémas numériques pour la modélisation hybride des écoulements turbulents gaz-particules." Phd thesis, Aix-Marseille Université, 2012. http://tel.archives-ouvertes.fr/tel-00820978.
Повний текст джерелаLhebrard, Xavier. "Analyse de quelques schémas numériques pour des problèmes de shallow water." Thesis, Paris Est, 2015. http://www.theses.fr/2015PESC1019/document.
Повний текст джерелаWe build and analyze mathematically numerical approximations by finite volume methods of weak solutions to hyperbolic systems for geophysical flows. In a first part we approximate the solutions of the shallow water magneto hydrodynamics system with flat bottom. We develop a Godunov scheme using an approximate Riemann solver defined via a relaxation method. Explicit formulas are established for the relaxation speeds, that lead to a scheme satisfying good properties of consistency and stability. It preserves mass, positivity of the fluid height, satisfies a discrete entropy inequality, resolves contact discontinuities, and involves propagation speeds controlled by the initial data. Several numerical tests are performed, endorsing the theoretical results. In a second part we approximate the solutions of the shallow water magneto hydrodynamics system with non-flat bottom. We develop a well-balanced scheme for several steady states at rest. We use the hydrostatic reconstruction method, with reconstructed states for the fluid height and the magnetic field. We get some new corrective terms for the numerical fluxes with respect to the classical framework, and we prove that the obtained scheme preserves the positivity of height, satisfies a semi-discrete entropy inequality, and is consistent. Several numerical tests are presented, endorsing the theoretical results. In a third part we prove the convergence of a kinetic scheme with hydrostatic reconstruction for the Saint-Venant system with topography. Some new estimates on the gradient of approximate solutions are established, by the analysis of energy dissipation. The convergence is obtained by the compensated compactness method, under some hypotheses concerning the initial data and the regularity of the topography
Vazquez, gonzalez Thibaud. "Schémas numériques mimétiques et conservatifs pour la simulation d'écoulements multiphasiques compressibles." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLC051/document.
Повний текст джерелаIn some highly demanding fluid dynamics simulations, it appears necessary tosimulate multiphase flows involving numerous constraints at the same time : large numbers of fluids, both isentropic and strongly shocked compressible evolution, highly variable and contrasted equations of state, large deformations, and transport over large distances. Fulfilling such a challengein a robust and tractable way demands that thermodynamic consistency of the numerical scheme be carefully ensured.In the first chapter, a Lagrange plus remap scheme is proposed for the simulation of two-phase flows with a dissipation-free six-equation bakcbone model. The importance of the property of isentropic flow preservation is highlighted with a comparison with Ransom test results fromthe literature. This chapter also also point out certain limitations of the Lagrange plus remap approach for multiphase simulations.In order to overcome these limitations, a novel derivation procedure is proposed to construct a mimetic scheme for the simulation of unsteady and compressible flows in a direct ALE (ArbitraryLagrangian-Eulerian) formalism. The possibility to choose a priori the degrees of freedom allows to obtain a continuity with historical staggered scheme, while imposing conservativity at discretelevel. The discrete momentum evolution equation is obtained by application of a variational principle, thus natively ensuring the thermodynamic consistency of pressure efforts. This approach is applied to single-fluid flows as a proof of concept in Chapter 3, then it is extended to N-phasecompressible flows in Chapter 4. Single- and multi-phase tests show satisfactory behavior in terms on conservation, versatility to grid motions, and robustness
Dujardin, Guillaume. "Étude de schémas de discrétisation en temps de l’équation de Schrödinger." Rennes 1, 2008. ftp://ftp.irisa.fr/techreports/theses/2008/dujardin.pdf.
Повний текст джерелаCette thèse consiste en l'analyse numérique de méthodes de résolution d'équations aux dérivées partielles de type Schrödinger : sur le tore de dimension d, on s'intéresse à la résolution numérique de l'équation de Schrödinger linaire avec potentiel multiplicatif, de l'équation de Schrödinger linéaire inhomogène et de l'équation de Schrödinger non linéaire. Dans une première partie, on étudie des méthodes de splitting en temps, symplectiques, pour l'équation de Schrödinger linéaire avec potentiel multiplicatif. Dans l'asymptotique des petits potentiels, on démontre par une méthode perturbative un théorème de forme normale pour le propagateur de ces méthodes. Ce théorème permet ensuite de démontrer des propriétés de conservation en temps long de la régularité de la solution numérique pour des pas de temps non résonnants. La seconde partie est consacrée à l'analyse numérique de méthodes de Runge-Kutta exponentielles pour l'équation de Schrödinger linéaire inhomogène et pour l'équation de Schrödinger non linéaire. Dans une perspective d'ordre élevé et en temps fini, on donne des conditions suffisantes pour que les méthodes de collocation à s points soient d'ordre s, s+1 et s+2 pour les deux types de problèmes envisagés. On illustre, quantifie et explique en outre l'effet des résonnances numériques qui apparaissent lors de la résolution des problèmes linéaires inhomogènes par de telles méthodes
Hoarau, Emma. "Mise en évidence de la brisure de symétrie des schémas numériques pour l'aérodynamique et développement de schémas préservant ces symétries." Paris 6, 2009. http://www.theses.fr/2009PA066650.
Повний текст джерелаDecoene, Astrid. "Modèle hydrostatique pour les écoulements à surface libre tridimensionnels et schémas numériques." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2006. http://tel.archives-ouvertes.fr/tel-00180003.
Повний текст джерелаNous proposons d'une part une nouvelle formulation variationnelle du problème hydrostatique aboutissant à un problème semi-discretisé en temps bien posé. Nous en faisons l'analyse mathématique et nous montrons quelques résultats numériques obtenus après programmation de l'approximation de ce problème dans le logiciel Telemac-3D développé au Laboratoire National d'Hydraulique et Environnement (LNHE) d'edf.
D'autre part, nous étudions la réinterprétation dans le cadre ALE de la méthode de discrétisation verticale de domaines tridimensionnels appelée transformation sigma, et nous en proposons une généralisation permettant d'améliorer la représentation des stratifications dans un écoulement
Finalement, nous présentons un schéma ALE-MURD conservatif pour la résolution des équations de convection linéaires posées sur un domaine mobile. Une condition particulière doit être vérifiée afin que le schéma soit conservatif lorsque le domain bouge effectivement. Nous montrons comment assurer cette contrainte dans le cas particulier où le domaine est tridimensionnel et ne bouge que selon la verticale. Ce résultat est illustré dans le cadre des écoulements à surface libre en dimension trois.
Enchéry, Guillaume. "Modèles et schémas numériques pour la simulation de genèse de bassins sédimentaires." Phd thesis, Université de Marne la Vallée, 2004. http://tel.archives-ouvertes.fr/tel-00007371.
Повний текст джерелаet à la simulation de genèse de bassins sédimentaires.
Nous présentons tout d'abord les modèles mathématiques et
les schémas numériques mis en oeuvre à l'Institut Français
du Pétrole dans le cadre du projet Temis. Cette première partie
est illustrée à l'aide de tests numériques portant sur des bassins 1D/2D.
Nous étudions ensuite le schéma amont des pétroliers utilisé pour la résolution des équations de Darcy et nous établissons des résultats mathématiques nouveaux
dans le cas d'un écoulement de type Dead-Oil.
Nous montrons également comment construire un schéma à nombre
de Péclet variable en présence de pression capillaire.
Là encore, nous effectuons une étude mathématique
détaillée et nous montrons la convergence du schéma
dans un cas simplifié. Des tests numériques réalisés
sur un problème modèle montrent que l'utilisation d'un nombre
de Péclet variable améliore la précision des calculs.
Enfin nous considérons dans une dernière partie
un modèle d'écoulement où les changements de lithologie et
les changements de courbes de pression capillaire sont liés.
Nous précisons la condition physique que doivent vérifier
les solutions en saturation aux interfaces de changement de roche et
nous en déduisons une formulation faible originale.
L'existence d'une solution à ce problème est obtenue
par convergence d'un schéma volumes finis.
Des exemples numériques montrent l'influence de la condition
d'interface sur le passage ou la retenue des hydrocarbures.
Nadau, Lionel. "Schémas numériques instationnaires pour des écoulements multiphasiques multiconstituants dans des bassins sédimentaires." Phd thesis, Université de Pau et des Pays de l'Adour, 2003. http://tel.archives-ouvertes.fr/tel-00003624.
Повний текст джерелаRannou, Corinne. "Développement de schémas numériques en électromagnétisme : application au calcul de la S.E.R." Bordeaux 1, 1995. http://www.theses.fr/1995BOR10648.
Повний текст джерелаChampier, Sylvie. "Convergence de schémas numériques type Volumes finis pour la résolution d'équations hyperboliques." Saint-Etienne, 1992. http://www.theses.fr/1992STET4007.
Повний текст джерелаDe, Luca Patrick. "Modélisation numérique en élastoplasticité dynamique : un schéma adapté à la formulation vitesse-pression : une technique de couplage de codes lagrangien et eulérien." Bordeaux 1, 1989. http://www.theses.fr/1989BOR10553.
Повний текст джерелаViot, Louis. "Couplage et synchronisation de modèles dans un code scénario d’accidents graves dans les réacteurs nucléaires." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLN033/document.
Повний текст джерелаThis thesis focuses on solving coupled problems of models of interest for the simulation of severe accidents in nuclear reactors~: these coarse-grained models allow for fast calculations for statistical analysis used for risk assessment and solutions of large problems when considering the whole severe accident scenario. However, this modeling approach has several numerical flaws. Besides, in this industrial context, computational efficiency is of great importance leading to various numerical constraints. The objective of this research is to analyze the applicability of explicit coupling strategies to solve such coupled problems and to design implicit coupling schemes allowing stable and accurate computations. The proposed schemes are theoretically analyzed and tested within CEA's procor{} platform on a problem of heat conduction solved with coupled lumped parameter models and coupled 1D models. Numerical results are discussed and allow us to emphasize the benefits of using the designed coupling schemes instead of the usual explicit coupling schemes
Dakin, Gautier. "Couplage fluide-structure d'ordre (très) élevé pour des schémas volumes finis 2D Lagrange-projection." Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066404/document.
Повний текст джерелаThis work is devoted to the construction of stable and high-order numerical methods in order to simulate fluid - rigid body interactions. In this manuscript, a bibliographic overview is done, which highlights theoretical results about hyperbolic system of conservation laws, as well as the methods available in the literature for the hydrodynamics simulation and the numericalboundary treatment. A high-order accurate scheme is proposed on staggered Cartesian grids to approximate the solution of Euler equations in 1D and 2D. The scheme relies on Lagrange-remap formalism, and although formulated in internal energy, ensures both conservation and weak consistency thanks to an internal energy corrector. In the same time, the study of high-order numerical boundary treatment for linear hyperbolic system is done. It highlights the necessity to focus especially on the linear stability of the effective scheme. Starting from the linear results, the numerical boundary treatment with imposed normal velocity is done for Euler equations in 1D and 2D. Last, the coupling between a compressible fluid and a rigid body is realized, using the designed procedure for numerical boudary treatment
Agut, Cyril. "Schémas numériques d'ordre élevé en temps et en espace pour l'équation des ondes." Phd thesis, Université de Pau et des Pays de l'Adour, 2011. http://tel.archives-ouvertes.fr/tel-00688937.
Повний текст джерелаHettena, Elie. "Schémas numériques pour la résolution des équations des écoulements hypersoniques à l'équilibre chimique." Nice, 1989. http://www.theses.fr/1989NICE4307.
Повний текст джерелаHallo, Ludovic. "Etude de schémas numériques pour la simulation des écoulements tridimensionnels turbulents compressibles réactifs." Ecully, Ecole centrale de Lyon, 1995. http://www.theses.fr/1995ECDL0002.
Повний текст джерела