Добірка наукової літератури з теми "Cosmological phase transition"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Cosmological phase transition".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Cosmological phase transition"

1

KIM, SANG PYO. "DYNAMICAL THEORY OF PHASE TRANSITIONS AND COSMOLOGICAL EW AND QCD PHASE TRANSITIONS." Modern Physics Letters A 23, no. 17n20 (June 28, 2008): 1325–35. http://dx.doi.org/10.1142/s0217732308027692.

Повний текст джерела
Анотація:
We critically review the cosmological EW and QCD phase transitions. The EW and QCD phase transitions would have proceeded dynamically since the expansion of the universe determines the quench rate and critical behaviors at the onset of phase transition slow down the phase transition. We introduce a real-time quench model for dynamical phase transitions and describe the evolution using a canonical real-time formalism. We find the correlation function, the correlation length and time and then discuss the cosmological implications of dynamical phase transitions on EW and QCD phase transitions in the early universe.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Athron, Peter, Csaba Balázs, and Lachlan Morris. "Supercool subtleties of cosmological phase transitions." Journal of Cosmology and Astroparticle Physics 2023, no. 03 (March 1, 2023): 006. http://dx.doi.org/10.1088/1475-7516/2023/03/006.

Повний текст джерела
Анотація:
Abstract We investigate rarely explored details of supercooled cosmological first-order phase transitions at the electroweak scale, which may lead to strong gravitational wave signals or explain the cosmic baryon asymmetry. The nucleation temperature is often used in phase transition analyses, and is defined through the nucleation condition: on average one bubble has nucleated per Hubble volume. We argue that the nucleation temperature is neither a fundamental nor essential quantity in phase transition analysis. We illustrate scenarios where a transition can complete without satisfying the nucleation condition, and conversely where the nucleation condition is satisfied but the transition does not complete. We also find that simple nucleation heuristics, which are defined to approximate the nucleation temperature, break down for strong supercooling. Thus, studies that rely on the nucleation temperature — approximated or otherwise — may misclassify the completion of a transition. Further, we find that the nucleation temperature decouples from the progress of the transition for strong supercooling. We advocate use of the percolation temperature as a reference temperature for gravitational wave production, because the percolation temperature is directly connected to transition progress and the collision of bubbles. Finally, we provide model-independent bounds on the bubble wall velocity that allow one to predict whether a transition completes based only on knowledge of the bounce action curve. We apply our methods to find empirical bounds on the bubble wall velocity for which the physical volume of the false vacuum decreases during the transition. We verify the accuracy of our predictions using benchmarks from a high temperature expansion of the Standard Model and from the real scalar singlet model.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Boeckel, Tillmann, Simon Schettler, and Jürgen Schaffner-Bielich. "The cosmological QCD phase transition revisited." Progress in Particle and Nuclear Physics 66, no. 2 (April 2011): 266–70. http://dx.doi.org/10.1016/j.ppnp.2011.01.017.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

HWANG, W.-Y. P. "SOME THOUGHTS ON THE COSMOLOGICAL QCD PHASE TRANSITION." International Journal of Modern Physics A 23, no. 30 (December 10, 2008): 4757–77. http://dx.doi.org/10.1142/s0217751x08042845.

Повний текст джерела
Анотація:
The cosmological QCD phase transitions may have taken place between 10-5 s and 10-4 s in the early universe offers us one of the most intriguing and fascinating questions in cosmology. In bag models, the phase transition is described by the first-order phase transition and the role played by the latent "heat" or energy released in the transition is highly nontrivial and is being classified as the first-order phase transition. In this presentation, we assume, first of all, that the cosmological QCD phase transition, which happened at a time between 10-5 s and 10-4 s or at the temperature of about 150 MeV and accounts for confinement of quarks and gluons to within hadrons, would be of first-order. Of course, we may assume that the cosmological QCD phase transition may not be of the first-order. To get the essence out of the first-order scenario, it is sufficient to approximate the true QCD vacuum as one of possibly degenerate vacua and when necessary we try to model it effectively via a complex scalar field with spontaneous symmetry breaking. On the other hand, we may use a real scalar field in describing the non-first-order QCD phase transition. In the first-order QCD phase transition, we could examine how and when "pasted" or "patched" domain walls are formed, how long such walls evolve in the long run, and we believe that the significant portion of dark matter could be accounted for in terms of such domain-wall structure and its remnants. Of course, the cosmological QCD phase transition happened in the way such that the false vacua associated with baryons and many other color-singlet objects did not disappear (that is, using the bag-model language, there are bags of radius 1.0 fermi for the baryons) — but the amount of the energy remained in the false vacua is negligible by comparison. The latent energy released due to the conversion of the false vacua to the true vacua, in the form of "pasted" or "patched" domain walls in the short run and their numerous evolved objects, should make the concept of the "radiation-dominated" epoch, or of the "matter-dominated" epoch to be reexamined.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

HWANG, W.-Y. P. "DARK MATTER AND COSMOLOGICAL QCD PHASE TRANSITION." Modern Physics Letters A 22, no. 25n28 (September 14, 2007): 1971–85. http://dx.doi.org/10.1142/s0217732307025200.

Повний текст джерела
Анотація:
In this talk, we take the wisdom that the cosmological QCD phase transition, which happened at a time between 10−5 sec and 10−4 sec or at the temperature of about 150 MeV and accounts for confinement of quarks and gluons to within hadrons, would be of first order, i.e., would release latent "heat" or latent energy. I wish to base on two important points, i.e. (1) that we have 25% dark matter in the present Universe, and (2) that when the early universe underwent the cosmological QCD phase transition it released 1.02 × 10gm/cm3 in latent energy huge compared to 5.88 × 109 gm/cm3 radiation (photon) energy, to deduce that the two numbers are in fact closely related. It is sufficient to approximate the true QCD vacuum as one of degenerate θ-vacua and can be modelled effectively via a complex scalar field with spontaneous symmetry breaking. We examine how "pasted" or "patched" domain walls are formed, how such walls evolve in the long run, and we believe that the majority of dark matter could be accounted for in terms of such domain-wall structure and its remnants. The latent energy released due to the conversion of the false vacua to the true vacua, in the form of "pasted" or "patched" domain walls at first and their evolved objects, make it obsolete the "radiation-dominated" epoch or later on the "matter-dominated" epoch.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Morikawa, M. "Cosmological Inflation as a Quantum Phase Transition." Progress of Theoretical Physics 93, no. 4 (April 1, 1995): 685–709. http://dx.doi.org/10.1143/ptp/93.4.685.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Matsuda, Tomohiro. "Cosmological perturbations from an inhomogeneous phase transition." Classical and Quantum Gravity 26, no. 14 (June 26, 2009): 145011. http://dx.doi.org/10.1088/0264-9381/26/14/145011.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Bhattacharyya, Abhijit, Jan-e. Alam, Sourav Sarkar, Pradip Roy, Bikash Sinha, Sibaji Raha, and Pijushpani Bhattacharjee. "Cosmological QCD phase transition and dark matter." Nuclear Physics A 661, no. 1-4 (December 1999): 629–32. http://dx.doi.org/10.1016/s0375-9474(99)85104-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Bödeker, D., W. Buchmüller, Z. Fodor, and T. Helbig. "Aspects of the cosmological electroweak phase transition." Nuclear Physics B 423, no. 1 (July 1994): 171–96. http://dx.doi.org/10.1016/0550-3213(94)90569-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Jinno, Ryusuke, Thomas Konstandin, Henrique Rubira, and Isak Stomberg. "Higgsless simulations of cosmological phase transitions and gravitational waves." Journal of Cosmology and Astroparticle Physics 2023, no. 02 (February 1, 2023): 011. http://dx.doi.org/10.1088/1475-7516/2023/02/011.

Повний текст джерела
Анотація:
Abstract First-order cosmological phase transitions in the early Universe source sound waves and, subsequently, a background of stochastic gravitational waves. Currently, predictions of these gravitational waves rely heavily on simulations of a Higgs field coupled to the plasma of the early Universe, the former providing the latent heat of the phase transition. Numerically, this is a rather demanding task since several length scales enter the dynamics. From smallest to largest, these are the thickness of the Higgs interface separating the different phases, the shell thickness of the sound waves, and the average bubble size. In this work, we present an approach to perform Higgsless simulations in three dimensions, producing fully nonlinear results, while at the same time removing the hierarchically smallest scale from the lattice. This significantly reduces the complexity of the problem and contributes to making our approach highly efficient. We provide spectra for the produced gravitational waves for various choices of wall velocity and strength of the phase transition, as well as introduce a fitting function for the spectral shape.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Cosmological phase transition"

1

Martin, Adrian Peter. "Cosmological phase transition phenomena." Thesis, University of Cambridge, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.389880.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Manning, Adrian Gordon. "Quantum Fields in Curved Spacetime with Cosmological and Gravitational Wave Implications." Thesis, The University of Sydney, 2018. http://hdl.handle.net/2123/17804.

Повний текст джерела
Анотація:
A range of novel ideas, covering both general relativity and quantum field theory are introduced and explored. An analytic procedure for theories that modify the stress-energy-tensor in general relativity is examined which compares predicted deviations in the gravitational wave radiation from binary black hole mergers to the observed waveform from recent detections, i.e GW150914. This is applied directly to the theory of non-commutative spacetimes, which ultimately constrains the scale of non-commutative spacetime up to the Planck scale, some 15 orders of magnitude improvement on previous bounds. The stochastic background of gravitational wave radiation from first order electroweak phase transitions in the early universe is also examined. This is done in the context of the non-linearly realised electroweak sector of the Standard Model, which allows for a direct relation between coupling constants of the model and parameters of the expected stochastic gravitational wave background. For this particular model, a range of values are shown to not only produce gravitational waves detectable by future space-based detectors, such as eLISA, but can potentially create low-frequency radiation detectable by pulsar timing array experiments, such as the future SKA. Finally, non-inertial effects in the context of quantum fields in curved spacetimes are examined for a number of metrics. An oscillatory motion in the velocity expectation of a single fermionic particle is shown to exist in cosmological/expanding spacetimes, but not for accelerating or rotating spacetimes. In the rotating case, a new quantisation scheme is introduced along with the Bogoliubov coefficients enabling general calculations in rotating spaces to be computed with respect to defined non-rotating fermionic particle states.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Ferreira, Pedro Tonnies Gil. "Observational consequences of cosmological phase transitions." Thesis, Imperial College London, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.338692.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Larsson, Sebastian E. "Topological defects from cosmological phase transitions." Thesis, University of Oxford, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.298309.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Adams, Jennifer Anne. "Cosmological phase transitions : techniques and phenomenology." Thesis, University of Oxford, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.306935.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Lilley, Matthew James. "Cosmological phase transitions and primordial magnetic fields." Thesis, University of Cambridge, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.621001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Siebert, Julien. "Statistical mechanics of the self-gravitating gases." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2005. http://tel.archives-ouvertes.fr/hal-00009142.

Повний текст джерела
Анотація:
The self-gravitating systems are formed by particles interacting through gravity. They describe structure formation in the universe. As a consequence of the long range interaction of gravity, they are inhomogeneous even at thermal equilibrium. We study the self-gravitating systems with several kinds of particles and the self-gravitating systems in the presence of the cosmological constant $ Lambda$. We formulate the statistical mechanics and the mean field approach describing the gaseous phase. We explicitely compute the density of particles and thermodynamic quantities. The presence of $ Lambda$ extends the domain of stability of the gaseous phase. Monte Carlo simulations show that the mean field describes the gaseous phase with an excellent accuracy. Scalling law of the self-gravitating systems with several kinds of particles is found. At the critical point the fractal dimension is independant of their composition and is $1.6...$~.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Tavares, Romulo Ferreira. "Produção de oscillons durante restaurações e quebras espontâneas de simetrias." Universidade do Estado do Rio de Janeiro, 2013. http://www.bdtd.uerj.br/tde_busca/arquivo.php?codArquivo=8775.

Повний текст джерела
Анотація:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Na natureza há vários fenômenos envolvendo transições de fase com quebra ou restauração de simetrias. Tipicamente, mudanças de fase, são associadas com uma quebra ou restauração de simetria, que acontecem quando um determinado parâmetro de controle é variado, como por exemplo temperatura, densidade, campos externos, ou de forma dinâmica. Essas mudanças que os sistemas sofrem podem levar a formação de defeitos topológicos, tais como paredes de domínios, vórtices ou monopolos magnéticos. Nesse trabalho estudamos particularmente mudanças de fase associadas com quebras ou restaurações dinâmicas de simetria que estão associadas com formação ou destruição de defeitos do tipo paredes de domínio em modelos de campos escalares com simetria discreta. Nesses processos dinâmicos com formação ou destruição de domínios, estudamos a possibilidade de formação de estruturas do tipo oscillons, que são soluções não homogêneas e instáveis de campo, mas que podem concentrar nelas uma quantidade apreciável de energia e terem uma vida (duração) suficientemente grande para serem de importância física. Estudamos a possibilidade de formação dessas soluções em modelos de dois campos escalares interagentes em que o sistema é preparado em diferentes situações, com a dinâmica resultante nesses sistemas estudada numa rede discreta.
In nature there are several phenomena involving phase transitions with symmetries breaking or restoration. Typically,the phase state changes associated with a break or a restoration of the sistem's symmetry, that occur when a particular control parameter is varied, such as as temperature, density, external fields or dynamically. These systems undergo changes which can lead to formation of defects, such as domain walls, vortices or magnetic monopoles. In this work we study particularly phase changes, breaks or restorations, associated with dynamic symmetry that are associated with the formation or destruction of defects, as domain walls in models of scalar fields with discrete symmetry. In these dynamical processes with formation or destruction of domains we studied the possibility of forming oscilons type structures, which are not homogeneous and unstable field solutions, but can concentrate there in an appreciable amount of energy and have a lifetime (duration) large enough to have physical importance. We study the possibility of formation of oscillon kind solutions in models with scalar fields interacting in which the system is prepared for different situations, with the resulting dynamics of these systems studied in a discrete lattice.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Roque, Victor Raphael de Castro Mourão. "Simulações hidrodinâmicas relativísticas da transição de fase cosmológica quark-hadron." reponame:Repositório Institucional da UFABC, 2015.

Знайти повний текст джерела
Анотація:
Orientador: Prof. Dr. Germán Lugones
Tese (doutorado) - Universidade Federal do ABC, Programa de Pós-Graduação em Física, 2015.
Durante sua expansão inicial e consequente resfriamento o Universo passou por diversas transições. Uma delas, conhecida como transição de fase da QCD, prevista pelo modelo cosmológico padrão e pela física de partículas, ocorreu por volta de 10 s após o Big Bang, em temperaturas da ordem de 150-200MeV, atuou em quarks e gluôns inicialmente em estado quasi-livre confinando-os em hádrons. A maneira na qual esse processo se deu, pode ter gerado inúmeras implicações nas fases subsequentes e relíquias a serem observadas atualmente. Com o intuito de entender esse processo, resolvemos numericamente as equações de Euler no contexto da relatividade restrita com um código numérico multidimensional desenvolvido durante o trabalho, baseado no método de diferença finita com esquemas de alta ordem para os casos hidrodinâmicos newtoniano e relativístico. Nele empregamos métodos de reconstrução espacial no espaço característico de até sétima ordem, três diferentes separadores de fluxo e esquemas Runge-Kutta de alta estabilidade de terceira e quarta ordem para evolução temporal. Para implementação do caso multidimensional, utilizamos o método "dimensionally unsplit". Os primeiros trabalhos a respeito dessa época partiam do pressuposto que a transição era de primeira ordem e faziam uma análise semi-analítica da nucleação e colisão entre bolhas hadrônicas. Nesses trabalhos era conjecturado que a turbulência criada por esses mecanismos teria um perfil Komolgorov, ou alguma variação, e a partir disso calculava a radiação gravitacional produzida. Contudo resultados obtidos pelos grandes experimentos de colisão de íons pesados no RHIC e LHC, cuja condições geradas possuem algumas similaridades àquelas esperadas no Universo Primordial e nos cálculos feitos pela colaboração Wuppertal-Budapest com teoria da QCD na rede sugerem que, pelos parâmetros provenientes do modelo padrão, essa transição foi analítica, caracterizada por uma transformação suave entre as fases. Nesse cenário, não há mecanismos intrínsecos da transição que possam transferir energias para as escalas maiores para produzir e manter a turbulência no fluido,formando assim espectro diferente dos analisados trabalhos anteriores e consequentemente uma outra evolução do plasma primordial. Através de análises estatísticas e espectrais, propusemos entender a dinâmica de iii um fluido primordial que passa por um transição analítica, estudando a geração de ondas gravitacionais geradas a partir da evolução de um fluido com estado inicial formado por distribuições randômicas de temperatura e velocidade e comparando-as com a curva de sensibilidade do eLISA/NGO. Procuramos entender também como a presença da instabilidade de Kelvin-Helmholtz bidimensional engatilhada a partir das flutuações provenientes de outras eras pode ter influenciado no crescimento de perturbações e da turbulência e suas consequências para o espectro da radiação gravitacional.
During its initial expansion and cooling, the Universe passed through several transitions. One of them, know as QCD phase transition occurred around 10 s after the Big Bang, at a temperature of the order of 150-200MeV, confining quarks and gluons that were initially in a quasi-free state into hadrons. The study of this transition is important for understanding the evolution of the Universe, because depending of the manner in which this process took place, we can expect several types of consequences for the subsequent phases as well as different observable relics. In order to understand this process, we solved numerically the Euler equations in the frame of special relativity with a multi-dimensional numerical code developed during the work, based on the finite differences method with high order schemes. We used spatial reconstruction methods in the characteristic space up to seventh order, three different flux-split and Runge-Kutta schemes of high stability of third and fourth order for time evolution. To implement the multidimensional case, we use the dimensionally unsplit method. Most of previous studies on this topic were based on the assumption of a first order transition. Several studies focused on a semi-analytical analysis of the nucleation, growth and collision of bubbles and their relation to the generation of gravitational waves. In these works it was conjectured that the turbulence created by such mechanisms would have a Komolgorov slope, or some variation of it, and from it the gravitational radiation was estimated. However results obtained in large heavy ion collision experiments at RHIC and LHC, whose conditions have some similarities to those expected in the Early Universe, and calculations made by the Wuppertal-Budapest collaboration with Lattice QCD suggest that, with parameters from the standard cosmological model, the transition it is a crossover characterized by a smooth transformation between phases. In this scenario, no intrinsic mechanisms of the transition could transfer the energy to larger scales to produce and maintain turbulence in the fluid, thereby generating a different spectrum of previous work and therefore another evolution of the primordial plasma. Using statistical and spectral analysis, we study the dynamics of a primordial fluid passing through an analytic transition. We study the gravitational waves generated from the motion of a fluid with an initial state consisting of random distributions of temperature and velocity and compare the results with the sensitivity curve of the eLISA/NGO. We also investigate how the presence of the Kelvin-Helmholtz instability may have influenced the growth of perturbations and turbulence and analyze its consequences for the spectrum of gravitational radiation.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Scott, Pat. "Searches for Particle Dark Matter Dark stars, dark galaxies, dark halos and global supersymmetric fits /." Doctoral thesis, Stockholm : Department of Physics, Stockholm University, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-38221.

Повний текст джерела
Анотація:
Diss. (sammanfattning) Stockholm : Stockholms universitet, 2010.
At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 5: Accepted. Paper 6: Submitted. Härtill 6 uppsatser.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Cosmological phase transition"

1

Nagasawa, Michiyasu. Cosmological phase transitions and evolution of topological defects. [S.l.]: University of Tokyo, 1993.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Late time cosmological phase transition I: Particle physics models and cosmic evolution. Batavia, Ill: Fermi National Accelerator Laboratory, 1991.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Maggiore, Michele. Stochastic backgrounds of cosmological origin. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198570899.003.0013.

Повний текст джерела
Анотація:
Characteristic frequency of relic GWs. Production mechanisms of GWs in the early universe: preheating, phase transitions, cosmic strings, alternatives to inflation. Bounds on primordial GW backgrounds: nucleosynthesis bound, bounds from CMB, observational limits at interferometers.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

National Aeronautics and Space Administration (NASA) Staff. Late Time Cosmological Phase Transitions 1: Particle Physics Models and Cosmic Evolution. Independently Published, 2018.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Maggiore, Michele. Gravitational Waves. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198570899.001.0001.

Повний текст джерела
Анотація:
A comprehensive and detailed account of the physics of gravitational waves and their role in astrophysics and cosmology. The part on astrophysical sources of gravitational waves includes chapters on GWs from supernovae, neutron stars (neutron star normal modes, CFS instability, r-modes), black-hole perturbation theory (Regge-Wheeler and Zerilli equations, Teukoslky equation for rotating BHs, quasi-normal modes) coalescing compact binaries (effective one-body formalism, numerical relativity), discovery of gravitational waves at the advanced LIGO interferometers (discoveries of GW150914, GW151226, tests of general relativity, astrophysical implications), supermassive black holes (supermassive black-hole binaries, EMRI, relevance for LISA and pulsar timing arrays). The part on gravitational waves and cosmology include discussions of FRW cosmology, cosmological perturbation theory (helicity decomposition, scalar and tensor perturbations, Bardeen variables, power spectra, transfer functions for scalar and tensor modes), the effects of GWs on the Cosmic Microwave Background (ISW effect, CMB polarization, E and B modes), inflation (amplification of vacuum fluctuations, quantum fields in curved space, generation of scalar and tensor perturbations, Mukhanov-Sasaki equation,reheating, preheating), stochastic backgrounds of cosmological origin (phase transitions, cosmic strings, alternatives to inflation, bounds on primordial GWs) and search of stochastic backgrounds with Pulsar Timing Arrays (PTA).
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Cosmological phase transition"

1

Gouttenoire, Yann. "First-Order Cosmological Phase Transition." In Beyond the Standard Model Cocktail, 267–355. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-11862-3_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Becker, Jörg D., and Lutz Castell. "Ur Theory and Cosmological Phase Transition." In Time, Quantum and Information, 421–25. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-10557-3_29.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Bunkov, Yu M. "“Aurore De Venise” — Cosmological Scenario of the A-B Phase Transition in Superfluid 3He." In Topological Defects and the Non-Equilibrium Dynamics of Symmetry Breaking Phase Transitions, 121–37. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-011-4106-2_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Kolb, Edward W. "Cosmological Phase Transitions." In Gravitation in Astrophysics, 307–27. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4613-1897-2_11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Stock, Reinhard. "Relativistic Nucleus-Nucleus Collisions and the QCD Matter Phase Diagram." In Particle Physics Reference Library, 311–453. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-38207-0_7.

Повний текст джерела
Анотація:
AbstractThis review will be concerned with our knowledge of extended matter under the governance of strong interaction, in short: QCD matter. Strictly speaking, the hadrons are representing the first layer of extended QCD architecture. In fact we encounter the characteristic phenomena of confinement as distances grow to the scale of 1 fm (i.e. hadron size): loss of the chiral symmetry property of the elementary QCD Lagrangian via non-perturbative generation of “massive” quark and gluon condensates, that replace the bare QCD vacuum. However, given such first experiences of transition from short range perturbative QCD phenomena (jet physics etc.), toward extended, non perturbative QCD hadron structure, we shall proceed here to systems with dimensions far exceeding the force range: matter in the interior of heavy nuclei, or in neutron stars, and primordial matter in the cosmological era from electro-weak decoupling (10−12 s) to hadron formation (0.5 ⋅ 10−5 s). This primordial matter, prior to hadronization, should be deconfined in its QCD sector, forming a plasma (i.e. color conducting) state of quarks and gluons: the Quark Gluon Plasma (QGP).
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Schramm, David N. "Late-Time Cosmological Phase Transitions." In Primordial Nucleosynthesis and Evolution of Early Universe, 225–42. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3410-1_31.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Boyanovsky, D., H. J. Vega, and M. Simionato. "Primordial magnetic fields from cosmological phase transitions." In The Early Universe and the Cosmic Microwave Background: Theory and Observations, 65–100. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-007-1058-0_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Bäuerle, C., Yu M. Bunkov, S. N. Fisher, and H. Godfrin. "The ‘Grenoble’ Cosmological Experiment." In Topological Defects and the Non-Equilibrium Dynamics of Symmetry Breaking Phase Transitions, 105–20. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-011-4106-2_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Khlopov, Maxim Yu, and Sergei G. Rubin. "High Density Regions from First-Order Phase Transitions." In Cosmological Pattern of Microphysics in the Inflationary Universe, 171–98. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/978-1-4020-2650-8_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Goldenfeld, Nigel. "Dynamics of Cosmological phase transitions: What can we learn from condensed matter physics?" In Formation and Interactions of Topological Defects, 93–104. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4615-1883-9_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Cosmological phase transition"

1

HWANG, W. Y. P. "SOME THOUGHTS ON THE COSMOLOGICAL QCD PHASE TRANSITION." In Statistical Physics, High Energy, Condensed Matter and Mathematical Physics - The Conference in Honor of C. N. Yang'S 85th Birthday. WORLD SCIENTIFIC, 2008. http://dx.doi.org/10.1142/9789812794185_0005.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Sinha, Bikash. "Relics of the Cosmological Quark-Hadron Phase Transition." In Proceedings of the Sixth International Workshop. WORLD SCIENTIFIC, 2001. http://dx.doi.org/10.1142/9789812799814_0007.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Tawfik, A., and Shaaban Khalil. "Cosmological Consequences of QCD Phase Transition(s) in Early Universe." In THE DARK SIDE OF THE UNIVERSE: 4th International Workshop on the Dark Side of the Universe. AIP, 2009. http://dx.doi.org/10.1063/1.3131505.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Aderaldo, Vinicius Simoes, and Victor Goncalves. "Cosmological implications of the QCD phase transition in the Early Universe." In XV International Workshop on Hadron Physics. Trieste, Italy: Sissa Medialab, 2022. http://dx.doi.org/10.22323/1.408.0026.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Quirós, Mariano. "Cosmological phase transitions and baryogenesis." In The sixth Mexican workshop on particles and fields. American Institute of Physics, 1998. http://dx.doi.org/10.1063/1.56628.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Rummukainen, Kari, Stephan J. Huber, Mark B. Hindmarsh, and David Weir. "Gravitational waves from cosmological first order phase transitions." In The 33rd International Symposium on Lattice Field Theory. Trieste, Italy: Sissa Medialab, 2016. http://dx.doi.org/10.22323/1.251.0233.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Boyanovsky, D. "Primordial Magnetic Fields from Out of Equilibrium Cosmological Phase Transitions." In MAGNETIC FIELDS IN THE UNIVERSE: From Laboratory and Stars to Primordial Structures. AIP, 2005. http://dx.doi.org/10.1063/1.2077205.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Rakic, Aleksandar, Dennis Simon, Julian Adamek, and Jens Niemeyer. "Cosmological first-order phase transitions beyond the standard inflationary scenario." In International Workshop on Cosmic Structure and Evolution. Trieste, Italy: Sissa Medialab, 2010. http://dx.doi.org/10.22323/1.097.0007.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Dumin, Yu V. "ON THE INFLUENCE OF EINSTEIN–PODOLSKY–ROSEN EFFECT ON THE DOMAIN WALL FORMATION DURING THE COSMOLOGICAL PHASE TRANSITIONS." In Proceedings of the Tenth Lomonosov Conference on Elementary Particle Physics. WORLD SCIENTIFIC, 2003. http://dx.doi.org/10.1142/9789812704948_0037.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Romero-Rodríguez, Alba. "Implications for first-order cosmological phase transitions and the formation of primordial black holes from the third LIGO-Virgo observing run." In The European Physical Society Conference on High Energy Physics. Trieste, Italy: Sissa Medialab, 2022. http://dx.doi.org/10.22323/1.398.0113.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Cosmological phase transition"

1

Lindesay, James V., and H. Pierre Noyes. Evidence for a Cosmological Phase Transition on the TeVScale. Office of Scientific and Technical Information (OSTI), August 2005. http://dx.doi.org/10.2172/878749.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Kolb, E. W. Cosmological phase transitions. Office of Scientific and Technical Information (OSTI), September 1986. http://dx.doi.org/10.2172/5086987.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії