Статті в журналах з теми "Correlated fermions"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Correlated fermions.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Correlated fermions".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

NG, T. K. "CONSTRAINT AND CONFINEMENT IN STRONGLY CORRELATED FERMION SYSTEMS." International Journal of Modern Physics B 15, no. 19n20 (August 10, 2001): 2569–82. http://dx.doi.org/10.1142/s0217979201006409.

Повний текст джерела
Анотація:
We discuss in this paper the low energy properties of a liquid of fermions coupling to a U(1) gauge field at wavevectors q<Λ≪k F at dimensions larger than one, where Λ≪k F is a high momentum cutoff and k F is the Fermi wave vector. In particular, we shall consider the e2→∞ limit where charge and current fluctuations at wave vectors q<Λ are forbidden, and the problem reduces to the problem of imposing constraint that no charge and current fluctuations are allowed in the liquid of fermions. Within a bosonization approximation, we show that the low energy properties of the system can be described as a Fermi liquid of chargeless quasiparticles which has vanishing wavefunction overlap with the bare fermion's in the system. The case of a two component system (t–J model) will also be discussed.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Varma, C. M. "Developments in correlated fermions." Physica B: Condensed Matter 359-361 (April 2005): 1478–85. http://dx.doi.org/10.1016/j.physb.2005.01.460.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Yurke, B. "Interferometry with correlated fermions." Physica B+C 151, no. 1-2 (July 1988): 286–90. http://dx.doi.org/10.1016/0378-4363(88)90179-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

KISELEV, M. N. "SEMI-FERMIONIC REPRESENTATION FOR SPIN SYSTEMS UNDER EQUILIBRIUM AND NON-EQUILIBRIUM CONDITIONS." International Journal of Modern Physics B 20, no. 04 (February 10, 2006): 381–421. http://dx.doi.org/10.1142/s0217979206033310.

Повний текст джерела
Анотація:
We present a general derivation of semi-fermionic representation for spin operators in terms of a bilinear combination of fermions in real and imaginary time formalisms. The constraint on fermionic occupation numbers is fulfilled by means of imaginary Lagrange multipliers resulting in special shape of quasiparticle distribution functions. We show how Schwinger–Keldysh technique for spin operators is constructed with the help of semi-fermions. We demonstrate how the idea of semi-fermionic representation might be extended to the groups possessing dynamic symmetries. We illustrate the application of semi-fermionic representations for various problems of strongly correlated and mesoscopic physics.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Metzner, Walter, and Dieter Vollhardt. "Correlated Lattice Fermions ind=∞Dimensions." Physical Review Letters 62, no. 9 (February 27, 1989): 1066. http://dx.doi.org/10.1103/physrevlett.62.1066.2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Metzner, Walter, and Dieter Vollhardt. "Correlated Lattice Fermions ind=∞Dimensions." Physical Review Letters 62, no. 3 (January 16, 1989): 324–27. http://dx.doi.org/10.1103/physrevlett.62.324.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Roger, Michel. "Ring exchange and correlated fermions." Journal of Physics and Chemistry of Solids 66, no. 8-9 (August 2005): 1412–16. http://dx.doi.org/10.1016/j.jpcs.2005.05.065.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

SCHULZ, H. J. "CORRELATED FERMIONS IN ONE DIMENSION." International Journal of Modern Physics B 05, no. 01n02 (January 1991): 57–74. http://dx.doi.org/10.1142/s0217979291000055.

Повний текст джерела
Анотація:
A brief introduction to the bosonization method for interacting one-dimensional fermion systems is given. Using these results, the long-distance decay of correlation functions in the one-dimensional Hubbard model is determined exactly for arbitrary bandfilling and correlation strength, using the exact solution of Lieb and Wu. For infinite U the results are generalized to the case of nonzero nearest-neighbour interaction. The behaviour of thermodynamic quantities, of the frequency-dependent conductivity, and of the thermopower is also discussed, in particular in the proximity of the metal-insulator transitions occurring for half- and quarter-filling. The one-dimensional Luttinger liquid is shown to be unstable in the presence of interchain hopping. The results for the metal-insulator transition are compared with other scenarios developed in higher dimensions.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Schulz, H. J. "Functional integrals for correlated fermions." Journal of Low Temperature Physics 99, no. 3-4 (May 1995): 615–24. http://dx.doi.org/10.1007/bf00752352.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Spałek, J., K. Byczuk, J. Karbowski, and W. Wójcik. "Strongly correlated fermions at low temperatures." Physica Scripta T49A (January 1, 1993): 206–14. http://dx.doi.org/10.1088/0031-8949/1993/t49a/034.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Kuzemsky, A. L. "Itinerant antiferromagnetism of correlated lattice fermions." Physica A: Statistical Mechanics and its Applications 267, no. 1-2 (May 1999): 131–52. http://dx.doi.org/10.1016/s0378-4371(98)00665-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Kozik, E., K. Van Houcke, E. Gull, L. Pollet, N. Prokof'ev, B. Svistunov, and M. Troyer. "Diagrammatic Monte Carlo for correlated fermions." EPL (Europhysics Letters) 90, no. 1 (April 1, 2010): 10004. http://dx.doi.org/10.1209/0295-5075/90/10004.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Jalali, Z., and S. A. Jafari. "Excitation spectrum of correlated Dirac fermions." Journal of Physics: Conference Series 603 (April 28, 2015): 012005. http://dx.doi.org/10.1088/1742-6596/603/1/012005.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Corney, J. F., and P. D. Drummond. "Gaussian operator bases for correlated fermions." Journal of Physics A: Mathematical and General 39, no. 2 (December 14, 2005): 269–97. http://dx.doi.org/10.1088/0305-4470/39/2/001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

ABANOV, A. G., and D. V. KHVESHCHENKO. "ON CALCULATION OF ENERGY OF PLANAR LATTICE FERMIONS IN A MAGNETIC FIELD." Modern Physics Letters B 04, no. 10 (May 20, 1990): 689–96. http://dx.doi.org/10.1142/s0217984990000866.

Повний текст джерела
Анотація:
We calculate the energy of lattice fermions with a small density moving in a weak magnetic field. It is shown that the ground state energy has a minimum at B = 2πν/ea2. Based on this fact we discuss some aspects of the modern theory of strongly correlated fermionic systems.
Стилі APA, Harvard, Vancouver, ISO та ін.
16

OGAWA, TETSUO, and SATORU OKUMURA. "BOSONIZATION OF TWO-FERMION COMPOSITES WITH AN ARBITRARY INTERNAL MOTION: APPLICATION TO CORRELATED 1s EXCITON SYSTEMS." International Journal of Modern Physics B 15, no. 28n30 (December 10, 2001): 3916–19. http://dx.doi.org/10.1142/s0217979201008998.

Повний текст джерела
Анотація:
We propose an exact bosonization scheme for two two-fermion composites with identical internal structures, that is, a mapping of the two-exciton (four-fermion) subspace to a two-boson subspace. We obtain analytical, exact expressions of the boson-boson interactions and the boson-photon ones taking into full account that the commutation relation of the composite bosons deviates from the ideal-boson commutation due to internal motions of the composite. We can distinguish the "composite-particle effects' from the Coulomb interactions among the fermions in the interactions. With this method, origins of optical nonlinearity in a system with two 1s excitons are studied in terms of the mutual excitonic correlations and exciton-photon interactions.
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Liu, Zi Hong, Gaopei Pan, Xiao Yan Xu, Kai Sun, and Zi Yang Meng. "Itinerant quantum critical point with fermion pockets and hotspots." Proceedings of the National Academy of Sciences 116, no. 34 (August 1, 2019): 16760–67. http://dx.doi.org/10.1073/pnas.1901751116.

Повний текст джерела
Анотація:
Metallic quantum criticality is among the central themes in the understanding of correlated electronic systems, and converging results between analytical and numerical approaches are still under review. In this work, we develop a state-of-the-art large-scale quantum Monte Carlo simulation technique and systematically investigate the itinerant quantum critical point on a 2D square lattice with antiferromagnetic spin fluctuations at wavevector Q=(π,π)—a problem that resembles the Fermi surface setup and low-energy antiferromagnetic fluctuations in high-Tc cuprates and other critical metals, which might be relevant to their non–Fermi-liquid behaviors. System sizes of 60×60×320 (L×L×Lτ) are comfortably accessed, and the quantum critical scaling behaviors are revealed with unprecedented high precision. We found that the antiferromagnetic spin fluctuations introduce effective interactions among fermions and the fermions in return render the bare bosonic critical point into a different universality, different from both the bare Ising universality class and the Hertz–Mills–Moriya RPA prediction. At the quantum critical point, a finite anomalous dimension η∼0.125 is observed in the bosonic propagator, and fermions at hotspots evolve into a non-Fermi liquid. In the antiferromagnetically ordered metallic phase, fermion pockets are observed as the energy gap opens up at the hotspots. These results bridge the recent theoretical and numerical developments in metallic quantum criticality and can serve as the stepping stone toward final understanding of the 2D correlated fermions interacting with gapless critical excitations.
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Byczuk, Krzysztof, Walter Hofstetter, and Dieter Vollhardt. "ANDERSON LOCALIZATION VS. MOTT–HUBBARD METAL–INSULATOR TRANSITION IN DISORDERED, INTERACTING LATTICE FERMION SYSTEMS." International Journal of Modern Physics B 24, no. 12n13 (May 20, 2010): 1727–55. http://dx.doi.org/10.1142/s0217979210064575.

Повний текст джерела
Анотація:
We review recent progress in our theoretical understanding of strongly correlated fermion systems in the presence of disorder. Results were obtained by the application of a powerful nonperturbative approach, the dynamical mean-field theory (DMFT), to interacting disordered lattice fermions. In particular, we demonstrate that DMFT combined with geometric averaging over disorder can capture Anderson localization and Mott insulating phases on the level of one-particle correlation functions. Results are presented for the ground state phase diagram of the Anderson–Hubbard model at half-filling, both in the paramagnetic phase and in the presence of antiferromagnetic order. We find a new antiferromagnetic metal which is stabilized by disorder. Possible realizations of these quantum phases with ultracold fermions in optical lattices are discussed.
Стилі APA, Harvard, Vancouver, ISO та ін.
19

VOLLHARDT, D., P. G. J. VAN DONGEN, F. GEBHARD, and W. METZNER. "GUTZWILLER-TYPE WAVE FUNCTIONS FOR CORRELATED FERMIONS." Modern Physics Letters B 04, no. 08 (April 20, 1990): 499–511. http://dx.doi.org/10.1142/s0217984990000647.

Повний текст джерела
Анотація:
In the last few years significant theoretical progress has been made in our understanding of the physics and quality of Gutzwiller-type variational wave functions for correlated Fermi systems. In particular, new analytic techniques are now available that allow for exact evaluations of expectation values. A brief review of the state-of-the-art is presented.
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Lederer, P., and Elihu Abrahams. "Spin-gap phase of strongly correlated fermions." Physical Review B 53, no. 16 (April 15, 1996): 10680–84. http://dx.doi.org/10.1103/physrevb.53.10680.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Gould, Mark D., Yao-Zhong Zhang, and Huan-Qiang Zhou. "Eight-state supersymmetricUmodel of strongly correlated fermions." Physical Review B 57, no. 16 (April 15, 1998): 9498–501. http://dx.doi.org/10.1103/physrevb.57.9498.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Zhuravlev, A. K. "Cumulant t -expansion for strongly correlated fermions." Physics Letters A 380, no. 22-23 (May 2016): 1995–99. http://dx.doi.org/10.1016/j.physleta.2016.04.003.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Wagner, Lucas K., and David M. Ceperley. "Discovering correlated fermions using quantum Monte Carlo." Reports on Progress in Physics 79, no. 9 (August 12, 2016): 094501. http://dx.doi.org/10.1088/0034-4885/79/9/094501.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

GERNOTH, K. A., and M. L. RISTIG. "RENORMALIZED BOSONS AND FERMIONS." International Journal of Modern Physics B 24, no. 25n26 (October 20, 2010): 4979–92. http://dx.doi.org/10.1142/s0217979210057146.

Повний текст джерела
Анотація:
Correlated Density Matrix (CDM) theory permits formal analyses of microscopic properties of strongly correlated quantum fluids and liquids at nonzero temperatures. Equilibrium properties, thermodynamic potentials, correlation and structure functions can be studied formally as well as numerically within the CDM algorithm. Here we provide the essential building blocks for studying the radial distribution function and the single-particle momentum distribution of the ingredients of the quantum systems. We focus on the statistical properties of correlated fluids and introduce the concept of renormalized bosons and fermions. These entities carry the main statistical features of the correlated systems such as liquid 4 He through their specific dependence on temperature, particle number density, and wavenumber encapsulated in their effective masses. The formalism is developed for systems of bosons and of fermions. Numerical calculations for fluid 4 He in the normal phase demonstrate the power of the renormalization concept. The formalism is further extended to analyze the Bose-Einstein condensed phases and gives a microscopic understanding of Tisza's two-fluid model for the normal and superfluid density components.
Стилі APA, Harvard, Vancouver, ISO та ін.
25

HORVATIĆ, M., and C. BERTHIER. "HIGH FIELD NMR IN STRONGLY CORRELATED LOW-DIMENSIONAL FERMIONIC SYSTEMS." International Journal of Modern Physics B 16, no. 20n22 (August 30, 2002): 3265–70. http://dx.doi.org/10.1142/s0217979202014127.

Повний текст джерела
Анотація:
We review some recent NMR results obtained in Grenoble High Magnetic Field Laboratory on magnetic field induced phenomena in strongly correlated low-dimensional fermionic systems: i) magnetic field dependence of the soliton lattice in the IC phase of the spin-Peierls system CuGeO3, ii) NMR study of the complete H-T phase diagram of the organo-metallic spin ladder Cu2(C5H12N2)2Cl4, and iii) the first "standard" NMR measurements (i.e., without optical pumping) on 2D electrons in Quantum wells, providing a detailed description of the fractional quantum Hall effect state at ν = 1/2 with the first determination of the corresponding effective polarization mass of composite fermions. Latest study of the ν = 2/3 state revealed, among other features, an unexpected phase transition.
Стилі APA, Harvard, Vancouver, ISO та ін.
26

GULOV, A. V., and V. V. SKALOZUB. "RENORMALIZABILITY AND SEARCHING FOR THE ABELIAN Z′ BOSON IN FOUR-FERMION PROCESSES." International Journal of Modern Physics A 16, no. 02 (January 20, 2001): 179–88. http://dx.doi.org/10.1142/s0217751x01002282.

Повний текст джерела
Анотація:
A model independent search for Abelian Z′ gauge boson in four-fermion processes is analyzed. It is based on a low energy effective Lagrangian parametrizing the Z′ interactions with the fermion and scalar fields of the Standard Model. These parameters are related due to the requirement of renormalizability (gauge invariance). It is found that the absolute value of the Z′ coupling to the axial-vector currents is the same for all fermions and it is strongly correlated with the Z′ coupling to the scalar field. On the base of these relations the dependences between the parameters of the effective Lagrangian constructed from dimension-six operators are derived.
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Brener, Sergey, Evgeny A. Stepanov, Alexey N. Rubtsov, Mikhail I. Katsnelson, and Alexander I. Lichtenstein. "Dual fermion method as a prototype of generic reference-system approach for correlated fermions." Annals of Physics 422 (November 2020): 168310. http://dx.doi.org/10.1016/j.aop.2020.168310.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

López-Sandoval, R., and G. M. Pastor. "Electronic properties of strongly correlated fermions in nanostructures." Journal of Physics: Condensed Matter 16, no. 22 (May 22, 2004): S2223—S2230. http://dx.doi.org/10.1088/0953-8984/16/22/023.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Vidal, Julien, Dominique Mouhanna, and Thierry Giamarchi. "Correlated Fermions in a One-Dimensional Quasiperiodic Potential." Physical Review Letters 83, no. 19 (November 8, 1999): 3908–11. http://dx.doi.org/10.1103/physrevlett.83.3908.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Karnaukhov, Igor N. "Model of Fermions with Correlated Hopping (Integrable Cases)." Physical Review Letters 73, no. 8 (August 22, 1994): 1130–33. http://dx.doi.org/10.1103/physrevlett.73.1130.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Nazarenko, Alexander, Adriana Moreo, Elbio Dagotto, and Jose Riera. "dx2−y2superconductivity in a model of correlated fermions." Physical Review B 54, no. 2 (July 1, 1996): R768—R771. http://dx.doi.org/10.1103/physrevb.54.r768.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

M�ller-Hartmann, E. "Correlated fermions on a lattice in high dimensions." Zeitschrift f�r Physik B Condensed Matter 74, no. 4 (December 1989): 507–12. http://dx.doi.org/10.1007/bf01311397.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Kim, Ki-Seok, and Akihiro Tanaka. "Emergent gauge fields and their nonperturbative effects in correlated electrons." Modern Physics Letters B 29, no. 16 (June 20, 2015): 1540054. http://dx.doi.org/10.1142/s0217984915400540.

Повний текст джерела
Анотація:
The history of modern condensed matter physics may be regarded as the competition and reconciliation between Stoner’s and Anderson’s physical pictures, where the former is based on momentum–space descriptions focusing on long wave-length fluctuations while the latter is based on real-space physics emphasizing emergent localized excitations. In particular, these two view points compete with each other in various nonperturbative phenomena, which range from the problem of high [Formula: see text] superconductivity, quantum spin liquids in organic materials and frustrated spin systems, heavy-fermion quantum criticality, metal-insulator transitions in correlated electron systems such as doped silicons and two-dimensional electron systems, the fractional quantum Hall effect, to the recently discussed Fe-based superconductors. An approach to reconcile these competing frameworks is to introduce topologically nontrivial excitations into the Stoner’s description, which appear to be localized in either space or time and sometimes both, where scattering between itinerant electrons and topological excitations such as skyrmions, vortices, various forms of instantons, emergent magnetic monopoles, and etc. may catch nonperturbative local physics beyond the Stoner’s paradigm. In this review paper, we discuss nonperturbative effects of topological excitations on dynamics of correlated electrons. First, we focus on the problem of scattering between itinerant fermions and topological excitations in antiferromagnetic doped Mott insulators, expected to be relevant for the pseudogap phase of high [Formula: see text] cuprates. We propose that nonperturbative effects of topological excitations can be incorporated within the perturbative framework, where an enhanced global symmetry with a topological term plays an essential role. In the second part, we go on to discuss the subject of symmetry protected topological states in a largely similar light. While we do not introduce itinerant fermions here, the nonperturbative dynamics of topological excitations is again seen to be crucial in classifying topologically nontrivial gapped systems. We point to some hidden links between several effective field theories with topological terms, starting with one-dimensional physics, and subsequently finding natural generalizations to higher dimensions.
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Wójs, A., та J. J. Quinn. "Spin Transition in a Correlated Liquid οf Composite Fermions". Acta Physica Polonica A 115, № 10 (січень 2009): 153–55. http://dx.doi.org/10.12693/aphyspola.115.153.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Orth, Peter P., Daniel Cocks, Stephan Rachel, Michael Buchhold, Karyn Le Hur, and Walter Hofstetter. "Correlated topological phases and exotic magnetism with ultracold fermions." Journal of Physics B: Atomic, Molecular and Optical Physics 46, no. 13 (June 24, 2013): 134004. http://dx.doi.org/10.1088/0953-4075/46/13/134004.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Schulz, H. J. "Effective action for strongly correlated fermions from functional integrals." Physical Review Letters 65, no. 19 (November 5, 1990): 2462–65. http://dx.doi.org/10.1103/physrevlett.65.2462.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Mele, E. J. "Jastrow states for highly correlated two-dimensional Hubbard fermions." Physical Review B 40, no. 4 (August 1, 1989): 2670–73. http://dx.doi.org/10.1103/physrevb.40.2670.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Kuroda, K., T. Tomita, M. T. Suzuki, C. Bareille, A. A. Nugroho, P. Goswami, M. Ochi, et al. "Evidence for magnetic Weyl fermions in a correlated metal." Nature Materials 16, no. 11 (September 25, 2017): 1090–95. http://dx.doi.org/10.1038/nmat4987.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Brunner, M., and A. Muramatsu. "Quantum Monte Carlo simulations of infinitely strongly correlated fermions." Physical Review B 58, no. 16 (October 15, 1998): R10100—R10103. http://dx.doi.org/10.1103/physrevb.58.r10100.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Poilblanc, Didier. "Exact diagonalisation studies of strongly correlated 2D lattice fermions." Journal of Low Temperature Physics 99, no. 3-4 (May 1995): 481–86. http://dx.doi.org/10.1007/bf00752327.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Metzner, Walter. "Variational theory for correlated lattice fermions in high dimensions." Zeitschrift f�r Physik B Condensed Matter 77, no. 2 (June 1989): 253–66. http://dx.doi.org/10.1007/bf01313669.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Takeda, Koujin, and Ikuo Ichinose. "Effects of Correlated Noise in Random-Mass Dirac Fermions." Journal of the Physical Society of Japan 71, no. 9 (September 15, 2002): 2216–23. http://dx.doi.org/10.1143/jpsj.71.2216.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Sebold, Joel H., and J. K. Percus. "Model derived reduced density matrix restrictions for correlated fermions." Journal of Chemical Physics 104, no. 17 (May 1996): 6606–12. http://dx.doi.org/10.1063/1.471379.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

NOGUEIRA, FLAVIO S., and ENRIQUE V. ANDA. "STUDY ON A TOY MODEL OF STRONGLY CORRELATED ELECTRONS." International Journal of Modern Physics B 10, no. 27 (December 15, 1996): 3705–15. http://dx.doi.org/10.1142/s0217979296002014.

Повний текст джерела
Анотація:
A toy model of strongly correlated fermions is studied using Green function and functional integration methods. The model exhibits a metal-insulator transition as the interaction is varied. In the case of unrestricted hopping an equivalence of the model with the Hubbard model with infinite range hopping is established. The generalization to the case with N components is made.
Стилі APA, Harvard, Vancouver, ISO та ін.
45

CHAKRAVERTY, B. K. "ATTRACTIVE CORRELATED ELECTRON-PAIR GROUND STATE OF RESONANT BOSONS." Modern Physics Letters B 07, no. 02 (January 20, 1993): 97–107. http://dx.doi.org/10.1142/s0217984993000138.

Повний текст джерела
Анотація:
We consider a strictly one-band Hamiltonian of electrons with attractive interaction between them. We show that in the interesting intermediate density regime, where V ≤ ε F , the system admits a mixed state of free fermions and dynamic correlated pairs or resonant bosons. The inevitable coupling between the two sub-system produces a superconducting ground state. This should be called Schafroth Condensation.
Стилі APA, Harvard, Vancouver, ISO та ін.
46

CARR, SAM T., JORGE QUINTANILLA, and JOSEPH J. BETOURAS. "DECONFINEMENT AND QUANTUM LIQUID CRYSTALLINE STATES OF DIPOLAR FERMIONS IN OPTICAL LATTICES." International Journal of Modern Physics B 23, no. 20n21 (August 20, 2009): 4074–86. http://dx.doi.org/10.1142/s0217979209063262.

Повний текст джерела
Анотація:
We describe a simple model of fermions in quasi-one dimension that features interaction-induced deconfinement (a phase transition where the effective dimensionality of the system increases as interactions are turned on) and which can be realised using dipolar fermions in an optical lattice1. The model provides a relisation of a "soft quantum matter" phase diagram of strongly-correlated fermions, featuring meta-nematic, smectic and crystalline states, in addition to the normal Fermi liquid. In this paper we review the model and discuss in detail the mechanism behind each of these transitions on the basis of bosonization and detailed analysis of the RPA susceptibility.
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Nishi, Kazuhisa. "Theory of high-temperature superconductivity in strongly correlated fermions system." Journal of Physics: Conference Series 871 (July 2017): 012033. http://dx.doi.org/10.1088/1742-6596/871/1/012033.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Meng, Z. Y., T. C. Lang, S. Wessel, F. F. Assaad, and A. Muramatsu. "Quantum spin liquid emerging in two-dimensional correlated Dirac fermions." Nature 464, no. 7290 (April 2010): 847–51. http://dx.doi.org/10.1038/nature08942.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Gabay, M., and P. Lederer. "Resistivity in the spin-gap phase of strongly correlated fermions." Physical Review B 47, no. 21 (June 1, 1993): 14462–66. http://dx.doi.org/10.1103/physrevb.47.14462.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Khveshchenko, D. V. "Dirac fermions in a power-law–correlated random vector potential." EPL (Europhysics Letters) 82, no. 5 (May 27, 2008): 57008. http://dx.doi.org/10.1209/0295-5075/82/57008.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії