Добірка наукової літератури з теми "Copper, Zinc, Aluminum (CZA)"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Copper, Zinc, Aluminum (CZA)".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Copper, Zinc, Aluminum (CZA)"
Xie, Zhong, Jinpei Hei, Lei Cheng, Jing Li, Xiaojie Yin, and Sugang Meng. "Influence of Cu/Al Ratio on the Performance of Carbon-Supported Cu/ZnO/Al2O3 Catalysts for CO2 Hydrogenation to Methanol." Catalysts 13, no. 5 (April 25, 2023): 800. http://dx.doi.org/10.3390/catal13050800.
Повний текст джерелаKrasnobaeva, O. N., V. P. Danilov, T. A. Nosova, E. V. Bazhenova, and E. Yu Georgievskaya. "ChemInform Abstract: Zinc Aluminum, Copper Aluminum, and Zinc Copper Aluminum Hydroxo Salts with a Layered Hydrotalcite-Type Structure." ChemInform 30, no. 31 (June 14, 2010): no. http://dx.doi.org/10.1002/chin.199931024.
Повний текст джерелаDuma, Zama G., Xoliswa Dyosiba, John Moma, Henrietta W. Langmi, Benoit Louis, Ksenia Parkhomenko, and Nicholas M. Musyoka. "Thermocatalytic Hydrogenation of CO2 to Methanol Using Cu-ZnO Bimetallic Catalysts Supported on Metal–Organic Frameworks." Catalysts 12, no. 4 (April 5, 2022): 401. http://dx.doi.org/10.3390/catal12040401.
Повний текст джерелаRaghavan, V. "Al-Cu-Zn (Aluminum-Copper-Zinc)." Journal of Phase Equilibria and Diffusion 28, no. 2 (April 17, 2007): 183–88. http://dx.doi.org/10.1007/s11669-007-9025-x.
Повний текст джерелаRaghavan, V. "Al-Cu-Zn (Aluminum-Copper-Zinc)." Journal of Phase Equilibria and Diffusion 31, no. 1 (December 1, 2009): 41–42. http://dx.doi.org/10.1007/s11669-009-9620-0.
Повний текст джерелаRaghavan, V. "Al-Cu-Mg-Zn (Aluminum-Copper-Magnesium-Zinc)." Journal of Phase Equilibria and Diffusion 28, no. 2 (April 26, 2007): 211–12. http://dx.doi.org/10.1007/s11669-007-9032-y.
Повний текст джерелаLi, Bin, Jiancheng Li, Rui Liu, Hongping Zhu, and Herbert W. Roesky. "Facile Route to Rare Heterobimetallic Aluminum–Copper and Aluminum–Zinc Selenide Clusters." Inorganic Chemistry 56, no. 6 (March 7, 2017): 3136–39. http://dx.doi.org/10.1021/acs.inorgchem.7b00012.
Повний текст джерелаКомарова, М. В., and А. Г. Вакутин. "INVESTIGATION OF THE INTERACTION OF UDP METALS WITH PRODUCTS OF THERMAL DECOMPOSITION OF TETRAZOLE BINDER." Южно-Сибирский научный вестник, no. 6(40) (December 20, 2021): 276–80. http://dx.doi.org/10.25699/sssb.2021.40.6.041.
Повний текст джерелаFridlyander, I. N. "High-Strength Aluminum Alloys with Zinc, Magnesium, and Copper." Metal Science and Heat Treatment 45, no. 9/10 (September 2003): 341–43. http://dx.doi.org/10.1023/b:msat.0000009777.50737.71.
Повний текст джерелаKolenak, Roman, Igor Kostolny, Jaromir Drapala, Paulina Babincova, and Martin Sahul. "Characterizing the Soldering Alloy Type Zn–Al–Cu and Study of Ultrasonic Soldering of Al7075/Cu Combination." Metals 11, no. 1 (December 25, 2020): 27. http://dx.doi.org/10.3390/met11010027.
Повний текст джерелаДисертації з теми "Copper, Zinc, Aluminum (CZA)"
Duran, Martinez Laura Elizabeth. "Dévelοppement et οptimisatiοn d'un prοcédé de prοductiοn de mοlécules d'intérêt par hydrοgénatiοn du CΟ2 à partir d'hydrοgène renοuvelable". Electronic Thesis or Diss., Normandie, 2024. http://www.theses.fr/2024NORMIR21.
Повний текст джерелаThe transition from fossil fuels to renewable energy sources is becoming increasingly urgent due to their significant contribution to global climate change. The rising levels of carbon dioxide in the atmosphere highlight the critical need for sustainable alternatives. Converting CO₂ into value-added molecules (energy carriers) offers a promising solution to reduce reliance on fossil fuels. This thesis explores the potential of the catalytic hydrogenation of CO₂ to produce value-added chemicals such as methane, methanol, and dimethyl ether (DME). These processes not only offer a means to reduce CO₂ emissions but also provide a path toward sustainable fuel production. The research explores various catalytic processes, with a particular emphasis on thermal catalysis due to its higher efficiency and suitability for industrial implementation. The one-step CO₂ hydrogenation to DME is the case of study. Preliminary experiments were conducted into a laboratory fixed bed reactor to better understand catalyst performance. Different catalysts were tested for DME synthesis. Since the reactions that take place into CO₂ hydrogenation to DME comprise the methanol synthesis from CO₂ followed by methanol dehydration, a mixture of catalysts was done for the direct DME synthesis. For the powder mixture, two different CuO/ZnO/Al₂O₃ (CZA) catalysts, one commercial and one developed, were tested for methanol synthesis and two CZA zeolites (HY and HZSM-5) were tested for methanol dehydration. The physical mixture of CZA-C plus HZSM-5 was chosen for further analysis. The effect of temperature, pressure, feed molar ratio (H₂/CO₂) and gas hourly space velocity (GHSV) were assessed for the development of the kinetics of DME synthesis. A Langmuir–Hinshelwood kinetic model for methanol synthesis was proposed, along with a novel relationship for methanol dehydration to DME, since the reaction is not at equilibrium. An Optimal Temperature Profile (OTP) reactor integrating the kinetic model developed was studied for precise temperature control to maximise CO₂ conversion. Simulations and optimisations confirmed that longer residence times by adjusting catalysts mass is more effective for higher CO₂ conversion. A minimal advantage (<1%) was identified in terms of CO₂ conversion for the OTP reactor over an isothermal reactor. However, the combined productivity of DME and methanol had a better performance (>4.4%) over the isothermal reactor. An OTP multi-tubular reactor with variable coolant temperature, comprising 958 tubes, achieved 34.18% CO₂ conversion and a combined methanol and DME production rate of 30.84 mol.h⁻¹ per tube, approaching to thermodynamic equilibrium without recirculation
Subramaniam, Ameendraraj. "Fatigue behavior of copper zinc aluminum shape memory alloys." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/tape17/PQDD_0013/MQ32256.pdf.
Повний текст джерелаGoulding, Ashley Nelson. "Implementing the materials genome initiative: Best practice for developing meaningful experimental data sets in aluminum-zinc-magnesium-copper alloys." Diss., Georgia Institute of Technology, 2016. http://hdl.handle.net/1853/55016.
Повний текст джерелаFahad, Noor. "Experimental study of oxidation, ignition and combustion of aluminum based nanomaterials." Thesis, Queen Mary, University of London, 2014. http://qmro.qmul.ac.uk/xmlui/handle/123456789/8777.
Повний текст джерелаZhang, Xian. "Atmospheric corrosion of zinc-aluminum and copper-based alloys in chloride-rich environments : Microstructure, corrosion initiation, patina evolution and metal release." Doctoral thesis, KTH, Yt- och korrosionsvetenskap, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-151180.
Повний текст джерелаBättre molekylär förståelse för metallers atmosfäriska korrosion kräver en fördjupad kunskap i det dynamiska samspelet mellan atmosfärens korrosiva beståndsdelar och metallytan. Denna doktorsavhandling omfattar laboratorie- och fältundersökningar av korrosions- och metallfrigöringsprocesser av två grupper av legeringar som exponerats i kloridrika atmosfärsmiljöer: två kommersiella Zn-Al beläggningar på stål, Galfan™ (Zn med 5% Al, förkortat Zn5Al) och Galvalume™ (Zn55Al), samt fyra kopparbaserade legeringar (Cu4Sn, Cu15Zn, Cu40Zn och Cu5Zn5Al). Undersökningar har genomförts i renodlade laboratorie-miljöer med för-deponerade NaCl-partiklar i en atmosfär av varierande relativ fuktighet. Syftet har varit att utvärdera betydelsen av kloriders deposition och legeringarnas mikrostruktur på korrosionsmekanismen samt bildandet av korrosionsprodukter. Jämförelser av korrosionsmekanismer har även gjorts efter flerårsexponeringar av samma legeringar i en marin fältmiljö i Brest, Frankrike. Undersökningarna har baserats på ett brett spektrum av analysmetoder för detaljerade studier dels under pågående atmosfärisk korrosion (in-situ), och dels efter avslutad korrosion (ex-situ). Legeringarnas mikrostruktur och tillhörande variation i ädelhet hos olika faser har undersökts med svepelektronmikroskopi och energidispersiv röntgenmikroanalys (SEM/EDS) samt med en variant av atomkraftsmikroskopi (engelska: scanning Kelvin probe force microscopy, SKPFM). Korrosionsprodukternas tillväxt har analyserats in-situ med infraröd reflektions-absorptionsspektroskopi (IRAS), samt morfologi och sammansättning av bildade korrosionsprodukter ex-situ med SEM/EDS, konfokal Raman mikro-spektroskopi (CRM) samt röntgendiffraktion vid strykande ifall (GIXRD). Det multi-analytiska tillvägagångssättet har medfört att det komplexa samspelet mellan de skilda legeringarnas mikrostruktur, korrosionsinitiering och bildandet av korrosionsprodukter kunnat studeras i detalj. En tydlig påverkan av mikrostruktur på det initiala korrosionsförloppet har kunnat påvisas. Korrosionsinitieringen sker företrädesvis i mer zinkrika faser för såväl Zn-Al- som Cu-Zn-legeringar och orsakas av mikro-galvaniska effekter mellan de mer zinkrika, mindre ädla, faserna och omgivande faser. Deponerade NaCl-partiklar påskyndar den lokala korrosionen oberoende av mikrostruktur. Snarlika sekvenser av korrosionsprodukter har kunnat påvisas såväl efter laboratorie- som fältexponeringar. För Zn-Al-legeringar bildas först ZnO, ZnAl2O4 och/eller Al2O3, därefter Zn6Al2(OH)16CO3·4H2O och Zn2Al(OH)6Cl·2H2O och/eller Zn5(OH)8Cl2·H2O. På ren koppar bildas ett inre skikt dominerat av Cu2O, ett mellanskikt av CuCl och ett yttre skikt med i huvudsak Cu2(OH)3Cl. Beroende på legeringstillsats har även SnO2 och Zn5(OH)6(CO3)2 kunnat identifieras. En mekanism för flagning av korrosionsprodukter på kopparbaserade legeringar i kloridrika atmosfärer har utvecklats. Tendensen för flagning har visat sig vara mycket mer uttalad på ren Cu och Cu4Sn än på Cu15Zn och Cu5Al5Zn. Skillnaden kan förklaras med hjälp av det tidiga bildandet av Zn5(OH)6(CO3)2 och Zn6Al2(OH)16CO3·4H2O på Cu15Zn och Cu5Al5Zn som fördröjer bildandet av CuCl, en föregångare till Cu2(OH)3Cl. Därigenom hämmas även den observerade volymexpansionen som sker när CuCl omvandlas till Cu2(OH)3Cl, en process som visar sig vara den egentliga orsaken till att korrosionsprodukterna flagar. Resultaten bekräftar barriäreffekten hos de mer svårlösliga faserna Zn5(OH)6(CO3)2 och Zn6Al2(OH)16CO3·4H2O, vilken dels resulterar i en minskad växelverkan mellan klorider och de legeringsytor där dessa faser kan bildas, och dels i en reducerad metallfrigöringshastighet.
QC 20140915
Autocorr, RFSR-CT-2009-00015 Corrosion of heterogeneous metal-metal assemblies in the automotive industry
Atmospheric corrosion and environmental metal dispersion from outdoor construction materials
Hammoud, Dima. "Synthèses et caractérisations d'oxydes mixtes à base de cuivre, zinc et aluminium issus de précurseurs de type hydrotalcite : Application pour la réaction de vaporeformage du biométhanol." Thesis, Littoral, 2015. http://www.theses.fr/2015DUNK0381/document.
Повний текст джерелаSome catalysts based on Cu, Zn and Al were prepared by hydrotalcite road to be tested in the steam reforming of biomethanol to produce hydrogen. For the dried solids CuxZn₆₋xAl₂, whatever the copper content, the hydrotalcite phase was revealed by different physico-chemical characterizations (XRD, SEM, DTA-GTA). The calcination of hydrotalcites allows to generate a mixture of oxides with interesting properties such non-respect of stoichiometry, high thermal stability, high surface area. The solid, Cu₄Zn₂Al₂ HT calcined at 500° C shows the highest conversion rates and selectivities of H₂ with a low formation of CO at high temperatures. This best performance is due to the presence of an optimum of copper species reduced Cu⁺,CU⁰. Furthermore, copper-based supported solids using Zn-Al hydrotalcite as a precursor of the support were synthesized. The characterization of impregnated solids showed their partial reconstructions by "memory effect" as hydrotalcite during impregnation of Cu. The catalytic performance of these calcined solids depends on the temperature of calcination of the hydrotalcite support, of the sample and of the impregnated copper content. The solid 10% Cu/Zn-Al (500) 500 presents the best activity in the study of steam reforming of methanol. Meanwhile, a reaction mechanism containing methyl formate and formic acid as intermediate compounds has been proposed for the steam reforming of methanol in the presence of these catalysts
Andrade, Milton. "Heavy metal removal from bilge water by electrocoagulation treatment." ScholarWorks@UNO, 2009. http://scholarworks.uno.edu/td/1092.
Повний текст джерелаCaraher, Sally Kate 1974. "Clustering and precipitation processes in age-hardened Al-Zn-Mg-(Ag, Cu) alloys." Monash University, School of Physics and Materials Engineering, 2002. http://arrow.monash.edu.au/hdl/1959.1/7803.
Повний текст джерелаHuang, Yulin, and 黃鈺琳. "Corrosion Behavior Studies on Copper, Zinc and Aluminum in Sulfur Containing Environment." Thesis, 2012. http://ndltd.ncl.edu.tw/handle/69q73h.
Повний текст джерела中國文化大學
化學工程與材料工程學系奈米材料碩士班
100
In this study, zinc, aluminum and copper, three basic metallic materials, according to the requirement of ISO as well as CNS, nearby the Beitou hot springs were evaluated. Two locations were selected; they are Dun-Xu Technical School and Xin-Min Junior High School, for the accommodation of the exposure facilities, based on their chemical of sulfur compounds and one location (Xin-Min Junior High School) even contains HCl. Analysis of weight loss, electrochemical polarization and surface analysis of the corrosion products were analyzed by XRD and XPS. The corrosion products pf zinc and copper are mainly composed of ZnS and ZnO for the zinc, and Cu2S, CuS, Cu2O and CuO for the copper; CuCl and CuCl2 are also observed at the exposure site of Xin-Min Junior High School. Aluminum only takes the oxide form of Al2O3 which is usually protective; no sulfide was observed on aluminum. It may conclude that aluminum is corrosion-resistant in sulfur containing environments. Based on the results up to a 90 days study, it is by no means a complete coverage of the corrosion products and continuously grow at this stage of observation. It is necessary to further keep on the track of the development of surface structure and chemistry of the exposures in the two test sites.
Huang, Chih-Wei, and 黃志瑋. "Studies on Characterization Analysis of Copper、Aluminum and Zinc Reaction Products in Sulfur-Containing Atmosphere." Thesis, 2013. http://ndltd.ncl.edu.tw/handle/91941699131461086966.
Повний текст джерела中國文化大學
化學工程與材料工程學系奈米材料碩士班
101
Taiwan is a semi-tropical island sorrouned by the sea.with a high temperature, high humidity and high salinity of the environments. coupled with the results of air pollution, can therefore be considered severe corrosive environments. Beitou and Yangmingshan area with high contents is located in the northern part of Taiwan's famous hot spring area sulfur. However local sulfur-related research, especially for Beitou and Yangmingshan area is very rare. Various construction often quoted foreign data regarding atmospheric corrosion and corrosion design. The results are ofthen less than the design life, to have the rust damage. Therefore, to control the atmospheric corrosion of the metal structures in particularly important. This research project is focused on copper, aluminum and zinc wires exposing in Beitou and Yangmingshan area for field testing, according to the ISO and CNS specifications regarding of corrosion rate monitoring to analyze the structure and chemistry of the corrosion products, While to compare the three metal corrosion rates and the related corrosion mechanisms. The environment data from Beitou and Yangmingshan area is estimated to RH> 80% almost all year round, sea salt deposition less than 10 mg/m2/day 10km away from the coastline, but the area in the vicinity of the hot spring contain significantly higher chloride ions, and the SO2 content in hot spring area should be greater than the value cited from the relevant literature 200mg/m2/day. The atmospheric corrosion test results from Beitou and Yangmingshan region show that the classification to the ISO or CNS from the year-round test of copper, aluminum and zinc corrosion rate. However, the result also indicate a tendency for increasing.
Книги з теми "Copper, Zinc, Aluminum (CZA)"
Diecasting Development Council (North American Die Casting Association), ed. NADCA product specification standards for die castings: Aluminum, aluminum-MMC, copper, magnesium, zinc, and ZA alloys. La Grange, Ill: The Council, 1994.
Знайти повний текст джерелаIlczuk, Jan. Zjawiska tarcia wewnętrznego występujące podczas odwracalnej przemiany martenzytycznej stopów Cu-Zn-Al. Katowice: Uniwersytet Śląski, 1993.
Знайти повний текст джерелаQuébec. École des hautes études commerciales. Pricing Behaviour and Market Power in North American Aluminum, Copper, Lead and Zinc Industries. S.l: s.n, 1985.
Знайти повний текст джерелаSweet, Beryle G., and Thomas C. Britton, eds. Atmospheric Corrosion Investigation of Aluminum-Coated, Zinc-Coated, and Copper-Bearing Steel Wire and Wire Products. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959: ASTM International, 1995. http://dx.doi.org/10.1520/ds65-eb.
Повний текст джерелаUnited States. Office of Strategic Resources., ed. The Domestic mining and processing industries: A strategic resource, as represented by aluminum, copper, lead, and zinc. [Washington, D.C.]: U.S. Dept. of Commerce, Office of Strategic Resources, 1986.
Знайти повний текст джерелаUnited States. Office of Strategic Resources., ed. The Domestic mining and processing industries: A strategic resource, as represented by aluminum, copper, lead, and zinc. [Washington, D.C.]: U.S. Dept. of Commerce, Office of Strategic Resources, 1987.
Знайти повний текст джерелаIdziak, Adam. Anizotropia prędkości fal sejsmicznych i jej związek z orientacją systemów spękań masywów skalnych. Katowice: Uniwersytet Śląski, 1992.
Знайти повний текст джерелаSweet, Beryle G. Atmospheric corrosion investigation of aluminum-coated, zinc-coated, and copper-bearing steel wire and wire products: A thirty-two year report. Philadelphia, PA, U.S.A: ASTM, 1995.
Знайти повний текст джерелаThe Domestic mining and processing industries: A strategic resource, as represented by aluminum, copper, lead, and zinc. [Washington, D.C.]: U.S. Dept. of Commerce, Office of Strategic Resources, 1987.
Знайти повний текст джерелаThe Domestic mining and processing industries: A strategic resource, as represented by aluminum, copper, lead, and zinc. [Washington, D.C.]: U.S. Dept. of Commerce, Office of Strategic Resources, 1987.
Знайти повний текст джерелаЧастини книг з теми "Copper, Zinc, Aluminum (CZA)"
Cohen, Mitchell D. "Other Metals: Aluminum, Copper, Manganese, Selenium, Vanadium, and Zinc." In Pulmonary Immunotoxicology, 267–99. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/978-1-4615-4535-4_11.
Повний текст джерелаSubramaniam, A., N. Rajapakse, D. Polyzois, and B. Yue. "Low-Cycle Fatigue Behavior of Copper Zinc Aluminum Shape Memory Alloys." In Smart Structures, 337–44. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4611-1_38.
Повний текст джерелаKawabata, Hiroyuki, Naohisa Nishino, Tsuyoshi Seguchi, and Yoshikazu Genma. "Influence of Aluminum Content on Corrosion Resistance of Mg-Al Alloys Containing Copper and Zinc." In Magnesium Technology 2012, 277–80. Cham: Springer International Publishing, 2012. http://dx.doi.org/10.1007/978-3-319-48203-3_51.
Повний текст джерелаKawabata, Hiroyuki, Naohisa Nishino, Tsuyoshi Seguchi, and Yoshikazu Genma. "Influence of Aluminum Content on Corrosion Resistance of Mg-Al Alloys Containing Copper and Zinc." In Magnesium Technology 2012, 277–80. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118359228.ch51.
Повний текст джерелаKotowski, Marek. "The Role of Organic Matter and Aluminum in Zinc and Copper Transport through Forest Podsol Soil Profiles." In Chemistry for the Protection of the Environment 3, 255–63. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4757-9664-3_29.
Повний текст джерела"Aluminum Casting Alloys." In Aluminum Alloy Castings, 7–20. ASM International, 2004. http://dx.doi.org/10.31399/asm.tb.aacppa.t51140007.
Повний текст джерела"Approximate Composition of Materials." In Extrusion, 567–77. 2nd ed. ASM International, 2006. http://dx.doi.org/10.31399/asm.tb.ex2.t69980567.
Повний текст джерелаAkopyan, Torgom, Nikolay Belov, and Evgenia Naumova. "Calcium-Containing Aluminum Alloys." In Encyclopedia of Aluminum and Its Alloys. Boca Raton: CRC Press, 2019. http://dx.doi.org/10.1201/9781351045636-140000264.
Повний текст джерелаThampi, Sherin, Alan K. Joy, Albin Varghese, Anoop Raj, Alen Mathew, Merrin John Varkey, and Krishna P. Yagati. "Dissimilar Metal Inert Gas Welding Characterization of Aluminum and Copper using Zinc Interlayer." In Emerging Technologies for Sustainability, 519–23. CRC Press, 2020. http://dx.doi.org/10.1201/9780429353628-67.
Повний текст джерела"Front Matter." In Atmospheric Corrosion, FM1—FM8. ASTM International100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, 1995. http://dx.doi.org/10.1520/stp14908s.
Повний текст джерелаТези доповідей конференцій з теми "Copper, Zinc, Aluminum (CZA)"
Sánchez, Yuly, Luis Rodríguez Cheu, Jairo Romero, Mehrab Mehrvar, Lynda McCarthy, Édgar Quiñones, and Alexander Reuβ. "Presence of metals in a ferruginous hot spring in the Cundinamarca region, Colombia." In Ingeniería para transformar territorios. Asociación Colombiana de Facultades de Ingeniería - ACOFI, 2023. http://dx.doi.org/10.26507/paper.2929.
Повний текст джерелаMurakami, K., and M. Shimada. "Development of Thermal Spray Coatings with Corrosion Protection and Antifouling Properties." In ITSC2009, edited by B. R. Marple, M. M. Hyland, Y. C. Lau, C. J. Li, R. S. Lima, and G. Montavon. ASM International, 2009. http://dx.doi.org/10.31399/asm.cp.itsc2009p1041.
Повний текст джерелаChang, Shang-Chou, and Jian-Syun Wu. "Antibacterial and Thermal Insulated Property of Sputtered Copper/Aluminum-Doped Zinc Oxide Films." In IEEE ICEIB 2024, 22. Basel Switzerland: MDPI, 2024. http://dx.doi.org/10.3390/engproc2024074022.
Повний текст джерелаAhmed, Mohd Mujeeb, and Tirupati Kadam. "Development and investigation of aluminum metal matrix composite reinforced with copper, nickel, zinc and silicon carbide particle." In 1ST INTERNATIONAL CONFERENCE ON MANUFACTURING, MATERIAL SCIENCE AND ENGINEERING (ICMMSE-2019). AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5141192.
Повний текст джерелаChumaevskii, A. V., A. V. Gusarova, L. L. Zhukov, V. A. Beloborodov, and A. N. Ivanov. "Mechanical properties and adhesion of copper-zinc coatings formed on the aluminum alloy surface by friction stir processing." In PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ADVANCED MATERIALS WITH HIERARCHICAL STRUCTURE FOR NEW TECHNOLOGIES AND RELIABLE STRUCTURES 2019. AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5131927.
Повний текст джерелаChan, Huang-Tian, Shang-Chou Chang, Chuan-An Hsiao, and Jian-Syun Wu. "In-Line Sputtered Copper/Aluminum-Doped Zinc Oxide Films on Glass Prepared for Energy-Saving and Antibacterial Function." In 2023 18th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT). IEEE, 2023. http://dx.doi.org/10.1109/impact59481.2023.10348665.
Повний текст джерелаInui, Hirotoshi, Toru Sakurai, Eiichi Sato, Tadashi Minoda, and Yasuhiro Nakai. "Development of Low Cost Aluminum Tapered Handlebar for Motorcycles." In JSAE/SAE Small Engine Technologies Conference & Exhibition. 10-2 Gobancho, Chiyoda-ku, Tokyo, Japan: Society of Automotive Engineers of Japan, 2017. http://dx.doi.org/10.4271/2017-32-0056.
Повний текст джерелаPapyrin, A. N., A. P. Alkimov, and V. F. Kosarev. "Spraying the Current Conducting Coatings on Electrotechnical Unit by the CGS Method." In ITSC 1999, edited by E. Lugscheider and P. A. Kammer. Verlag für Schweißen und verwandte Verfahren DVS-Verlag GmbH, 1999. http://dx.doi.org/10.31399/asm.cp.itsc1999p0288.
Повний текст джерелаChumaevskii, A. V., A. V. Gusarova, L. L. Zhukov, V. A. Beloborodov, and A. N. Ivanov. "Structural-phase state of copper-zinc alloy coatings formed on the surface of aluminum alloy by friction stir processing." In PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ADVANCED MATERIALS WITH HIERARCHICAL STRUCTURE FOR NEW TECHNOLOGIES AND RELIABLE STRUCTURES 2019. AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5131929.
Повний текст джерелаStoltenhoff, T., J. Voyer, and H. Kreye. "Cold Spraying – State of the Art and Applicability." In ITSC2002, edited by C. C. Berndt and E. Lugscheider. Verlag für Schweißen und verwandte Verfahren DVS-Verlag GmbH, 2002. http://dx.doi.org/10.31399/asm.cp.itsc2002p0366.
Повний текст джерела