Добірка наукової літератури з теми "Cosmological phase transitions"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Cosmological phase transitions".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Cosmological phase transitions"

1

KIM, SANG PYO. "DYNAMICAL THEORY OF PHASE TRANSITIONS AND COSMOLOGICAL EW AND QCD PHASE TRANSITIONS." Modern Physics Letters A 23, no. 17n20 (June 28, 2008): 1325–35. http://dx.doi.org/10.1142/s0217732308027692.

Повний текст джерела
Анотація:
We critically review the cosmological EW and QCD phase transitions. The EW and QCD phase transitions would have proceeded dynamically since the expansion of the universe determines the quench rate and critical behaviors at the onset of phase transition slow down the phase transition. We introduce a real-time quench model for dynamical phase transitions and describe the evolution using a canonical real-time formalism. We find the correlation function, the correlation length and time and then discuss the cosmological implications of dynamical phase transitions on EW and QCD phase transitions in the early universe.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Athron, Peter, Csaba Balázs, and Lachlan Morris. "Supercool subtleties of cosmological phase transitions." Journal of Cosmology and Astroparticle Physics 2023, no. 03 (March 1, 2023): 006. http://dx.doi.org/10.1088/1475-7516/2023/03/006.

Повний текст джерела
Анотація:
Abstract We investigate rarely explored details of supercooled cosmological first-order phase transitions at the electroweak scale, which may lead to strong gravitational wave signals or explain the cosmic baryon asymmetry. The nucleation temperature is often used in phase transition analyses, and is defined through the nucleation condition: on average one bubble has nucleated per Hubble volume. We argue that the nucleation temperature is neither a fundamental nor essential quantity in phase transition analysis. We illustrate scenarios where a transition can complete without satisfying the nucleation condition, and conversely where the nucleation condition is satisfied but the transition does not complete. We also find that simple nucleation heuristics, which are defined to approximate the nucleation temperature, break down for strong supercooling. Thus, studies that rely on the nucleation temperature — approximated or otherwise — may misclassify the completion of a transition. Further, we find that the nucleation temperature decouples from the progress of the transition for strong supercooling. We advocate use of the percolation temperature as a reference temperature for gravitational wave production, because the percolation temperature is directly connected to transition progress and the collision of bubbles. Finally, we provide model-independent bounds on the bubble wall velocity that allow one to predict whether a transition completes based only on knowledge of the bounce action curve. We apply our methods to find empirical bounds on the bubble wall velocity for which the physical volume of the false vacuum decreases during the transition. We verify the accuracy of our predictions using benchmarks from a high temperature expansion of the Standard Model and from the real scalar singlet model.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Buckley, Matthew R., Peizhi Du, Nicolas Fernandez, and Mitchell J. Weikert. "Dark radiation isocurvature from cosmological phase transitions." Journal of Cosmology and Astroparticle Physics 2024, no. 07 (July 1, 2024): 031. http://dx.doi.org/10.1088/1475-7516/2024/07/031.

Повний текст джерела
Анотація:
Abstract Cosmological first order phase transitions are typically associated with physics beyond the Standard Model, and thus of great theoretical and observational interest. Models of phase transitions where the energy is mostly converted to dark radiation can be constrained through limits on the dark radiation energy density (parameterized by ΔN eff). However, the current constraint (ΔN eff < 0.3) assumes the perturbations are adiabatic. We point out that a broad class of non-thermal first order phase transitions that start during inflation but do not complete until after reheating leave a distinct imprint in the scalar field from bubble nucleation. Dark radiation inherits the perturbation from the scalar field when the phase transition completes, leading to large-scale isocurvature that would be observable in the CMB. We perform a detailed calculation of the isocurvature power spectrum and derive constraints on ΔN eff based on CMB+BAO data. For a reheating temperature of T rh and a nucleation temperature T *, the constraint is approximately ΔN eff ≲ 10-5 (T */T rh)-4, which can be much stronger than the adiabatic result. We also point out that since perturbations of dark radiation have a non-Gaussian origin, searches for non-Gaussianity in the CMB could place a stringent bound on ΔN eff as well.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Hogan, C. J. "Gravitational radiation from cosmological phase transitions." Monthly Notices of the Royal Astronomical Society 218, no. 4 (February 1, 1986): 629–36. http://dx.doi.org/10.1093/mnras/218.4.629.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

MÉGEVAND, ARIEL. "GRAVITATIONAL WAVES FROM COSMOLOGICAL PHASE TRANSITIONS." International Journal of Modern Physics A 24, no. 08n09 (April 10, 2009): 1541–44. http://dx.doi.org/10.1142/s0217751x09044966.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Kurki-Suonio, H., and M. Laine. "Supersonic deflagrations in cosmological phase transitions." Physical Review D 51, no. 10 (May 15, 1995): 5431–37. http://dx.doi.org/10.1103/physrevd.51.5431.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Vachaspati, Tanmay. "Magnetic fields from cosmological phase transitions." Physics Letters B 265, no. 3-4 (August 1991): 258–61. http://dx.doi.org/10.1016/0370-2693(91)90051-q.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Durrer, Ruth. "Gravitational waves from cosmological phase transitions." Journal of Physics: Conference Series 222 (April 1, 2010): 012021. http://dx.doi.org/10.1088/1742-6596/222/1/012021.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Athron, Peter, Lachlan Morris, and Zhongxiu Xu. "How robust are gravitational wave predictions from cosmological phase transitions?" Journal of Cosmology and Astroparticle Physics 2024, no. 05 (May 1, 2024): 075. http://dx.doi.org/10.1088/1475-7516/2024/05/075.

Повний текст джерела
Анотація:
Abstract Gravitational wave (GW) predictions of cosmological phase transitions are almost invariably evaluated at either the nucleation or percolation temperature. We investigate the effect of the transition temperature choice on GW predictions, for phase transitions with weak, intermediate and strong supercooling. We find that the peak amplitude of the GW signal varies by a factor of a few for weakly supercooled phase transitions, and by an order of magnitude for strongly supercooled phase transitions. The variation in amplitude for even weakly supercooled phase transitions can be several orders of magnitude if one uses the mean bubble separation, while the variation is milder if one uses the mean bubble radius instead. We also investigate the impact of various approximations used in GW predictions. Many of these approximations introduce at least a 10% error in the GW signal, with others introducing an error of over an order of magnitude.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Jinno, Ryusuke, Thomas Konstandin, Henrique Rubira, and Isak Stomberg. "Higgsless simulations of cosmological phase transitions and gravitational waves." Journal of Cosmology and Astroparticle Physics 2023, no. 02 (February 1, 2023): 011. http://dx.doi.org/10.1088/1475-7516/2023/02/011.

Повний текст джерела
Анотація:
Abstract First-order cosmological phase transitions in the early Universe source sound waves and, subsequently, a background of stochastic gravitational waves. Currently, predictions of these gravitational waves rely heavily on simulations of a Higgs field coupled to the plasma of the early Universe, the former providing the latent heat of the phase transition. Numerically, this is a rather demanding task since several length scales enter the dynamics. From smallest to largest, these are the thickness of the Higgs interface separating the different phases, the shell thickness of the sound waves, and the average bubble size. In this work, we present an approach to perform Higgsless simulations in three dimensions, producing fully nonlinear results, while at the same time removing the hierarchically smallest scale from the lattice. This significantly reduces the complexity of the problem and contributes to making our approach highly efficient. We provide spectra for the produced gravitational waves for various choices of wall velocity and strength of the phase transition, as well as introduce a fitting function for the spectral shape.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Cosmological phase transitions"

1

Ferreira, Pedro Tonnies Gil. "Observational consequences of cosmological phase transitions." Thesis, Imperial College London, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.338692.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Larsson, Sebastian E. "Topological defects from cosmological phase transitions." Thesis, University of Oxford, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.298309.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Adams, Jennifer Anne. "Cosmological phase transitions : techniques and phenomenology." Thesis, University of Oxford, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.306935.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Lilley, Matthew James. "Cosmological phase transitions and primordial magnetic fields." Thesis, University of Cambridge, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.621001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Faure, Rémi. "Neutrinos, cosmological phase transitions and the matter-antimatter asymmetry of the Universe." Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASP081.

Повний текст джерела
Анотація:
L'asymétrie entre matière et antimatière est un problème non résolu de la cosmologie. Une approche populaire pour l'expliquer est la leptogénèse avec des neutrinos stériles, qui sont des particules motivées expérimentalement pour expliquer les masses des neutrinos actifs du Modèle Standard. Il est possible d'inclure dans les scénarios de leptogénèse une transition de phase cosmologique qui donne leur masse aux neutrinos stériles. Cette idée est intéressante phénoménologiquement, car une transition de phase produit des ondes gravitationnelles pouvant être détectées. À la température de la transition de phase T, les neutrinos stériles obtiennent une masse M. Deux mécanismes sont considérés. Pour des neutrinos stériles non-relativistes M>T déviant de l'équilibre lors de la transition de phase, l'asymétrie leptonique est créée lors de leurs désintégrations. La rapidité de la transition permet d'avoir une population de neutrinos stériles initiale plus importante que dans le cas standard et améliore la création d'asymétrie. L'analyse numérique permet de décrire l'espace des paramètres où la leptogénèse est réussie. Pour des neutrinos stériles relativistes M
The baryon asymmetry in our Universe is an unsolved problem in cosmology. A popular approach for explaining it is leptogenesis with sterile neutrinos, which are particles motivated in order to explain the masses of active neutrinos in the Standard Model. It is possible to include in these scenarios a cosmological phase transition which gives rise to the sterile neutrino masses. This idea is phenomenologically interesting, as such a phase transition could produce detectable gravitational waves. At the temperature T of the phase transition, sterile neutrinos acquire a mass M. Two mechanisms are considered. For non-relativistic sterile neutrinos M>T, deviating from equilibrium due to the phase transition, they will quickly decay and produce a lepton asymmetry. The rapidity of the phase transition allows a larger sterile neutrino population than in usual scenarios and enhances the created asymmetry. Numerical analyses describe the successful regions in parameter space for leptogenesis. For relativistic sterile neutrinos M
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Dichtl, Maximilian. "Aspects of cosmological first order phase transitions : propagation of ultra-relativistic shells, heavy dark matter, and baryogenesis." Electronic Thesis or Diss., Sorbonne université, 2024. http://www.theses.fr/2024SORUS181.

Повний текст джерела
Анотація:
Les transitions de phase du premier ordre (PT) dans l'univers primitif se produisent par la nucléation de bulles dont les parois peuvent se dilater à des vitesses ultra-relativistes. Les interactions du bain thermique à la paroi produisent des particules qui s'accumulent dans des coquilles à la paroi. Les coquilles évoluent jusqu'à ce qu'elles entrent en collision avec celles des bulles voisines. Dans cette thèse, nous étudions d'abord l'évolution de ces coquilles, en incluant pour la première fois les interactions de changement de nombre de la coquille à l'intérieur d'elle-même et avec le bain thermique. En particulier, nous calculons les taux des processus de diffusion 3 → 2 dominants, et nous trouvons qu'ils peuvent être plus importants que tous les autres processus considérés dans la littérature précédente. Nous identifions les régions de l'espace des paramètres du PT où les coquilles sont libres, c'est-à-dire qu'elles ont des interactions négligeables en elles-mêmes et avec le bain. Nous utilisons ensuite ces résultats pour prédire la vitesse et l'énergie avec lesquelles les particules de bulles opposées entrent en collision. Nous constatons que ces collisions de particules peuvent atteindre des énergies de diffusion bien supérieures à l'échelle du PT, qui peuvent à leur tour être utilisées pour produire des particules hautement énergétiques ou des particules bien plus lourdes que l'échelle du PT, réalisant ainsi un "bubbletron" cosmologique. À titre d'exemple, nous montrons que l'on peut produire de la matière noire lourde avec des masses supérieures à 10^3 TeV pour des échelles de PT d'environ 10 MeV, et avec des masses supérieures à l'échelle du GUT pour des échelles de PT supérieures à environ 10^9 GeV. Les PT avec des parois ultra-relativistes sont également pertinents pour tout autre processus reposant sur la production de particules hors équilibre. Si l'interaction entre les particules de la coquille viole également le nombre de baryons, C et CP, alors les trois conditions de Sakharov sont remplies et l'on peut utiliser ces PT pour expliquer l'asymétrie des baryons dans l'univers. Pour ce faire, nous proposons un mécanisme de baryogénèse à partir de PT confinants surfondus. Nous calculons également la signature des ondes gravitationnelles dues aux PT dans tous les scénarios susmentionnés. Nous constatons qu'elles pourraient être observées par les réseaux de synchronisation des pulsars et les interféromètres d'ondes gravitationnelles comme LISA et le télescope d'Einstein, établissant ainsi un nouveau lien entre ces télescopes et l'origine possible de la matière noire et de l'asymétrie des baryons dans l'univers
First order phase transitions (PT) in the early universe happen via the nucleation of bubbles whose walls can expand at ultra-relativistic velocities. Interactions of the thermal bath at the wall produce particles which accumulate in shells at the wall. The shells evolve until they collide with those from neighboring bubbles. In this thesis we first study the evolution of these shells, including for the first time number changing interactions of the shell within itself and with the thermal bath. In particular, we calculate the rates of the dominant 3 → 2 scattering processes, and find they can be more important than all other processes considered in previous literature. We identify the regions of parameter space of the PT where the shells free stream, i.e. they have negligible interactions within themselves and with the bath. We then use these results to predict the rate and energy with which particles of opposite bubbles collide. We find that these particle collisions can reach scattering energies much larger than the scale of the PT, which in turn can be used to produce highly energetic particles or particles much heavier than the scale of the PT, realising a cosmological 'bubbletron'. As an example, we show that one can produce heavy dark matter with masses above 10^3 TeV for scales of the PT of around 10 MeV, and with masses above the GUT scale for scales of the PT above about 10^9 GeV. PTs with ultra-relativistic walls are also relevant for any other process relying on out-of-equilibrium particle production. If the interaction between particles in the shell also violates Baryon number, C, and CP, then all three Sakharov conditions are satisifed, and one can use these PTs to explain the baryon asymmetry of the universe. We do so by proposing a mechanism of baryogenesis from supercooled confining PTs. We also compute the gravitational wave signature due to the PT in all the above scenarios. We find they could be seen by pulsar timing arrays and gravitational wave interferometers like LISA and the Einstein Telescope, realizing a new link between these telescopes and the possible origin of dark matter and of the baryon asymmetry of the universe
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Martin, Adrian Peter. "Cosmological phase transition phenomena." Thesis, University of Cambridge, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.389880.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Chowdhury, Talal Ahmed. "A Possible Link between the Electroweak Phase Transition and the Dark Matter of the Universe." Doctoral thesis, SISSA, 2014. http://hdl.handle.net/20.500.11767/3883.

Повний текст джерела
Анотація:
A possible connection between the dark matter and strong first order electroweak phase transition, which is an essential ingredient of the electroweak baryogenesis, has been explored in this thesis. It is shown that the extension of the Standard Model's minimal Higgs sector with an inert $SU(2)_L$ scalar doublet can provide light dark matter candidate and simultaneously induce a strong first order phase transition. There is however no symmetry reason to prevent the extension using scalars with higher $SU(2)_L$ representations. Therefore, by making random scans over the models' parameters, we show, in the light of electroweak physics constraints, strong first order electroweak phase transition and the possibility of having a sub-TeV cold dark matter candidate, that the higher representations are rather disfavored compared to the inert doublet. This is done by computing generic perturbativity behavior and impact on electroweak phase transitions of higher representations in comparison with the inert doublet model. Explicit phase transition and cold dark matter phenomenology within the context of the inert triplet and quartet representations are used for detailed illustrations.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Manning, Adrian Gordon. "Quantum Fields in Curved Spacetime with Cosmological and Gravitational Wave Implications." Thesis, The University of Sydney, 2018. http://hdl.handle.net/2123/17804.

Повний текст джерела
Анотація:
A range of novel ideas, covering both general relativity and quantum field theory are introduced and explored. An analytic procedure for theories that modify the stress-energy-tensor in general relativity is examined which compares predicted deviations in the gravitational wave radiation from binary black hole mergers to the observed waveform from recent detections, i.e GW150914. This is applied directly to the theory of non-commutative spacetimes, which ultimately constrains the scale of non-commutative spacetime up to the Planck scale, some 15 orders of magnitude improvement on previous bounds. The stochastic background of gravitational wave radiation from first order electroweak phase transitions in the early universe is also examined. This is done in the context of the non-linearly realised electroweak sector of the Standard Model, which allows for a direct relation between coupling constants of the model and parameters of the expected stochastic gravitational wave background. For this particular model, a range of values are shown to not only produce gravitational waves detectable by future space-based detectors, such as eLISA, but can potentially create low-frequency radiation detectable by pulsar timing array experiments, such as the future SKA. Finally, non-inertial effects in the context of quantum fields in curved spacetimes are examined for a number of metrics. An oscillatory motion in the velocity expectation of a single fermionic particle is shown to exist in cosmological/expanding spacetimes, but not for accelerating or rotating spacetimes. In the rotating case, a new quantisation scheme is introduced along with the Bogoliubov coefficients enabling general calculations in rotating spaces to be computed with respect to defined non-rotating fermionic particle states.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Scott, Pat. "Searches for Particle Dark Matter Dark stars, dark galaxies, dark halos and global supersymmetric fits /." Doctoral thesis, Stockholm : Department of Physics, Stockholm University, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-38221.

Повний текст джерела
Анотація:
Diss. (sammanfattning) Stockholm : Stockholms universitet, 2010.
At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 5: Accepted. Paper 6: Submitted. Härtill 6 uppsatser.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Cosmological phase transitions"

1

Nagasawa, Michiyasu. Cosmological phase transitions and evolution of topological defects. [S.l.]: University of Tokyo, 1993.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

National Aeronautics and Space Administration (NASA) Staff. Late Time Cosmological Phase Transitions 1: Particle Physics Models and Cosmic Evolution. Independently Published, 2018.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Maggiore, Michele. Stochastic backgrounds of cosmological origin. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198570899.003.0013.

Повний текст джерела
Анотація:
Characteristic frequency of relic GWs. Production mechanisms of GWs in the early universe: preheating, phase transitions, cosmic strings, alternatives to inflation. Bounds on primordial GW backgrounds: nucleosynthesis bound, bounds from CMB, observational limits at interferometers.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Maggiore, Michele. Gravitational Waves. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198570899.001.0001.

Повний текст джерела
Анотація:
A comprehensive and detailed account of the physics of gravitational waves and their role in astrophysics and cosmology. The part on astrophysical sources of gravitational waves includes chapters on GWs from supernovae, neutron stars (neutron star normal modes, CFS instability, r-modes), black-hole perturbation theory (Regge-Wheeler and Zerilli equations, Teukoslky equation for rotating BHs, quasi-normal modes) coalescing compact binaries (effective one-body formalism, numerical relativity), discovery of gravitational waves at the advanced LIGO interferometers (discoveries of GW150914, GW151226, tests of general relativity, astrophysical implications), supermassive black holes (supermassive black-hole binaries, EMRI, relevance for LISA and pulsar timing arrays). The part on gravitational waves and cosmology include discussions of FRW cosmology, cosmological perturbation theory (helicity decomposition, scalar and tensor perturbations, Bardeen variables, power spectra, transfer functions for scalar and tensor modes), the effects of GWs on the Cosmic Microwave Background (ISW effect, CMB polarization, E and B modes), inflation (amplification of vacuum fluctuations, quantum fields in curved space, generation of scalar and tensor perturbations, Mukhanov-Sasaki equation,reheating, preheating), stochastic backgrounds of cosmological origin (phase transitions, cosmic strings, alternatives to inflation, bounds on primordial GWs) and search of stochastic backgrounds with Pulsar Timing Arrays (PTA).
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Late time cosmological phase transition I: Particle physics models and cosmic evolution. Batavia, Ill: Fermi National Accelerator Laboratory, 1991.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Cosmological phase transitions"

1

Kolb, Edward W. "Cosmological Phase Transitions." In Gravitation in Astrophysics, 307–27. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4613-1897-2_11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Schramm, David N. "Late-Time Cosmological Phase Transitions." In Primordial Nucleosynthesis and Evolution of Early Universe, 225–42. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3410-1_31.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Boyanovsky, D., H. J. Vega, and M. Simionato. "Primordial magnetic fields from cosmological phase transitions." In The Early Universe and the Cosmic Microwave Background: Theory and Observations, 65–100. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-007-1058-0_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Bäuerle, C., Yu M. Bunkov, S. N. Fisher, and H. Godfrin. "The ‘Grenoble’ Cosmological Experiment." In Topological Defects and the Non-Equilibrium Dynamics of Symmetry Breaking Phase Transitions, 105–20. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-011-4106-2_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Khlopov, Maxim Yu, and Sergei G. Rubin. "High Density Regions from First-Order Phase Transitions." In Cosmological Pattern of Microphysics in the Inflationary Universe, 171–98. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/978-1-4020-2650-8_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Goldenfeld, Nigel. "Dynamics of Cosmological phase transitions: What can we learn from condensed matter physics?" In Formation and Interactions of Topological Defects, 93–104. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4615-1883-9_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Bunkov, Yu M. "“Aurore De Venise” — Cosmological Scenario of the A-B Phase Transition in Superfluid 3He." In Topological Defects and the Non-Equilibrium Dynamics of Symmetry Breaking Phase Transitions, 121–37. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-011-4106-2_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Gouttenoire, Yann. "First-Order Cosmological Phase Transition." In Beyond the Standard Model Cocktail, 267–355. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-11862-3_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Becker, Jörg D., and Lutz Castell. "Ur Theory and Cosmological Phase Transition." In Time, Quantum and Information, 421–25. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-10557-3_29.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Stock, Reinhard. "Relativistic Nucleus-Nucleus Collisions and the QCD Matter Phase Diagram." In Particle Physics Reference Library, 311–453. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-38207-0_7.

Повний текст джерела
Анотація:
AbstractThis review will be concerned with our knowledge of extended matter under the governance of strong interaction, in short: QCD matter. Strictly speaking, the hadrons are representing the first layer of extended QCD architecture. In fact we encounter the characteristic phenomena of confinement as distances grow to the scale of 1 fm (i.e. hadron size): loss of the chiral symmetry property of the elementary QCD Lagrangian via non-perturbative generation of “massive” quark and gluon condensates, that replace the bare QCD vacuum. However, given such first experiences of transition from short range perturbative QCD phenomena (jet physics etc.), toward extended, non perturbative QCD hadron structure, we shall proceed here to systems with dimensions far exceeding the force range: matter in the interior of heavy nuclei, or in neutron stars, and primordial matter in the cosmological era from electro-weak decoupling (10−12 s) to hadron formation (0.5 ⋅ 10−5 s). This primordial matter, prior to hadronization, should be deconfined in its QCD sector, forming a plasma (i.e. color conducting) state of quarks and gluons: the Quark Gluon Plasma (QGP).
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Cosmological phase transitions"

1

Quirós, Mariano. "Cosmological phase transitions and baryogenesis." In The sixth Mexican workshop on particles and fields. American Institute of Physics, 1998. http://dx.doi.org/10.1063/1.56628.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Rummukainen, Kari, Stephan J. Huber, Mark B. Hindmarsh, and David Weir. "Gravitational waves from cosmological first order phase transitions." In The 33rd International Symposium on Lattice Field Theory. Trieste, Italy: Sissa Medialab, 2016. http://dx.doi.org/10.22323/1.251.0233.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Boyanovsky, D. "Primordial Magnetic Fields from Out of Equilibrium Cosmological Phase Transitions." In MAGNETIC FIELDS IN THE UNIVERSE: From Laboratory and Stars to Primordial Structures. AIP, 2005. http://dx.doi.org/10.1063/1.2077205.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Rakic, Aleksandar, Dennis Simon, Julian Adamek, and Jens Niemeyer. "Cosmological first-order phase transitions beyond the standard inflationary scenario." In International Workshop on Cosmic Structure and Evolution. Trieste, Italy: Sissa Medialab, 2010. http://dx.doi.org/10.22323/1.097.0007.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Dumin, Yu V. "ON THE INFLUENCE OF EINSTEIN–PODOLSKY–ROSEN EFFECT ON THE DOMAIN WALL FORMATION DURING THE COSMOLOGICAL PHASE TRANSITIONS." In Proceedings of the Tenth Lomonosov Conference on Elementary Particle Physics. WORLD SCIENTIFIC, 2003. http://dx.doi.org/10.1142/9789812704948_0037.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Romero-Rodríguez, Alba. "Implications for first-order cosmological phase transitions and the formation of primordial black holes from the third LIGO-Virgo observing run." In The European Physical Society Conference on High Energy Physics. Trieste, Italy: Sissa Medialab, 2022. http://dx.doi.org/10.22323/1.398.0113.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

HWANG, W. Y. P. "SOME THOUGHTS ON THE COSMOLOGICAL QCD PHASE TRANSITION." In Statistical Physics, High Energy, Condensed Matter and Mathematical Physics - The Conference in Honor of C. N. Yang'S 85th Birthday. WORLD SCIENTIFIC, 2008. http://dx.doi.org/10.1142/9789812794185_0005.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Sinha, Bikash. "Relics of the Cosmological Quark-Hadron Phase Transition." In Proceedings of the Sixth International Workshop. WORLD SCIENTIFIC, 2001. http://dx.doi.org/10.1142/9789812799814_0007.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Tawfik, A., and Shaaban Khalil. "Cosmological Consequences of QCD Phase Transition(s) in Early Universe." In THE DARK SIDE OF THE UNIVERSE: 4th International Workshop on the Dark Side of the Universe. AIP, 2009. http://dx.doi.org/10.1063/1.3131505.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Aderaldo, Vinicius Simoes, and Victor Goncalves. "Cosmological implications of the QCD phase transition in the Early Universe." In XV International Workshop on Hadron Physics. Trieste, Italy: Sissa Medialab, 2022. http://dx.doi.org/10.22323/1.408.0026.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Cosmological phase transitions"

1

Kolb, E. W. Cosmological phase transitions. Office of Scientific and Technical Information (OSTI), September 1986. http://dx.doi.org/10.2172/5086987.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Lindesay, James V., and H. Pierre Noyes. Evidence for a Cosmological Phase Transition on the TeVScale. Office of Scientific and Technical Information (OSTI), August 2005. http://dx.doi.org/10.2172/878749.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії