Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Cosmological phase transitions.

Статті в журналах з теми "Cosmological phase transitions"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Cosmological phase transitions".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

KIM, SANG PYO. "DYNAMICAL THEORY OF PHASE TRANSITIONS AND COSMOLOGICAL EW AND QCD PHASE TRANSITIONS." Modern Physics Letters A 23, no. 17n20 (June 28, 2008): 1325–35. http://dx.doi.org/10.1142/s0217732308027692.

Повний текст джерела
Анотація:
We critically review the cosmological EW and QCD phase transitions. The EW and QCD phase transitions would have proceeded dynamically since the expansion of the universe determines the quench rate and critical behaviors at the onset of phase transition slow down the phase transition. We introduce a real-time quench model for dynamical phase transitions and describe the evolution using a canonical real-time formalism. We find the correlation function, the correlation length and time and then discuss the cosmological implications of dynamical phase transitions on EW and QCD phase transitions in the early universe.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Athron, Peter, Csaba Balázs, and Lachlan Morris. "Supercool subtleties of cosmological phase transitions." Journal of Cosmology and Astroparticle Physics 2023, no. 03 (March 1, 2023): 006. http://dx.doi.org/10.1088/1475-7516/2023/03/006.

Повний текст джерела
Анотація:
Abstract We investigate rarely explored details of supercooled cosmological first-order phase transitions at the electroweak scale, which may lead to strong gravitational wave signals or explain the cosmic baryon asymmetry. The nucleation temperature is often used in phase transition analyses, and is defined through the nucleation condition: on average one bubble has nucleated per Hubble volume. We argue that the nucleation temperature is neither a fundamental nor essential quantity in phase transition analysis. We illustrate scenarios where a transition can complete without satisfying the nucleation condition, and conversely where the nucleation condition is satisfied but the transition does not complete. We also find that simple nucleation heuristics, which are defined to approximate the nucleation temperature, break down for strong supercooling. Thus, studies that rely on the nucleation temperature — approximated or otherwise — may misclassify the completion of a transition. Further, we find that the nucleation temperature decouples from the progress of the transition for strong supercooling. We advocate use of the percolation temperature as a reference temperature for gravitational wave production, because the percolation temperature is directly connected to transition progress and the collision of bubbles. Finally, we provide model-independent bounds on the bubble wall velocity that allow one to predict whether a transition completes based only on knowledge of the bounce action curve. We apply our methods to find empirical bounds on the bubble wall velocity for which the physical volume of the false vacuum decreases during the transition. We verify the accuracy of our predictions using benchmarks from a high temperature expansion of the Standard Model and from the real scalar singlet model.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Buckley, Matthew R., Peizhi Du, Nicolas Fernandez, and Mitchell J. Weikert. "Dark radiation isocurvature from cosmological phase transitions." Journal of Cosmology and Astroparticle Physics 2024, no. 07 (July 1, 2024): 031. http://dx.doi.org/10.1088/1475-7516/2024/07/031.

Повний текст джерела
Анотація:
Abstract Cosmological first order phase transitions are typically associated with physics beyond the Standard Model, and thus of great theoretical and observational interest. Models of phase transitions where the energy is mostly converted to dark radiation can be constrained through limits on the dark radiation energy density (parameterized by ΔN eff). However, the current constraint (ΔN eff < 0.3) assumes the perturbations are adiabatic. We point out that a broad class of non-thermal first order phase transitions that start during inflation but do not complete until after reheating leave a distinct imprint in the scalar field from bubble nucleation. Dark radiation inherits the perturbation from the scalar field when the phase transition completes, leading to large-scale isocurvature that would be observable in the CMB. We perform a detailed calculation of the isocurvature power spectrum and derive constraints on ΔN eff based on CMB+BAO data. For a reheating temperature of T rh and a nucleation temperature T *, the constraint is approximately ΔN eff ≲ 10-5 (T */T rh)-4, which can be much stronger than the adiabatic result. We also point out that since perturbations of dark radiation have a non-Gaussian origin, searches for non-Gaussianity in the CMB could place a stringent bound on ΔN eff as well.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Hogan, C. J. "Gravitational radiation from cosmological phase transitions." Monthly Notices of the Royal Astronomical Society 218, no. 4 (February 1, 1986): 629–36. http://dx.doi.org/10.1093/mnras/218.4.629.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

MÉGEVAND, ARIEL. "GRAVITATIONAL WAVES FROM COSMOLOGICAL PHASE TRANSITIONS." International Journal of Modern Physics A 24, no. 08n09 (April 10, 2009): 1541–44. http://dx.doi.org/10.1142/s0217751x09044966.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Kurki-Suonio, H., and M. Laine. "Supersonic deflagrations in cosmological phase transitions." Physical Review D 51, no. 10 (May 15, 1995): 5431–37. http://dx.doi.org/10.1103/physrevd.51.5431.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Vachaspati, Tanmay. "Magnetic fields from cosmological phase transitions." Physics Letters B 265, no. 3-4 (August 1991): 258–61. http://dx.doi.org/10.1016/0370-2693(91)90051-q.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Durrer, Ruth. "Gravitational waves from cosmological phase transitions." Journal of Physics: Conference Series 222 (April 1, 2010): 012021. http://dx.doi.org/10.1088/1742-6596/222/1/012021.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Athron, Peter, Lachlan Morris, and Zhongxiu Xu. "How robust are gravitational wave predictions from cosmological phase transitions?" Journal of Cosmology and Astroparticle Physics 2024, no. 05 (May 1, 2024): 075. http://dx.doi.org/10.1088/1475-7516/2024/05/075.

Повний текст джерела
Анотація:
Abstract Gravitational wave (GW) predictions of cosmological phase transitions are almost invariably evaluated at either the nucleation or percolation temperature. We investigate the effect of the transition temperature choice on GW predictions, for phase transitions with weak, intermediate and strong supercooling. We find that the peak amplitude of the GW signal varies by a factor of a few for weakly supercooled phase transitions, and by an order of magnitude for strongly supercooled phase transitions. The variation in amplitude for even weakly supercooled phase transitions can be several orders of magnitude if one uses the mean bubble separation, while the variation is milder if one uses the mean bubble radius instead. We also investigate the impact of various approximations used in GW predictions. Many of these approximations introduce at least a 10% error in the GW signal, with others introducing an error of over an order of magnitude.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Jinno, Ryusuke, Thomas Konstandin, Henrique Rubira, and Isak Stomberg. "Higgsless simulations of cosmological phase transitions and gravitational waves." Journal of Cosmology and Astroparticle Physics 2023, no. 02 (February 1, 2023): 011. http://dx.doi.org/10.1088/1475-7516/2023/02/011.

Повний текст джерела
Анотація:
Abstract First-order cosmological phase transitions in the early Universe source sound waves and, subsequently, a background of stochastic gravitational waves. Currently, predictions of these gravitational waves rely heavily on simulations of a Higgs field coupled to the plasma of the early Universe, the former providing the latent heat of the phase transition. Numerically, this is a rather demanding task since several length scales enter the dynamics. From smallest to largest, these are the thickness of the Higgs interface separating the different phases, the shell thickness of the sound waves, and the average bubble size. In this work, we present an approach to perform Higgsless simulations in three dimensions, producing fully nonlinear results, while at the same time removing the hierarchically smallest scale from the lattice. This significantly reduces the complexity of the problem and contributes to making our approach highly efficient. We provide spectra for the produced gravitational waves for various choices of wall velocity and strength of the phase transition, as well as introduce a fitting function for the spectral shape.
Стилі APA, Harvard, Vancouver, ISO та ін.
11

JANSEN, KARL. "COSMOLOGICAL PHASE TRANSITIONS FROM LATTICE FIELD THEORY." International Journal of Modern Physics E 20, supp02 (December 2011): 71–77. http://dx.doi.org/10.1142/s0218301311040621.

Повний текст джерела
Анотація:
In this proceedings contribution we discuss the fate of the electroweak and the quantum chromodynamics phase transitions relevant for the early stage of the universe at non-zero temperature. These phase transitions are related to the Higgs mechanism and the breaking of chiral symmetry, respectively. We will review that non-perturbative lattice field theory simulations show that these phase transitions actually do not occur in nature and that physical observables show a completely smooth behaviour as a function of the temperature.
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Strumia, Alessandro, and Nikolaos Tetradis. "Bubble-nucleation rates for cosmological phase transitions." Journal of High Energy Physics 1999, no. 11 (November 17, 1999): 023. http://dx.doi.org/10.1088/1126-6708/1999/11/023.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Mégevand, Ariel, and Alejandro D. Sánchez. "Detonations and deflagrations in cosmological phase transitions." Nuclear Physics B 820, no. 1-2 (October 2009): 47–74. http://dx.doi.org/10.1016/j.nuclphysb.2009.05.007.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Gleiser, Marcelo, and Edward W. Kolb. "Dynamics of cosmological phase transitions: Metastability revisited." Vistas in Astronomy 37 (January 1993): 429–32. http://dx.doi.org/10.1016/0083-6656(93)90068-u.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Ignatius, J., K. Kajantie, H. Kurki-Suonio, and M. Laine. "Growth of bubbles in cosmological phase transitions." Physical Review D 49, no. 8 (April 15, 1994): 3854–68. http://dx.doi.org/10.1103/physrevd.49.3854.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Ignatius, J. "Bubble free energy in cosmological phase transitions." Physics Letters B 309, no. 3-4 (July 1993): 252–57. http://dx.doi.org/10.1016/0370-2693(93)90929-c.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Giombi, L., and Mark Hindmarsh. "General relativistic bubble growth in cosmological phase transitions." Journal of Cosmology and Astroparticle Physics 2024, no. 03 (March 1, 2024): 059. http://dx.doi.org/10.1088/1475-7516/2024/03/059.

Повний текст джерела
Анотація:
Abstract We use a full general relativistic framework to study the self-similar expansion of bubbles of the stable phase into a flat Friedmann-Lemaître-Robertson-Walker Universe in a first order phase transition in the early Universe. With a simple linear barotropic equation of state in both phases, and in the limit of a phase boundary of negligible width, we find that self-similar solutions exist, which are qualitatively similar to the analogous solutions in Minkowski space, but with distinguishing features. Rarefaction waves extend to the centre of the bubble, while spatial sections near the centre of the bubble have negative curvature. Gravitational effects redistribute the kinetic energy of the fluid around the bubble, and can change the kinetic energy fraction significantly. The kinetic energy fraction of the gravitating solution can be enhanced over the analogous Minkowski solution by as much as 𝒪(1), and suppressed by a factor as larger as 𝒪(10) in case of fast detonations. The amount of negative spatial curvature at the centre of the bubble is of the same order of magnitude of the naive expectation based on considerations of the energy density perturbation in Minkowski solutions, with gravitating deflagrations less negatively curved, and detonations more. We infer that general relativistic effects might have a significant impact on accurate calculations of the gravitational wave power spectrum when the bubble size becomes comparable to the cosmological Hubble radius, affecting the primary generation from the fluid shear stress, and inducing secondary generation by scalar perturbations.
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Vachaspati, Tanmay. "Magnetic fields in the aftermath of phase transitions." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 366, no. 1877 (June 5, 2008): 2915–23. http://dx.doi.org/10.1098/rsta.2008.0074.

Повний текст джерела
Анотація:
The COSLAB effort has focused on the formation of topological defects during phase transitions. Yet there is another potentially interesting signature of cosmological phase transitions, which also deserves study in the laboratory. This is the generation of magnetic fields during phase transitions. In particular, cosmological phase transitions that also lead to preferential production of matter over antimatter (‘baryogenesis’) are expected to produce helical (left-handed) magnetic fields. The study of analogous processes in the laboratory can yield important insight into the production of helical magnetic fields, and the observation of such fields in the Universe can be invaluable for both particle physics and cosmology.
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Kisslinger, Leonard S. "Cosmological Phase Transitions—EWPT-QCDPT: Magnetic Field Creation." Magnetochemistry 8, no. 10 (September 27, 2022): 115. http://dx.doi.org/10.3390/magnetochemistry8100115.

Повний текст джерела
Анотація:
We review the cosmic microwave background (CMBR) estimate of ordinary matter, dark matter and dark energy in the universe. Then, we review the cosmological electroweak (EWPT) and quantum chromodynamics (QCDPT) phase transitions. During both the EWPT and QCDPT, bubbles form and collide, producing magnetic fields. We review dark matter produced during the EWPT and the estimate of dark matter via galaxy rotation.
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Kosowsky, Arthur, Michael S. Turner, and Richard Watkins. "Gravitational waves from first-order cosmological phase transitions." Physical Review Letters 69, no. 14 (October 5, 1992): 2026–29. http://dx.doi.org/10.1103/physrevlett.69.2026.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Lange, David, Marc Sher, Joel Sivillo, and Robert Welsh. "A hand‐held demonstration of cosmological phase transitions." American Journal of Physics 61, no. 11 (November 1993): 1049–50. http://dx.doi.org/10.1119/1.17339.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Espinosa, José R., Thomas Konstandin, José M. No, and Géraldine Servant. "Energy budget of cosmological first-order phase transitions." Journal of Cosmology and Astroparticle Physics 2010, no. 06 (June 28, 2010): 028. http://dx.doi.org/10.1088/1475-7516/2010/06/028.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Zaripov, Farkhat. "Oscillating Cosmological Solutions in the Modified Theory of Induced Gravity." Advances in Astronomy 2019 (April 24, 2019): 1–15. http://dx.doi.org/10.1155/2019/1502453.

Повний текст джерела
Анотація:
This work is the extension of author’s research, where the modified theory of induced gravity (MTIG) is proposed. In the framework of the MTIG, the mechanism of phase transitions and the description of multiphase behavior of the cosmological scenario are proposed. The theory describes two systems (stages): Einstein (ES) and “restructuring” (RS). This process resembles the phenomenon of a phase transition, where different phases (Einstein’s gravitational systems, but with different constants) pass into each other. The hypothesis that such transitions are random and lead to stochastic behavior of cosmological parameters is considered. In our model, effective gravitational and cosmological “constants” arise, which are defined by the “mean square” of the scalar fields. These parameters can be compared with observations related to the phenomenon of dark energy. The aim of the work is to solve equations of MTIG for the case of a quadratic potential and compare them with observational cosmology data. The interaction of fundamental scalar fields and matter in the form of an ideal fluid is introduced and investigated. For the case of Friedmann-Robertson-Walker space-time, numerical solutions of nonlinear MTIG equations are obtained using the qualitative theory of dynamical systems and mathematical computer programs. For the case of a linear potential, examples joining of solutions, the ES and RS stages, of the evolution of the cosmological model are given. It is shown that the values of such parameters as “Hubble parameter” and gravitational and cosmological “constants” in the RS stage contain solutions oscillating near monotonically developing averages or have stochastic behavior due to random transitions to different stages (RS or ES). Such a stochastic behavior might be at the origin of the tension between CMB measurements of the value of the Hubble parameter today and its local measurements.
Стилі APA, Harvard, Vancouver, ISO та ін.
24

JOHNSON, MIKKEL B., L. S. KISSLINGER, E. M. HENLEY, W.-Y. P. HWANG, and T. STEVENS. "NON-ABELIAN DYNAMICS IN FIRST-ORDER COSMOLOGICAL PHASE TRANSITIONS." Modern Physics Letters A 19, no. 13n16 (May 30, 2004): 1187–94. http://dx.doi.org/10.1142/s0217732304014549.

Повний текст джерела
Анотація:
Bubble collisions in cosmological phase transitions are explored, taking the non-abelian character of the gauge fields into account. Both the QCD and electroweak phase transitions are considered. Numerical solutions of the field equations in several limits are presented.
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Mielczarek, Jakub. "Big Bang as a Critical Point." Advances in High Energy Physics 2017 (2017): 1–5. http://dx.doi.org/10.1155/2017/4015145.

Повний текст джерела
Анотація:
This article addresses the issue of possible gravitational phase transitions in the early universe. We suggest that a second-order phase transition observed in the Causal Dynamical Triangulations approach to quantum gravity may have a cosmological relevance. The phase transition interpolates between a nongeometric crumpled phase of gravity and an extended phase with classical properties. Transition of this kind has been postulated earlier in the context of geometrogenesis in the Quantum Graphity approach to quantum gravity. We show that critical behavior may also be associated with a signature change in Loop Quantum Cosmology, which occurs as a result of quantum deformation of the hypersurface deformation algebra. In the considered cases, classical space-time originates at the critical point associated with a second-order phase transition. Relation between the gravitational phase transitions and the corresponding change of symmetry is underlined.
Стилі APA, Harvard, Vancouver, ISO та ін.
26

KIM, WONTAE, and EDWIN J. SON. "TWO NONCOMMUTATIVE PARAMETERS AND REGULAR COSMOLOGICAL PHASE TRANSITION IN THE SEMICLASSICAL DILATON COSMOLOGY." Modern Physics Letters A 23, no. 15 (May 20, 2008): 1079–91. http://dx.doi.org/10.1142/s0217732308027047.

Повний текст джерела
Анотація:
We study cosmological phase transitions from modified equations of motion by introducing two noncommutative parameters in the Poisson brackets, which describes the initial- and future-singularity-free phase transition in the soluble semiclassical dilaton gravity with a nonvanishing cosmological constant. Accelerated expansion and decelerated expansion appear alternatively, where the model contains the second accelerated expansion. The final stage of the universe approaches the flat spacetime independent of the initial state of the curvature scalar as long as the product of the two noncommutative parameters is less than one. Finally, we show that the initial-singularity-free condition is related to the second accelerated expansion of the universe.
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Saslaw, William C., and Farooq Ahmad. "GRAVITATIONAL PHASE TRANSITIONS IN THE COSMOLOGICAL MANY-BODY SYSTEM." Astrophysical Journal 720, no. 2 (August 19, 2010): 1246–53. http://dx.doi.org/10.1088/0004-637x/720/2/1246.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Kurki-Suonio, H., and M. Laine. "Bubble growth and droplet decay in cosmological phase transitions." Physical Review D 54, no. 12 (December 15, 1996): 7163–71. http://dx.doi.org/10.1103/physrevd.54.7163.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Sigl, Günter, Angela V. Olinto, and Karsten Jedamzik. "Primordial magnetic fields from cosmological first order phase transitions." Physical Review D 55, no. 8 (April 15, 1997): 4582–90. http://dx.doi.org/10.1103/physrevd.55.4582.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Mégevand, Ariel, and Santiago Ramírez. "Bubble nucleation and growth in slow cosmological phase transitions." Nuclear Physics B 928 (March 2018): 38–71. http://dx.doi.org/10.1016/j.nuclphysb.2018.01.012.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Dienes, Keith R., E. Dudas, T. Gherghetta, and A. Riotto. "Cosmological phase transitions and radius stabilization in higher dimensions." Nuclear Physics B 543, no. 1-2 (March 1999): 387–422. http://dx.doi.org/10.1016/s0550-3213(98)00855-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Leitao, Leonardo, and Ariel Mégevand. "Spherical and non-spherical bubbles in cosmological phase transitions." Nuclear Physics B 844, no. 3 (March 2011): 450–70. http://dx.doi.org/10.1016/j.nuclphysb.2010.11.012.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Gleiser, Marcelo, and Mark Trodden. "Weakly first order cosmological phase transitions and fermion production." Physics Letters B 517, no. 1-2 (September 2001): 7–12. http://dx.doi.org/10.1016/s0370-2693(01)00974-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

HWANG, W.-Y. P. "SOME THOUGHTS ON THE COSMOLOGICAL QCD PHASE TRANSITION." International Journal of Modern Physics A 23, no. 30 (December 10, 2008): 4757–77. http://dx.doi.org/10.1142/s0217751x08042845.

Повний текст джерела
Анотація:
The cosmological QCD phase transitions may have taken place between 10-5 s and 10-4 s in the early universe offers us one of the most intriguing and fascinating questions in cosmology. In bag models, the phase transition is described by the first-order phase transition and the role played by the latent "heat" or energy released in the transition is highly nontrivial and is being classified as the first-order phase transition. In this presentation, we assume, first of all, that the cosmological QCD phase transition, which happened at a time between 10-5 s and 10-4 s or at the temperature of about 150 MeV and accounts for confinement of quarks and gluons to within hadrons, would be of first-order. Of course, we may assume that the cosmological QCD phase transition may not be of the first-order. To get the essence out of the first-order scenario, it is sufficient to approximate the true QCD vacuum as one of possibly degenerate vacua and when necessary we try to model it effectively via a complex scalar field with spontaneous symmetry breaking. On the other hand, we may use a real scalar field in describing the non-first-order QCD phase transition. In the first-order QCD phase transition, we could examine how and when "pasted" or "patched" domain walls are formed, how long such walls evolve in the long run, and we believe that the significant portion of dark matter could be accounted for in terms of such domain-wall structure and its remnants. Of course, the cosmological QCD phase transition happened in the way such that the false vacua associated with baryons and many other color-singlet objects did not disappear (that is, using the bag-model language, there are bags of radius 1.0 fermi for the baryons) — but the amount of the energy remained in the false vacua is negligible by comparison. The latent energy released due to the conversion of the false vacua to the true vacua, in the form of "pasted" or "patched" domain walls in the short run and their numerous evolved objects, should make the concept of the "radiation-dominated" epoch, or of the "matter-dominated" epoch to be reexamined.
Стилі APA, Harvard, Vancouver, ISO та ін.
35

RAYCHAUDHURI, B., F. RAHAMAN, and M. KALAM. "ON TOPOLOGICAL DEFECTS AND COSMOLOGICAL CONSTANT." Modern Physics Letters A 29, no. 01 (January 7, 2014): 1450007. http://dx.doi.org/10.1142/s0217732314500072.

Повний текст джерела
Анотація:
Einstein introduced cosmological constant in his field equations in an ad hoc manner. Cosmological constant plays the role of vacuum energy of the universe which is responsible for the accelerating expansion of the universe. To give a theoretical support, it remains an elusive goal to modern physicists. We provide a prescription to obtain cosmological constant from the phase transitions of the early universe when topological defects, namely monopole might have existed.
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Sigl, Günter. "Cosmological gravitational wave background from phase transitions in neutron stars." Journal of Cosmology and Astroparticle Physics 2006, no. 04 (April 5, 2006): 002. http://dx.doi.org/10.1088/1475-7516/2006/04/002.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Mégevand, Ariel, and Santiago Ramírez. "Bubble nucleation and growth in very strong cosmological phase transitions." Nuclear Physics B 919 (June 2017): 74–109. http://dx.doi.org/10.1016/j.nuclphysb.2017.03.009.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Housset, Joaquín, Joel F. Saavedra, and Francisco Tello-Ortiz. "Cosmological FLRW phase transitions and micro-structure under Kaniadakis statistics." Physics Letters B 853 (June 2024): 138686. http://dx.doi.org/10.1016/j.physletb.2024.138686.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Zou, De-Cheng, Ming Zhang, Chao Wu, and Rui-Hong Yue. "Critical Phenomena of Charged AdS Black Holes in Rastall Gravity." Advances in High Energy Physics 2020 (January 24, 2020): 1–9. http://dx.doi.org/10.1155/2020/4065254.

Повний текст джерела
Анотація:
We construct analytical charged anti-de Sitter (AdS) black holes surrounded by perfect fluids in four dimensional Rastall gravity. Then, we discuss the thermodynamics and phase transitions of charged AdS black holes immersed in regular matter like dust and radiation, or exotic matter like quintessence, ΛCDM type, and phantom fields. Surrounded by phantom field, the charged AdS black hole demonstrates a new phenomenon of reentrant phase transition (RPT) when the parameters Q, Np, and ψ satisfy some certain condition, along with the usual small/large black hole (SBH/LBH) phase transition for the surrounding dust, radiation, quintessence, and cosmological constant fields.
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Bécar, Ramón, P. A. González, Joel Saavedra, Yerko Vásquez, and Bin Wang. "Phase transitions in four-dimensional AdS black holes with a nonlinear electrodynamics source." Communications in Theoretical Physics 73, no. 12 (November 12, 2021): 125402. http://dx.doi.org/10.1088/1572-9494/ac3073.

Повний текст джерела
Анотація:
Abstract In this work we consider black hole solutions to Einstein’s theory coupled to a nonlinear power-law electromagnetic field with a fixed exponent value. We study the extended phase space thermodynamics in canonical and grand canonical ensembles, where the varying cosmological constant plays the role of an effective thermodynamic pressure. We examine thermodynamical phase transitions in such black holes and find that both first- and second-order phase transitions can occur in the canonical ensemble while, for the grand canonical ensemble, Hawking–Page and second-order phase transitions are allowed.
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Zhang, Ming, De-Cheng Zou, and Rui-Hong Yue. "Reentrant Phase Transitions and Triple Points of Topological AdS Black Holes in Born-Infeld-Massive Gravity." Advances in High Energy Physics 2017 (2017): 1–11. http://dx.doi.org/10.1155/2017/3819246.

Повний текст джерела
Анотація:
Motivated by recent developments of black hole thermodynamics in de Rham, Gabadadze, and Tolley (dRGT) massive gravity, we study the critical behaviors of topological Anti-de Sitter (AdS) black holes in the presence of Born-Infeld nonlinear electrodynamics. Here the cosmological constant appears as a dynamical pressure of the system and its corresponding conjugate quantity is interpreted as thermodynamic volume. This shows that, besides the Van der Waals-like SBH/LBH phase transitions, the so-called reentrant phase transition (RPT) appears in four-dimensional space-time when the coupling coefficients cim2 of massive potential and Born-Infeld parameter b satisfy some certain conditions. In addition, we also find the triple critical points and the small/intermediate/large black hole phase transitions for d=5.
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Ma, Yubo, Yang Zhang, Ren Zhao, Shuo Cao, Tonghua Liu, Shubiao Geng, Yuting Liu, and Yumei Huang. "Phase transitions and entropy force of charged de Sitter black holes with cloud of string and quintessence." International Journal of Modern Physics D 29, no. 15 (November 2020): 2050108. http://dx.doi.org/10.1142/s0218271820501084.

Повний текст джерела
Анотація:
In this paper, we investigate the combined effects of the cloud of strings and quintessence on the thermodynamics of a Reissner–Nordström–de Sitter black hole. Based on the equivalent thermodynamic quantities considering the correlation between the black hole horizon and the cosmological horizon, we extensively discuss the phase transitions of the spacetime. Our analysis proves that similar to the case in AdS spacetime, second-order phase transitions could take place under certain conditions, with the absence of first-order phase transition in the charged de Sitter (dS) black holes with cloud of string and quintessence. The effects of different thermodynamic quantities on the phase transitions are also quantitatively discussed, which provides a new approach to study the thermodynamic qualities of unstable dS spacetime. Focusing on the entropy force generated by the interaction between the black hole horizon and the cosmological horizon, as well as the Lennard–Jones force between two particles, our results demonstrate the strong degeneracy between the entropy force of the two horizons and the ratio of the horizon positions, which follows the surprisingly similar law given the relation between the Lennard–Jones force and the ratio of two particle positions. Therefore, the study of the entropy force between two horizons is not only beneficial to the deep exploration of the three modes of cosmic evolution, but also helpful to understand the correlation between the microstates of particles in black holes and those in ordinary thermodynamic systems.
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Lev, B. I., and A. G. Zagorodny. "Some peculiarities of noise-induced phase transition." Low Temperature Physics 48, no. 11 (November 2022): 949–55. http://dx.doi.org/10.1063/10.0014595.

Повний текст джерела
Анотація:
Two fundamental evolutionary principles, namely the H-theorem and the least-energy principle, are applied to describe the phase transition in condensed environments and cosmological models. We assume that in the presence of a spontaneously induced scalar field, which can be treated as an order parameter, the energy of the ground state is lower than the ground state energy without such a field. Taking into account the self-consistent interaction of the scalar field with the fluctuations of the fields of other nature and the principles mentioned above, it is possible to show the possibility of the phase transition and to find the conditions for such transition in terms of fluctuation characteristics and coupling parameter. These principles are employed to reveal probable phase transitions in condensed matter physics and cosmology.
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Chabab, M., H. El Moumni, S. Iraoui, K. Masmar, and S. Zhizeh. "More insight into microscopic properties of RN-AdS black hole surrounded by quintessence via an alternative extended phase space." International Journal of Geometric Methods in Modern Physics 15, no. 10 (October 2018): 1850171. http://dx.doi.org/10.1142/s0219887818501712.

Повний текст джерела
Анотація:
In this work, we study the phase transition of the charged-AdS black hole surrounded by quintessence via an alternative extended phase space defined by the charge square [Formula: see text] and her conjugate [Formula: see text], a quantity proportional to the inverse of horizon radius, while the cosmological constant is kept fixed. The equation of state is derived under the form [Formula: see text] and the critical behavior of such black hole analyzed. In addition, we examine the role of the quintessence parameter and its effects on phase transitions. Besides that, we explore the connection between the microscopic structure and Ruppeiner geothermodynamics. We also find that, at certain points of the phase space, the Ruppeiner curvature is characterised by the presence of singularities that are interpreted as a signal of the occurrence of the phase transitions.
Стилі APA, Harvard, Vancouver, ISO та ін.
45

BURDYUZHA, V. V., Yu N. PONOMAREV, O. D. LALAKULICH, and G. M. VERESHKOV. "THE TUNNELING, THE SECOND ORDER RELATIVISTIC PHASE TRANSITIONS AND PROBLEM OF THE MACROSCOPIC UNIVERSE ORIGIN." International Journal of Modern Physics D 05, no. 03 (June 1996): 273–92. http://dx.doi.org/10.1142/s0218271896000199.

Повний текст джерела
Анотація:
We propose that the Universe was created from “Nothing” with a relatively small number of particles and it very quick relaxed to a quasi-equilibrium state at the Planck parameters. The classic cosmological solution for this Universe, with the calculation of its ability to undergo the second order relativistic phase transition (RPT), has two branches divided by a gap. On one of these branches near to the “Nothing” state the second order RPT is not possible at the GUT scale. The other branch is thermodynamically unstable. The quantum process of tunneling between the cosmological solution branches and the kinetics of the second order RPT are investigated by numerical methods. Another quantum geometrodynamics process (bounce from singularity) is also taken into consideration. It is shown that the discussed phenomenon with the calculation of all RPTs from the GUT scale (1016 Gev) to the Salam-Weinberg scale (102 Gev) gives the new cosmological scenarios of the macroscopic Universe origin with the observable number of particles.
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Peter, Niksa, Schlederer Martin, and Sigl Günter. "Gravitational waves produced by compressible MHD turbulence from cosmological phase transitions." Classical and Quantum Gravity 35, no. 14 (June 19, 2018): 144001. http://dx.doi.org/10.1088/1361-6382/aac89c.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Caprini, Chiara, Mikael Chala, Glauber C. Dorsch, Mark Hindmarsh, Stephan J. Huber, Thomas Konstandin, Jonathan Kozaczuk, et al. "Detecting gravitational waves from cosmological phase transitions with LISA: an update." Journal of Cosmology and Astroparticle Physics 2020, no. 03 (March 10, 2020): 024. http://dx.doi.org/10.1088/1475-7516/2020/03/024.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Wasserman, Ira. "Late Phase Transitions and the Spontaneous Generation of Cosmological Density Perturbations." Physical Review Letters 57, no. 17 (October 27, 1986): 2234–36. http://dx.doi.org/10.1103/physrevlett.57.2234.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Gleiser, R. J., M. C. Diaz, and R. D. Grosso. "Phase transitions in perturbed stiff fluid Friedmann-Robertson-Walker cosmological models." Classical and Quantum Gravity 5, no. 7 (July 1, 1988): 989–1001. http://dx.doi.org/10.1088/0264-9381/5/7/007.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Frieman, Joshua A., Christopher T. Hill, and Richard Watkins. "Late-time cosmological phase transitions: Particle-physics models and cosmic evolution." Physical Review D 46, no. 4 (August 15, 1992): 1226–38. http://dx.doi.org/10.1103/physrevd.46.1226.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії