Добірка наукової літератури з теми "Cosmic ray detections"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Cosmic ray detections".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Cosmic ray detections"

1

Farage, Catherine L., and Kevin A. Pimbblet. "Evaluation of Cosmic Ray Rejection Algorithms on Single-Shot Exposures." Publications of the Astronomical Society of Australia 22, no. 3 (2005): 249–56. http://dx.doi.org/10.1071/as05012.

Повний текст джерела
Анотація:
AbstractTo maximise data output from single-shot astronomical images, the rejection of cosmic rays is important. We present the results of a benchmark trial comparing various cosmic ray rejection algorithms. The procedures assess relative performances and characteristics of the processes in cosmic ray detection, rates of false detections of true objects, and the quality of image cleaning and reconstruction. The cosmic ray rejection algorithms developed by Rhoads (2000, PASP, 112, 703), van Dokkum (2001, PASP, 113, 1420), Pych (2004, PASP, 116, 148), and the IRAF task XZAP by Dickinson are tested using both simulated and real data. It is found that detection efficiency is independent of the density of cosmic rays in an image, being more strongly affected by the density of real objects in the field. As expected, spurious detections and alterations to real data in the cleaning process are also significantly increased by high object densities. We find the Rhoads' linear filtering method to produce the best performance in the detection of cosmic ray events; however, the popular van Dokkum algorithm exhibits the highest overall performance in terms of detection and cleaning.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Lacki, Brian C., and Todd A. Thompson. "Cosmic rays and high energy emission from starburst galaxies." Proceedings of the International Astronomical Union 7, S284 (September 2011): 393–96. http://dx.doi.org/10.1017/s1743921312009489.

Повний текст джерела
Анотація:
AbstractThe nearby starburst galaxies M82 and NGC 253 are now detected in GeV and TeV γ-rays, allowing us to directly study cosmic rays (CRs) in starburst galaxies. Combined with radio observations, the detections constrain the propagation and density of CRs in these starbursts. We discuss the implications for “proton calorimetry”, whether CR protons cool through pion losses before escaping these galaxies. The ratio of γ-ray and radio luminosities constrains how much of the CR electron cooling is due to synchrotron losses. As for leptonic emission, we predict that synchrotron and Inverse Compton emission make up ~1–10% of the unresolved hard X-ray emission from M82, and a few percent or less of the total X-ray emission from starbursts. A detection of these components would inform us of the magnetic field strength and 10 – 100 TeV electron spectrum. We conclude by discussing the prospects for detecting leptonic MeV γ-rays from starbursts and the cosmic γ-ray background.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Yoshida, Shigeru. "High-energy neutrino astronomy — the neutrino connections to the cosmic-ray origin: present and future." Journal of Physics: Conference Series 2429, no. 1 (February 1, 2023): 012025. http://dx.doi.org/10.1088/1742-6596/2429/1/012025.

Повний текст джерела
Анотація:
Abstract High-energy neutrino astronomy has been blooming. In addition to the possible identification of the blazar and Seyfert II galaxies as neutrino emitters, the present neutrino data has indicated some hints to characterize or constrain the origin of cosmic rays. Being motivated by the observational fact that the astrophysical neutrino background energy flux is comparable to that of ultrahigh-energy (UHE) cosmic rays, we derive the generic requirements that a major fraction of UHE cosmic ray sources must meet, if they are also responsible for the ∼ 100 TeV-energy cosmic neutrino background radiation. The source parameters characterizing the cosmic ray – neutrino unified scheme, such as the photon radiation luminosity and the cosmic ray luminosity density, suggest that the yet-unidentified cosmic ray and neutrino origins can be transient objects visible in the optical/NIR wavelength band. We propose a viable scheme of multimessenger observations to identify the sources using the neutrino multiplet detections.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Vernstrom, T., G. Heald, F. Vazza, T. J. Galvin, J. L. West, N. Locatelli, N. Fornengo, and E. Pinetti. "Discovery of magnetic fields along stacked cosmic filaments as revealed by radio and X-ray emission." Monthly Notices of the Royal Astronomical Society 505, no. 3 (May 11, 2021): 4178–96. http://dx.doi.org/10.1093/mnras/stab1301.

Повний текст джерела
Анотація:
ABSTRACT Diffuse filaments connect galaxy clusters to form the cosmic web. Detecting these filaments could yield information on the magnetic field strength, cosmic ray population, and temperature of intercluster gas; yet, the faint and large-scale nature of these bridges makes direct detections very challenging. Using multiple independent all-sky radio and X-ray maps we stack pairs of luminous red galaxies as tracers for cluster pairs. For the first time, we detect an average surface brightness between the clusters from synchrotron (radio) and thermal (X-ray) emission with ≳5σ significance, on physical scales larger than observed to date (${\ge}3$ Mpc). We obtain a synchrotron spectral index of α ≃ −1.0 and estimates of the average magnetic field strength of $30\,\mathrm{ nG} \le B \le 60 $ nG, derived from both equipartition and inverse-Compton arguments, implying a 5–15 per cent degree of field regularity when compared with Faraday rotation measure estimates. While the X-ray detection is inline with predictions, the average radio signal comes out higher than predicted by cosmological simulations and dark matter annihilation and decay models. This discovery demonstrates that there are connective structures between mass concentrations that are significantly magnetized, and the presence of sufficient cosmic rays to produce detectable synchrotron radiation.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

CHEN, CHUAN-REN. "MODEL-INDEPENDENT STUDIES OF DARK MATTER." International Journal of Modern Physics D 20, no. 08 (August 15, 2011): 1441–51. http://dx.doi.org/10.1142/s0218271811019621.

Повний текст джерела
Анотація:
The excess in cosmic-ray positrons and electrons observed by PAMELA, ATIC, PPB-BET and Fermi can be explained by dark matter decay or annihilation. On the other hand, the negative results from CDMS II and XENON direct detections of dark matter put an upper limit on the elastic-scattering cross section between dark matter and nucleon. We adopted model-independent approaches to study dark matter in cosmic-ray electrons, gamma-ray, relic density, direct detection experiments and LHC. We studied the distribution of the cosmic-ray electron flux observed at the Earth and found that it can reflect the initial energy spectrum of electrons generated from dark matter decay or annihilation even after propagation. We also derive constraints on the decay rate of dark matter into various two-body final states using Fermi and HESS gamma-ray data. We found that the μ+μ- or τ+τ- final state is favored in order to simultaneously explain electron excess and meet all gamma-ray constraints. Finally, we examined various tree-level induced operators of dimension six and constrain them using the current experimental data, including the WMAP data of the relic abundance and CDMS II direct detection of the spin-independent scattering. The implication of LHC search is also explored.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Lemoine-Goumard, Marianne. "Gamma-ray observations of supernova remnants." Proceedings of the International Astronomical Union 9, S296 (January 2013): 287–94. http://dx.doi.org/10.1017/s1743921313009605.

Повний текст джерела
Анотація:
AbstractIn the past few years, gamma-ray astronomy has entered a golden age. At TeV energies, only a handful of sources were known a decade ago, but the current generation of ground-based imaging atmospheric Cherenkov telescopes has increased this number to more than one hundred. At GeV energies, the Fermi Gamma-ray Space Telescope has increased the number of known sources by nearly an order of magnitude in its first 2 years of operation. The recent detection and unprecedented morphological studies of gamma-ray emission from shell-type supernova remnants is of great interest, as these analyses are directly linked to the long standing issue of the origin of the cosmic-rays. However, these detections still do not constitute a conclusive proof that supernova remnants accelerate the bulk of Galactic cosmic-rays, mainly due to the difficulty of disentangling the hadronic and leptonic contributions to the observed gamma-ray emission. In the following, I will review the most relevant results of gamma ray astronomy concerning supernova remnants (shell-type and middle-age interacting with molecular clouds).
Стилі APA, Harvard, Vancouver, ISO та ін.
7

CAO, ZHEN. "THE ARGO-YBJ EXPERIMENT PROGRESSES AND FUTURE EXTENSION." International Journal of Modern Physics D 20, no. 10 (September 2011): 1713–21. http://dx.doi.org/10.1142/s0218271811019797.

Повний текст джерела
Анотація:
Gamma ray source detection above 30 TeV is an encouraging approach for finding galactic cosmic ray origins. All sky survey for gamma ray sources using wide field of view detector is essential for population accumulation for various types of sources above 100 GeV. To target the goals, the ARGO-YBJ experiment has been established. Significant progresses have been made in the experiment. A large air shower detector array in an area of 1 km2 is proposed to boost the sensitivity. Hybrid detections with multi-techniques will allow a good discrimination between different types of primary particles, including photons and protons, thus enable an energy spectrum measurement for individual species. Fluorescence light detector array will extend the spectrum measurement to 100 PeV and higher where the second knee is located. An energy scale determined by balloon experiments at 10 TeV will be propagated to ultra high energy cosmic ray experiments.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Schady, Patricia. "Gamma-ray bursts and their use as cosmic probes." Royal Society Open Science 4, no. 7 (July 2017): 170304. http://dx.doi.org/10.1098/rsos.170304.

Повний текст джерела
Анотація:
Since the launch of the highly successful and ongoing Swift mission, the field of gamma-ray bursts (GRBs) has undergone a revolution. The arcsecond GRB localizations available within just a few minutes of the GRB alert has signified the continual sampling of the GRB evolution through the prompt to afterglow phases revealing unexpected flaring and plateau phases, the first detection of a kilonova coincident with a short GRB, and the identification of samples of low-luminosity, ultra-long and highly dust-extinguished GRBs. The increased numbers of GRB afterglows, GRB-supernova detections, redshifts and host galaxy associations has greatly improved our understanding of what produces and powers these immense, cosmological explosions. Nevertheless, more high-quality data often also reveal greater complexity. In this review, I summarize some of the milestones made in GRB research during the Swift era, and how previous widely accepted theoretical models have had to adapt to accommodate the new wealth of observational data.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Omodei, Nicola, Melissa Pesce-Rollins, Vahè Petrosian, Wei Liu, Fatima Rubio da Costa, and Alice Allafort. "Fermi Large Area Telescope observation of high-energy solar flares: constraining emission scenarios." Proceedings of the International Astronomical Union 11, S320 (August 2015): 51–56. http://dx.doi.org/10.1017/s1743921316000259.

Повний текст джерела
Анотація:
AbstractThe Fermi Large Area Telescope (LAT) is the most sensitive instrument ever deployed in space for observing gamma-ray emission >100 MeV. This has also been demonstrated by its detection of quiescent gamma-ray emission from pions produced by cosmic-ray protons interacting in the solar atmosphere, and from cosmic-ray electron interactions with solar optical photons. The Fermi-LAT has also detected high-energy gamma-ray emission associated with GOES M-class and X-class solar flares, each accompanied by a coronal mass ejection and a solar energetic particle event, increasing the number of detected solar flares by almost a factor of 10 with respect to previous space observations. During the impulsive phase, gamma rays with energies up to several hundreds of MeV have been recorded by the LAT. Emission up to GeV energies lasting several hours after the flare has also been detected by the LAT. Of particular interest are the recent detections of three solar flares whose position behind the limb was confirmed by the STEREO satellites. While gamma-ray emission up to tens of MeV resulting from proton interactions has been detected before from occulted solar flares, the significance of these particular events lies in the fact that these are the first detections of >100 MeV gamma-ray emission from footpoint-occulted flares. We will present the Fermi-LAT, RHESSI and STEREO observations of these flares and discuss the various emission scenarios for these sources.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Asano, Katsuaki, and Kohta Murase. "Gamma-Ray Bursts as Multienergy Neutrino Sources." Advances in Astronomy 2015 (2015): 1–10. http://dx.doi.org/10.1155/2015/568516.

Повний текст джерела
Анотація:
We review theoretical models for nonelectromagnetic emission, mainly neutrinos and cosmic rays, from gamma-ray bursts (GRBs). In various stages of the relativistic jet propagation, cosmic-ray ion acceleration and subsequent neutrino emission are expected. GRBs are popular candidate sources of the highest-energy cosmic rays, and their prompt phase has been most widely discussed. IceCube nondetection of PeV neutrinos coincident with GRBs has put interesting constraints on the standard theoretical prediction. The GRB-UHECR hypothesis can critically be tested by future observations. We also emphasize the importance of searches for GeV-TeV neutrinos, which are expected in the precursor/orphan or prompt phase, and lower-energy neutrinos would be more guaranteed and their detections even allow us to probe physics inside a progenitor star. Not only classical GRBs but also low-power GRBs and transrelativistic supernovae can be promising sources of TeV-PeV neutrinos, and we briefly discuss implications for the cumulative neutrino background discovered by IceCube.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Cosmic ray detections"

1

李耀華 and Yiu-wa Lee. "Investigation of cosmic ray intensity variation at primary rigidity above 1.7 TV." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1986. http://hub.hku.hk/bib/B42574079.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Mertsch, Philipp. "Cosmic ray backgrounds for dark matter indirect detection." Thesis, University of Oxford, 2010. http://ora.ox.ac.uk/objects/uuid:2734b849-4d7a-4266-8538-d3dc6cab6b20.

Повний текст джерела
Анотація:
The identification of the relic particles which presumably constitute cold dark matter is a key challenge for astroparticle physics. Indirect methods for their detection using high energy astro- physical probes such as cosmic rays have been much discussed. In particular, recent ‘excesses’ in cosmic ray electron and positron fluxes, as well as in microwave sky maps, have been claimed to be due to the annihilation or decay of dark matter. In this thesis, we argue however that these signals are plagued by irreducible astrophysical backgrounds and show how plausible con- ventional physics can mimic the alleged dark matter signals. In chapter 1, we review evidence of, and possible particle candidates for, cold dark matter, as well as our current understanding of galactic cosmic rays and the state-of-the-art in indirect detection. All other chapters contain original work, mainly based on the author’s journal publications. In particular, in chapter 2, we consider the possibility that the rise in the positron fraction observed by the PAMELA satellite is due to the production through (hadronic) cosmic ray spallation and subsequent acceleration of positrons, in the same sources as the primary cosmic rays. We present a new (unpublished) analytical estimate of the range of possible fluctuations in the high energy electron flux due to the discreteness of plausible cosmic ray sources such as supernova remnants. Fitting our result for the total electron-positron flux measured by the Fermi satellite allows us to fix the only free parameter of the model and make an independent prediction for the positron fraction. Our explanation relies on a large number of supernova remnants nearby which are accelerating hadronic cosmic rays. Turning the argument around, we find encouraging prospects for the observation of neutrinos from such sources in km^3-scale detectors such as IceCube. Chapter 3 presents a test of this model by considering similar effects expected for nuclear secondary-to-primary ratios such as B/C. A rise predicted above O(100)GeV/n would be an unique confirmation of our explanation for a rising positron fraction and rule out the dark matter explanation. In chapter 4, we review the assumptions made in the extraction of the `WMAP haze' which has also been claimed to be due to electrons and positrons from dark matter annihilation in the Galactic centre region. We argue that the energy-dependence of their diffusion means that the extraction of the haze through fitting to templates of low frequency diffuse galactic radio emission is unreliable. The systematic effects introduced by this can, under specific circumstances, reproduce the residual, suggesting that the ‘haze’ may be just an artefact of the template subtraction. We present a summary and thoughts about further work in the epilogue.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Bloomer, Steven David. "The search for ultra high energy gamma ray emission from Cygnus X-3 and Hercules X-1." Thesis, University of Leeds, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.238644.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Morris, Chad Michael. "Detection Techniques of Radio Emission from Ultra High Energy Cosmic Rays." The Ohio State University, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=osu1254506832.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Halverson, Peter Georges. "Detection of high-energy cosmic ray showers by atmospheric fluorescence." Diss., The University of Arizona, 1989. http://hdl.handle.net/10150/184779.

Повний текст джерела
Анотація:
A novel detector for ultra-high energy cosmic rays, and its prototype are discussed. It detects events with primary energy greater than 100 PeV. (1 PeV = 1000 TeV; 1EeV = 1000 PeV.) The detector operates by sensing the near-ultraviolet scintillation light of ionized nitrogen molecules created by the passage of ionizing particles in extensive air showers. (The concept is loosely based on the highly successful Fly's Eye detector situated at Dugway, Utah.) Typical events should consist of 1 to 100 EeV primary energy showers, with near-vertical cores, passing through the detector's field-of-view at distances of 1 to 20 km. The optical field of view of the hypothetical detector would be 60 degrees wide by several (≈ 3) degrees high and would look in a near-horizontal direction at a distant mountain range or other suitably dark background roughly 20 Ian away. A typical good location would be the rim of a canyon, looking slightly downward at the other side. The field-of-view would be subdivided into 3 or more thinner ''wedges'', 60 degrees wide by, perhaps, 1 degree high. A single detector provides timing and brightness information only. Three widely-separated detectors with overlapping fields-of-view provide sufficient data to determine the core location, the zenith and azinruthal angles of the core axis, and the absolute luminosity of the cascade. Interpretation of the luminosity data would be a challenge, but it should be possible to estimate primary energy from it. The advantage of this new scheme is the enormous effective detector area per relatively low-cost detector module. Each triplet of detectors "sees" 300 square km with a typical core axis acceptance of roughly 1 sr. The construction and testing of a prototype unit has been accomplished. The field-of-view was 41 degrees wide by 2 degrees high. Light was collected by a 4.7 square meter mirror and focused onto a wave-shifter PMT system. 8 events with primary energies in the 0.1 to 1 EeV range were observed in an 8.5 hour period. Representative events are shown and preliminary data analysis is discussed.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Allison, Patrick S. "Design, calibration, and early results of a surface array for detection of ultrahigh energy cosmic rays." Columbus, Ohio : Ohio State University, 2007. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1179849363.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Lee, Yiu-wa. "Investigation of cosmic ray intensity variation at primary rigidity above 1.7 TV." Click to view the E-thesis via HKUTO, 1986. http://sunzi.lib.hku.hk/hkuto/record/B42574079.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Lorek, Ryan James. "PIERRE AUGER OBSERVATORY AND TELESCOPEARRAY JOINT COSMIC RAY DETECTION, ANDCROSS CALIBRATION." Case Western Reserve University School of Graduate Studies / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=case155473314851704.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Edwards, Peter J. "A study of the muon content of EAS initiated by the UHE gamma-ray emission from Cygnus X-3." Thesis, University of Nottingham, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.238238.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Giesen, Gaelle. "Dark Matter Indirect Detection with charged cosmic rays." Thesis, Paris 11, 2015. http://www.theses.fr/2015PA112160/document.

Повний текст джерела
Анотація:
Les preuves pour l'existence de la matière noire (MN), sous forme d'une particule inconnue qui rempli les halos galactiques, sont issues d'observations astrophysiques et cosmologiques: son effet gravitationnel est visible dans les rotations des galaxies, des amas de galaxies et dans la formation des grandes structures de l'univers. Une manifestation non-gravitationnelle de sa présence n'a pas encore été découverte. L'une des techniques les plus prometteuse est la détection indirecte de la MN, consistant à identifier des excès dans les flux de rayons cosmiques pouvant provenir de l'annihilation ou la désintégration de la MN dans le halo de la Voie Lactée. Les efforts expérimentaux actuels se focalisent principalement sur une gamme d'énergie de l'ordre du GeV au TeV, où un signal de WIMP (Weakly Interacting Massive Particles) est attendu. L'analyse des mesures récentes et inédites des rayons cosmiques chargés (antiprotons, électrons et positrons) et leurs émissions secondaires et les améliorations des modèles astrophysiques sont présentées.Les données de PAMELA sur les antiprotons contraignent l'annihilation et la désintégration de la MN de manière similaire (et même légèrement meilleurs) que les contraintes les plus fortes venant des rayons gamma, même dans le cas où les énergies cinétiques inférieures à 10 GeV sont écartées. En choisissant des paramètres astrophysiques différents (modèles de propagation et profils de MN), les contraintes peuvent changer d'un à deux ordres de grandeur. Pour exploiter la totalité de la capacité des antiprotons à contraindre la MN, des effets précédemment négligés sont incorporés et se révèlent être importants dans l'analyse des données inédites de AMS-02 : ajouter les pertes d'énergie, la diffusion dans l'espace des moments et la modulation solaire peut modifier les contraintes, même à de hautes masses. Une mauvaise interprétation des données peut survenir si ces effets ne sont pas pris en compte. Avec les flux de protons et d'hélium exposé par AMS-02, le fond astrophysique et ces incertitudes du ratio antiprotons sur protons sont réévalués et comparés aux données inédites de AMS-02. Aucune indication pour un excès n'est trouvé. Une préférence pour un halo confinant plus large et une dépendance en énergie du coefficient de diffusion plus plate apparaissent. De nouvelles contraintes sur l'annihilation et la désintégration de la MN sont ainsi dérivés.Les émissions secondaires des électrons et des positrons peuvent aussi contraindre l'annihilation et la désintégration de la MN dans le halo galactique : le signal radio dû à la radiation synchrotron des électrons et positrons dans le champs magnétique galactique, les rayons gamma des processus de bremsstrahlung avec le gas galactique et de Compton Inverse avec le champs radiatif interstellaire sont considérés. Différentes configurations de champs magnétique galactique et de modèles de propagation et des cartes de gas et de champs radiatif interstellaire améliorés sont utilisées pour obtenir des outils permettant le calculs des émissions synchrotrons et bremsstrahlung venant de MN de type WIMP. Tous les résultats numériques sont incorporés dans la dernière version du Poor Particle Physicist Coookbook for DM Indirect Detection (PPPC4DMID).Une interprétation d'un possible excès dans les données de rayons gamma de Fermi-LAT au centre galactique comme étant dû à l'annihilation de MN en canaux hadronique et leptonique est analysée. Dans une approche de messagers multiples, le calcul des émissions secondaires est amélioré et se révèle être important pour la détermination du spectre pour le canal leptonique. Ensuite, les limites provenant des antiprotons sur l'annihilation en canal hadronique contraignent sévèrement l'interprétation de cet excès comme étant dû à la MN, dans le cas de paramètres de propagation et de modulation solaire standards. Avec un choix plus conservatif de ces paramètres elles s'assouplissent considérablement
Overwhelming evidence for the existence of Dark Matter (DM), in the form of an unknownparticle filling the galactic halos, originates from many observations in astrophysics and cosmology: its gravitational effects are apparent on galactic rotations, in galaxy clusters and in shaping the large scale structure of the Universe. On the other hand, a non-gravitational manifestation of its presence is yet to be unveiled. One of the most promising techniques is the one of indirect detection, aimed at identifying excesses in cosmic ray fluxes which could possibly be produced by DM annihilations or decays in the Milky Way halo. The current experimental efforts mainly focus in the GeV to TeV energy range, which is also where signals from WIMPs (Weakly Interacting Massive Particles) are expected. Focussing on charged cosmic rays, in particular antiprotons, electrons and positrons, as well as their secondary emissions, an analysis of current and forseen cosmic ray measurements and improvements on astrophysical models are presented. Antiproton data from PAMELA imposes contraints on annihilating and decaying DM which are similar to (or even slightly stronger than) the most stringent bounds from gamma ray experiments, even when kinetic energies below 10 GeV are discarded. However, choosing different sets of astrophysical parameters, in the form of propagation models and halo profiles, allows the contraints to span over one or two orders of magnitude. In order to exploit fully the power of antiprotons to constrain or discover DM, effects which were previously perceived as subleading turn out to be relevant especially for the analysis of the newly released AMS-02 data. In fact, including energy losses, diffusive reaccelleration and solar modulation can somewhat modify the current bounds, even at large DM masses. A wrong interpretation of the data may arise if they are not taken into account. Finally, using the updated proton and helium fluxes just released by the AMS-02 experiment, the astrophysical antiproton to proton ratio and its uncertainties are reevaluated and compared to the preliminarly reported AMS-02 measurements. No unambiguous evidence for a significant excess with respect to expectations is found. Yet, some preference for thicker halos and a flatter energy dependence of the diffusion coefficient starts to emerge. New stringed constraints on DM annihilation and decay are derived. Secondary emissions from electrons and positrons can also be used to constrain DM annihilation or decay in the galactic halo. The radio signal due to synchrotron radiation of electrons and positrons on the galactic magnetic field, gamma rays from bremsstrahlung processes on the galactic gas densities and from Inverse Compton scattering processes on the interstellar radiation field are considered. With several magnetic field configurations, propagation scenarios and improved gas density maps and interstellar radiation field, state-of-art tools allowing the computaion of synchrotron and bremssttrahlung radiation for any WIMP DM model are provided. All numerical results for DM are incorporated in the release of the Poor Particle Physicist Coookbook for DM Indirect Detection (PPPC4DMID). Finally, the possible GeV gamma-ray excess identified in the Fermi-LAT data from the Galactic Center in terms of DM annihilation, either in hadronic or leptonic channels is studied. In order to test this tantalizing interprestation, a multi-messenger approach is used: first, the computation of secondary emisison from DM with respect to previous works confirms it to be relevant for determining the DM spectrum in leptonic channels. Second, limits from antiprotons severely constrain the DM interpretation of the excess in the hadronic channel, for standard assumptions on the Galactic propagation parameters and solar modulation. However, they considerably relax if more conservative choices are adopted
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Cosmic ray detections"

1

David, Saltzberg, and Gorham Peter, eds. Radio detection of high energy particles: First international workshop, RADHEP 2000, Los Angeles, California, 16-18 November 2000. Melville, N.Y: American Institute of Physics, 2001.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

service), SpringerLink (Online, ed. A Search for Ultra-High Energy Neutrinos and Cosmic-Rays with ANITA-2. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Shalchi, Andreas. Nonlinear Cosmic Ray Diffusion Theories. Springer, 2009.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Nonlinear Cosmic Ray Diffusion Theories. Springer, 2009.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Schröder, Frank. Instruments and Methods for the Radio Detection of High Energy Cosmic Rays. Springer, 2012.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Schröder, Frank. Instruments and Methods for the Radio Detection of High Energy Cosmic Rays. Springer Berlin / Heidelberg, 2015.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Schröder, Frank. Instruments and Methods for the Radio Detection of High Energy Cosmic Rays. Springer, 2012.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Wigmans, Richard. Calorimeters for Measuring Natural Phenomena. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198786351.003.0010.

Повний текст джерела
Анотація:
Since the first edition of this book appeared (2000), there has been a spectacular development in the use of calorimeters for measuring natural phenomena, such as the detection of ultra-high-energy cosmic rays, or neutrinos from sources such as the Sun, the Earth’s atmosphere, or the Universe at large. This development is documentsed in this chapter. It starts with a section on SuperKamiokande, which has already collected two Nobel prizes, and its envisaged successor HyperKamiokande, which is designed to be sensitive to neutrinos from supernova explosions in the Andromeda galaxy. On an even larger scale, several sections of the Mediterranean sea as well a cubic kilometre of ice under the South Pole are looking for neutrinos from outer space, and are detecting other interesting phenomena as well. The Earth’s atmosphere is used as a huge calorimeter by experiments such as Auger and KASKADE-Grande. Combined with dedicated Cherenkov telescopes, such as HESS, these experiments have provided important new insights in mysterious aspects of the high-energy component of the cosmic rays that bombard our planet, such as the knees in the PeV-EeV region and the GZK cutoff.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Bertone, Gianfranco. A Tale of Two Infinities. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780192898159.001.0001.

Повний текст джерела
Анотація:
The spectacular advances of modern astronomy have opened our horizon on an unexpected cosmos: a dark, mysterious Universe, populated by enigmatic entities we know very little about, like black holes, or nothing at all, like dark matter and dark energy. In this book, I discuss how the rise of a new discipline dubbed multimessenger astronomy is bringing about a revolution in our understanding of the cosmos, by combining the traditional approach based on the observation of light from celestial objects, with a new one based on other ‘messengers’—such as gravitational waves, neutrinos, and cosmic rays—that carry information from otherwise inaccessible corners of the Universe. Much has been written about the extraordinary potential of this new discipline, since the 2017 Nobel Prize in physics was awarded for the direct detection of gravitational waves. But here I will take a different angle and explore how gravitational waves and other messengers might help us break the stalemate that has been plaguing fundamental physics for four decades, and to consolidate the foundations of modern cosmology.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Mottram, Matthew Joseph. Search for Ultra-High Energy Neutrinos and Cosmic-Rays with ANITA-2. Springer Berlin / Heidelberg, 2016.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Cosmic ray detections"

1

Engel, Ralph. "Indirect Detection of Cosmic Rays." In Handbook of Particle Detection and Imaging, 593–632. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-13271-1_24.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Engel, Ralph, and David Schmidt. "Indirect Detection of Cosmic Rays." In Handbook of Particle Detection and Imaging, 1–49. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-319-47999-6_24-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Engel, Ralph, and David Schmidt. "Indirect Detection of Cosmic Rays." In Handbook of Particle Detection and Imaging, 801–49. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-319-93785-4_24.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Schnyder, Germán, Sergio Nesmachnow, and Gonzalo Tancredi. "Distributed Cosmic Ray Detection Using Cloud Computing." In Communications in Computer and Information Science, 414–29. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-73353-1_29.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Kleinknecht, Konrad, and Ulrich Uwer. "Symmetry Violations and Quark Flavour Physics." In Particle Physics Reference Library, 519–623. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-38207-0_9.

Повний текст джерела
Анотація:
AbstractOne of the surprising facts in our present understanding of the development of the Universe is the complete absence of “primordial” antimatter from the Big Bang about 13.7 billion years ago. The detection of charged cosmic-ray particles by magnetic spectrometers borne by balloons, satellites, and the space shuttle has shown no evidence for such primordial (high-energy) antibaryons; nor has the search for gamma rays from antimatter–matter annihilation yielded any such observation. In the early phases of the expanding Universe, a hot (1032 K) and dense plasma of quarks, antiquarks, leptons, antileptons and photons coexisted in equilibrium. This plasma expanded and cooled down, and matter and antimatter could recombine and annihilate into photons. If all interactions were symmetric with respect to matter and antimatter, and if baryon and lepton numbers were conserved, then all particles would finally convert to photons, and the expansion of the Universe would shift the wavelength of these photons to the far infrared region.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Spurio, Maurizio. "Direct Cosmic Ray Detection: Protons, Nuclei, Electrons and Antimatter." In Astronomy and Astrophysics Library, 65–99. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-96854-4_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Spurio, Maurizio. "Indirect Cosmic Ray Detection: Particle Showers in the Atmosphere." In Astronomy and Astrophysics Library, 101–48. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-96854-4_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Vannucci, F. "Detecting Cosmic Rays of the Highest Energies." In Cosmic Radiations: From Astronomy to Particle Physics, 241–45. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-010-0634-7_25.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Schnyder, Germán, Sergio Nesmachnow, Gonzalo Tancredi, and Andrei Tchernykh. "Scheduling Algorithms for Distributed Cosmic Ray Detection Using Apache Mesos." In Communications in Computer and Information Science, 359–73. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-57972-6_27.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Spurio, Maurizio. "Direct Cosmic Rays Detection: Protons, Nuclei, Electrons and Antimatter." In Astronomy and Astrophysics Library, 55–86. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-08051-2_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Cosmic ray detections"

1

Safa, Ibrahim, Alex Pizzuto, Carlos Arguelles, Francis Halzen, Raamis Hussain, Ali Kheirandish, and Justin Vandenbroucke. "Constraining anomalous EeV ANITA detections with PeV neutrinos." In 36th International Cosmic Ray Conference. Trieste, Italy: Sissa Medialab, 2019. http://dx.doi.org/10.22323/1.358.0995.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Veske, Doğa, Rasha Abbasi, Markus Ackermann, Jenni Adams, Juanan Aguilar, M. Ahlers, Maryon Ahrens, et al. "Multi-messenger searches via IceCube’s high-energy neutrinos and gravitational-wave detections of LIGO/Virgo." In 37th International Cosmic Ray Conference. Trieste, Italy: Sissa Medialab, 2021. http://dx.doi.org/10.22323/1.395.0950.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Ahlers, Markus. "The cosmic triad: Cosmic rays, gamma-rays and neutrinos." In 5TH INTERNATIONAL WORKSHOP ON ACOUSTIC AND RADIO EEV NEUTRINO DETECTION ACTIVITIES: ARENA 2012. AIP, 2013. http://dx.doi.org/10.1063/1.4807556.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Weekes, Trevor C. "Radio pulses from cosmic ray air showers." In First international workshop on the radio detection of high energy particles. AIP, 2001. http://dx.doi.org/10.1063/1.1398155.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Campus, Richard A., Malvin C. Teich, and B. E. A. Saleh. "Detecting squeezed light with a photomultiplier tube: the cosmic-ray connection." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1987. http://dx.doi.org/10.1364/oam.1987.mq4.

Повний текст джерела
Анотація:
A number of experiments have been carried out in which quadrature and photon-number squeezed light have been generated. The signature of both is a sub-Poisson photoelectron number (or equivalently a sub-shot-noise photoelectron current). The photomultiplier tube (PMT), with a large amplification and low excess noise factor, is often a preferred detector in such experiments. The detectability of nonclassical light by a PMT can be reduced by the presence of background noise, the most deleterious of which is caused by Cherenkov photon emissions from clustered cosmic-ray cascade particles as they transverse the faceplate of the PMT. We have empirically determined that cosmic-ray events can be substantially avoided by using experimental durations of less than tens of seconds. However, for experiments that cannot be conducted in such short periods of time, cosmic- ray clusters may pose a significant limitation. The fluctuations of extensive air-shower particles at ground level turn out to be well described by the two-parameter Poisson-driven Yule-Furry or by the negative-binomial counting distribution. Experimental results for various PMTs operated in the dark are presented along with theoretical predictions.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

May, R., R. Strange, M. Bruggeman, and W. De Boeck. "Independent Quality Checking of UK Low Level Radioactive Waste for Plutonium Using the SCK•CEN Hexagon 2000 Passive Neutron Coincidence Counter." In ASME 2003 9th International Conference on Radioactive Waste Management and Environmental Remediation. ASMEDC, 2003. http://dx.doi.org/10.1115/icem2003-4954.

Повний текст джерела
Анотація:
Checking low level wastes requires the detection of sub-milligram levels of plutonium. This is an extreme challenge for passive neutron coincidence counting as the levels of true signal are close to the background signal caused by cosmic ray interactions. The origin of cosmic-induced background is discussed. We describe the Hexagon 2000 passive neutron coincidence counter that has been designed and built for waste quality checking of low-level radioactive waste in the UK for the Environment Agency. The instrument uses computed neutron coincidence counting and improved filtering of high multiplicity cosmic-induced events. The instrument also correlates background signal with atmospheric pressure to further increase sensitivity. Preliminary measurements of background data and of test drums containing small amounts of plutonium are described.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Šmída, R., M. Bertaina, J. Blümer, A. Chiavassa, F. Cossavella, F. Di Pierro, R. Engel, et al. "Cosmic-ray Observation via Microwave Emission (CROME)." In 5TH INTERNATIONAL WORKSHOP ON ACOUSTIC AND RADIO EEV NEUTRINO DETECTION ACTIVITIES: ARENA 2012. AIP, 2013. http://dx.doi.org/10.1063/1.4807551.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Sadeh, Iftach. "Deep learning detection of transients." In 36th International Cosmic Ray Conference. Trieste, Italy: Sissa Medialab, 2019. http://dx.doi.org/10.22323/1.358.0775.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Liu, Dong, Jinfan Chang, Shaomin Chen, Hongliang Dai, Cunfeng Feng, Bo Gao, Guanghua Gong, et al. "Supernova Neutrino Detection with LHAASO-MD." In 37th International Cosmic Ray Conference. Trieste, Italy: Sissa Medialab, 2021. http://dx.doi.org/10.22323/1.395.1037.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Pfrang, Konstantin Johannes. "Deep Learning Transient Detection with VERITAS." In 37th International Cosmic Ray Conference. Trieste, Italy: Sissa Medialab, 2021. http://dx.doi.org/10.22323/1.395.0822.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Cosmic ray detections"

1

Van Nest, Jordan D. High Altitude Cosmic Ray Detection. Ames (Iowa): Iowa State University. Library. Digital Press, January 2016. http://dx.doi.org/10.31274/ahac.9513.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Van Nest, Jordan D. High Altitude Cosmic Ray Detection. Ames (Iowa): Iowa State University. Library. Digital Press, January 2016. http://dx.doi.org/10.31274/ahac.9765.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Rosenberg, L., and A. Bernstein. Feasibility of Sea-level Cosmic-Ray Muon-Capture SNM Detection. Office of Scientific and Technical Information (OSTI), March 2005. http://dx.doi.org/10.2172/15015181.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Celmins, Aivars. Feasibility of Cosmic-Ray Muon Intensity Measurements for Tunnel Detection. Fort Belvoir, VA: Defense Technical Information Center, June 1990. http://dx.doi.org/10.21236/ada223355.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Plewa, Matthew I., and Justin Vandenbroucke. Detecting cosmic rays using CMOS sensors in consumer devices. Ames (Iowa): Iowa State University. Library. Digital Press, January 2015. http://dx.doi.org/10.31274/ahac.9757.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Tagliapietra, Luca, Piero Neuhold, John Adlish, Enrico Mainardi, and Riccardo Surrente. RNA Detection in air by means of Cosmic Rays interactions. Cornell University, August 2020. http://dx.doi.org/10.47410/bhf.2020.1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Pan, M. Determining Muon Detection Efficiency Rates of Limited Streamer Tube Modules using Cosmic Ray Detector. Office of Scientific and Technical Information (OSTI), September 2004. http://dx.doi.org/10.2172/833115.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії