Статті в журналах з теми "Coordination Polymers - Crystal Engineering Approach"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Coordination Polymers - Crystal Engineering Approach.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Coordination Polymers - Crystal Engineering Approach".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Mukherjee, Gargi, and Kumar Biradha. "Topological Equivalences between Coordination Polymer and Co-crystal: A Tecton Approach in Crystal Engineering." Crystal Growth & Design 14, no. 2 (January 15, 2014): 419–22. http://dx.doi.org/10.1021/cg401858s.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Tsuruoka, Takaaki, Yuri Miyashita, Ryuki Yoshino, Myu Fukuoka, Shoya Hirao, Yohei Takashima, Aude Demessence, and Kensuke Akamatsu. "Rational and site-selective formation of coordination polymers consisting of d10 coinage metal ions with thiolate ligands using a metal ion-doped polymer substrate." RSC Advances 12, no. 6 (2022): 3716–20. http://dx.doi.org/10.1039/d2ra00269h.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Singh, Monika, Jency Thomas, and Arunachalam Ramanan. "Understanding Supramolecular Interactions Provides Clues for Building Molecules into Minerals and Materials: a Retrosynthetic Analysis of Copper-Based Solids." Australian Journal of Chemistry 63, no. 4 (2010): 565. http://dx.doi.org/10.1071/ch09427.

Повний текст джерела
Анотація:
The influence of non-covalent interactions on the crystal packing of molecules is well documented in the literature. Unlike molecular solids, crystal engineering of non-molecular solids is difficult to interpret as aggregation is complicated by the presence of neutral as well as ionic species and a range of forces operating, from weak hydrogen bonding to strong covalent interactions. In this perspective, we demonstrate for the first time the role of non-bonding interactions in the occurrence of oxide, hydroxide, or chloride linkages in oxides, hydroxychlorides, and chlorides of copper-based minerals and coordination polymers in terms of a mechanistic approach based on supramolecular retrosynthesis. The model proposed here visualizes the crystal nucleus as a supramolecular analogue of a transition state wherein appropriate tectons (chemically reasonable molecules) aggregate through non-bonding forces that can be perceived through well-known supramolecular synthons. The mechanistic approach provides chemical insights into the occurrence of different topologies and solid-state phenomena like polymorphism.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Liebing, Phil, Florian Oehler, and Juliane Witzorke. "Zn/Ni and Zn/Pd Heterobimetallic Coordination Polymers with [SSC-N(CH2COO)2]3− Ligands." Crystals 10, no. 6 (June 13, 2020): 505. http://dx.doi.org/10.3390/cryst10060505.

Повний текст джерела
Анотація:
In the construction of heterobimetallic coordination polymers based on dithiocarbamato–carboxylate (DTCC ligands), platinum as a thiophilic metal center can be replaced by the cheaper nickel or palladium. The compounds Zn[Pd(HL)2] and Zn2[M(L)2] (M = Ni, Pd; L = {SSC-N(CH2COO)2}3−) were prepared in a sequential approach starting from K3(L). The products were characterized by IR and NMR spectroscopy, thermal analyses, and single-crystal X-ray diffraction. The products decompose under nitrogen between 300 and 400 °C. Zn[Pd(HL)2] · 6H2O forms polymeric chains in the solid state, and the Zn2[M(L)2] · 14H2O (M = Ni, Pd) exhibit two-dimensional polymeric structures, each being isotypic with the respective Zn/Pt analogs. While the carboxylate groups in all these products are coordinated to zinc in a κO-monodentate mode, a structural variant of Zn2[Ni(L)2] having κO:κO′-briding carboxylate groups was also obtained. Exchange of the metal sites in the two Ni/Zn compounds was not observed, and these compounds are therefore diamagnetic.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Zheng, Xubin, Ruiqing Fan, Kai Xing, Ke Zhu, Ping Wang, and Yulin Yang. "Smart cationic coordination polymer: A single-crystal-to-single-crystal approach for simultaneous detection and removal of perchlorate in aqueous media." Chemical Engineering Journal 380 (January 2020): 122580. http://dx.doi.org/10.1016/j.cej.2019.122580.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Zhang, Yuxuan, Zheng Wei, and Evgeny V. Dikarev. "Synthesis, Structure, and Characterizations of a Heterobimetallic Heptanuclear Complex [Pb2Co5(acac)14]." Crystals 13, no. 7 (July 12, 2023): 1089. http://dx.doi.org/10.3390/cryst13071089.

Повний текст джерела
Анотація:
An unusual heterobimetallic volatile compound [Pb2Co5(acac)14] was synthesized by the gas phase/solid-state technique. The preparation can be readily scaled up using the solution approach. X-ray powder diffraction, ICP-OES analysis, and DART mass spectrometry were engaged to confirm the composition and purity of heterobimetallic complex. The composition is unique among the large family of lead(tin): transition metal = 2:1, 1:1, and 1:2 β-diketonates compounds that are mostly represented by coordination polymers. The molecular structure of the complex was elucidated by synchrotron single crystal X-ray diffraction to reveal the unique heptanuclear moiety {Co(acac)2[Pb(acac)2-Co(acac)2-Co(acac)2]2} built upon bridging interactions of acetylacetonate oxygens to neighboring metal centers that bring their coordination numbers to six. The appearance of unique heptanuclear assembly can be attributed to the fact that the [Co(acac)2] units feature both cis- and trans-bis-bridging modes, making the polynuclear moiety rather flexible. This type of octahedral coordination is relatively unique among known lead(tin)-3d transition metal β-diketonates. Due to the high-volatility, [Pb2Co5(acac)14] can be potentially applied as a MOCVD precursor for the low-temperature preparation of lead-containing functional materials.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Hanifehpour, Younes, Jaber Dadashi, and Babak Mirtamizdoust. "Ultrasound-Assisted Synthesis and Crystal Structure of Novel 2D Cd (II) Metal–Organic Coordination Polymer with Nitrite End Stop Ligand as a Precursor for Preparation of CdO Nanoparticles." Crystals 11, no. 2 (February 17, 2021): 197. http://dx.doi.org/10.3390/cryst11020197.

Повний текст джерела
Анотація:
In the present research, a sonochemical approach was applied to prepare new cadmium(II) coordination 2D polymer, [Cd(L)(NO2)2]n (L = 1,2-bis(1-(pyridin-3-yl)ethylidene)hydrazine) and structurally characterized with various spectroscopic techniques including XRD, elemental analysis, SEM, and IR spectroscopy. The coordination number of cadmium (II) ions is seven (CdN2O5) by two nitrogen atoms from two organic Schiff base ligand and five oxygen of nitrite anions. The 2D sheet structures ended by nitrite anions and the nitrite anion displayed the end-stop role. The comprehensive system showed a three-dimensional structure with several weak interactions. The high-intensity ultrasound is regarded as an easy, environmentally-friendly, and flexible synthetic instrument for the compounds of coordination. CdO NPs was obtained by thermolysing 1 at 180 °C with oleic acid (as a surfactant). Further, the size and morphology of the produced CdO nanoparticles were investigated through SEM.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Andruh, Marius, and Catalina Ruiz-Perez. "ChemInform Abstract: Crystal Engineering of Coordination Polymers." ChemInform 42, no. 41 (September 19, 2011): no. http://dx.doi.org/10.1002/chin.201141280.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Gu, Xiaojun, Dongfeng Xue, and Henryk Ratajczak. "Crystal engineering of lanthanide–transition-metal coordination polymers." Journal of Molecular Structure 887, no. 1-3 (September 2008): 56–66. http://dx.doi.org/10.1016/j.molstruc.2007.11.052.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Queirós, Carla, Chen Sun, Ana M. G. Silva, Baltazar de Castro, Juan Cabanillas-Gonzalez, and Luís Cunha-Silva. "Multidimensional Ln-Aminophthalate Photoluminescent Coordination Polymers." Materials 14, no. 7 (April 4, 2021): 1786. http://dx.doi.org/10.3390/ma14071786.

Повний текст джерела
Анотація:
The development of straightforward reproducible methods for the preparation of new photoluminescent coordination polymers (CPs) is an important goal in luminescence and chemical sensing fields. Isophthalic acid derivatives have been reported for a wide range of applications, and in addition to their relatively low cost, have encouraged its use in the preparation of novel lanthanide-based coordination polymers (LnCPs). Considering that the photoluminescent properties of these CPs are highly dependent on the existence of water molecules in the crystal structure, our research efforts are now focused on the preparation of CP with the lowest water content possible, while considering a green chemistry approach. One- and two-dimensional (1D and 2D) LnCPs were prepared from 5-aminoisophthalic acid and Sm3+/Tb3+ using hydrothermal and/or microwave-assisted synthesis. The unprecedented LnCPs were characterized by single-crystal X-ray diffraction (SCRXD), powder X-ray diffraction (PXRD), Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM), and their photoluminescence (PL) properties were studied in the solid state, at room temperature, using the CPs as powders and encapsulated in poly(methyl methacrylate (PMMA) films, envisaging the potential preparation of devices for sensing. The materials revealed interesting PL properties that depend on the dimensionality, metal ion, co-ligand used and water content.
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Huskić, Igor, and Tomislav Friščić. "Understanding geology through crystal engineering: coordination complexes, coordination polymers and metal–organic frameworks as minerals." Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials 74, no. 6 (December 1, 2018): 539–59. http://dx.doi.org/10.1107/s2052520618014762.

Повний текст джерела
Анотація:
Recent structural studies of organic minerals, coupled with the intense search for new carbon-containing mineral species, have revealed naturally occurring structures analogous to those of advanced materials, such as coordination polymers and even open metal–organic frameworks exhibiting nanometre-sized channels. While classifying such `non-conventional' minerals represents a challenge to usual mineral definitions, which focus largely on inorganic structures, this overview highlights the striking similarity of organic minerals to artificial organic and metal–organic materials, and shows how they can be classified using the principles of coordination chemistry and crystal engineering.
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Liu, Beibei, Liang Bai, Xiaoling Lin, Kaixuan Li, Hui Huang, Hailiang Hu, Yang Liu, and Zhenhui Kang. "Crystal engineering towards the luminescence property trimming of hybrid coordination polymers." CrystEngComm 17, no. 7 (2015): 1686–92. http://dx.doi.org/10.1039/c4ce02121e.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Zhu, Long-Guan, Susumu Kitagawa, and Kenji Seki. "Crystal Engineering of 3D Porous Coordination Polymers through Hydrogen Bonding to Coordination from 1D Helical Chains." Chemistry Letters 32, no. 7 (July 2003): 588–89. http://dx.doi.org/10.1246/cl.2003.588.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Trofimova, Olesya Y., Arina V. Maleeva, Kseniya V. Arsenyeva, Anastasiya V. Klimashevskaya, Il’ya A. Yakushev, and Alexandr V. Piskunov. "Glycols in the Synthesis of Zinc-Anilato Coordination Polymers." Crystals 12, no. 3 (March 10, 2022): 370. http://dx.doi.org/10.3390/cryst12030370.

Повний текст джерела
Анотація:
We report the synthesis, structural investigation, and thermal behavior for three zinc-based 1D-coordination polymers with 3,6-di-tert-butyl-2,5-dihydroxy-p-benzoquinone, which were synthesized in the presence of different glycols. The interaction of zinc nitrate with glycols, followed by using the resulting solution in solvothermal synthesis with the anilate ligand in DMF, makes it possible to obtain linear polymer structures with 1,2-ethylene or 1,2-propylene glycols coordinated to the metal. The reaction involving 1,3-propylene glycol under similar conditions gives a crystal structure that does not contain a diol. The crystal and molecular structures of the synthesized compounds were determined using single crystal by X-ray structural analysis. The influence of glycol molecules coordinated to the metal on the thermal destruction of synthesized compounds is shown.
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Steward, Omar W., Miles V. Kaltenbach, Ashley B. Biernesser, Matthew J. Taylor, Katie J. Hovan, Jordan J. S. VerPlank, Ameera Haamid, Irina Karpov, and Matasebia T. Munie. "Crystal Engineering: Synthesis and Structural Analysis of Coordination Polymers with Wavelike Properties." Polymers 3, no. 4 (October 7, 2011): 1662–72. http://dx.doi.org/10.3390/polym3041662.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Leznoff, Daniel B., Bao-Yu Xue, Raymond J. Batchelor, Frederick W. B. Einstein, and Brian O. Patrick. "Gold−Gold Interactions as Crystal Engineering Design Elements in Heterobimetallic Coordination Polymers." Inorganic Chemistry 40, no. 23 (November 2001): 6026–34. http://dx.doi.org/10.1021/ic010756e.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Lu, Jack Y. "Crystal engineering of Cu-containing metal–organic coordination polymers under hydrothermal conditions." Coordination Chemistry Reviews 246, no. 1-2 (November 2003): 327–47. http://dx.doi.org/10.1016/j.cct.2003.08.005.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Thapa, Kedar Bahadur, and Jhy-Der Chen. "Crystal engineering of coordination polymers containing flexible bis-pyridyl-bis-amide ligands." CrystEngComm 17, no. 25 (2015): 4611–26. http://dx.doi.org/10.1039/c5ce00179j.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Batten, Stuart R., Neil R. Champness, Xiao-Ming Chen, Javier Garcia-Martinez, Susumu Kitagawa, Lars Öhrström, Michael O’Keeffe, Myunghyun Paik Suh, and Jan Reedijk. "Terminology of metal–organic frameworks and coordination polymers (IUPAC Recommendations 2013)." Pure and Applied Chemistry 85, no. 8 (July 31, 2013): 1715–24. http://dx.doi.org/10.1351/pac-rec-12-11-20.

Повний текст джерела
Анотація:
A set of terms, definitions, and recommendations is provided for use in the classification of coordination polymers, networks, and metal–organic frameworks (MOFs). A hierarchical terminology is recommended in which the most general term is coordination polymer. Coordination networks are a subset of coordination polymers and MOFs a further subset of coordination networks. One of the criteria an MOF needs to fulfill is that it contains potential voids, but no physical measurements of porosity or other properties are demanded per se. The use of topology and topology descriptors to enhance the description of crystal structures of MOFs and 3D-coordination polymers is furthermore strongly recommended.
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Lysova, A. A., V. A. Dubskikh, K. D. Abasheeva, A. A. Vasileva, D. G. Samsonenko, and D. N. Dybtsev. "Coordination Polymers of Scandium(III) and Thiophenedicarboxylic Acid." Russian Journal of Coordination Chemistry 47, no. 9 (September 2021): 593–600. http://dx.doi.org/10.1134/s1070328421090062.

Повний текст джерела
Анотація:
Abstract Three new metal−organic frameworks based on scandium(III) cations and 2,5-thiophenedicarboxylic acid (H2Tdc) are synthesized: [Sc(Tdc)(OH)]·1.2DMF (I), [Sc(Tdc)(OH)]·2/3DMF (II), and (Me2NH2)[Sc3(Tdc)4(OH)2]·DMF (III) (DMF is N,N-dimethylformamide). The structures of the compounds are determined by single-crystal X-ray structure analysis (CIF file CCDC nos. 2067819 (I), 2067820 (II), and 2067821 (III)). The chemical and phase purity of compound I is proved by elemental analysis, thermogravimetry, X-ray diffraction analysis, and IR spectroscopy.
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Awaleh, Mohamed Osman, Idriss Guirreh Farah, Elias Said Dirieh, Thierry Maris, and Samatar Mohamed Bouh. "Synthesis, crystal structures and thermal analysis of two new coordination polymers." Comptes Rendus Chimie 14, no. 11 (November 2011): 991–96. http://dx.doi.org/10.1016/j.crci.2011.06.002.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Kadota, Kentaro, Nghia Tuan Duong, Yusuke Nishiyama, Easan Sivaniah, Susumu Kitagawa, and Satoshi Horike. "Borohydride-containing coordination polymers: synthesis, air stability and dehydrogenation." Chemical Science 10, no. 24 (2019): 6193–98. http://dx.doi.org/10.1039/c9sc00731h.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Radi, Smaail, Mohamed El-Massaoudi, Houria Benaissa, N. N. Adarsh, Marilena Ferbinteanu, Eamonn Devlin, Yiannis Sanakis, and Yann Garcia. "Crystal engineering of a series of complexes and coordination polymers based on pyrazole-carboxylic acid ligands." New Journal of Chemistry 41, no. 16 (2017): 8232–41. http://dx.doi.org/10.1039/c7nj01714f.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Liu, Chang-Jie, Tong-Tong Zhang, Wei-Dong Li, Yuan-Yuan Wang, and Shui-Sheng Chen. "Coordination Assemblies of Zn(II) Coordination Polymers: Positional Isomeric Effect and Optical Properties." Crystals 9, no. 12 (December 10, 2019): 664. http://dx.doi.org/10.3390/cryst9120664.

Повний текст джерела
Анотація:
Two Zn(II) coordination polymers (CPs) [Zn(L)(pphda)] (1) and [Zn(L)(ophda)]·H2O (2) were prepared by reactions of ZnSO4·7H2O based on the N-donor 1,4-di(1H-imidazol-4-yl)benzene (L) ligand and two flexible carboxylic acids isomers of 1,4-phenylenediacetic acid (H2pphda) and 1,2-phenylenediacetic acid (H2ophda) as mixed ligands, respectively. Structures of CPs 1 and 2 were characterized by elemental analysis, Infrared spectroscopy (IR), thermogravimetric analysis and single-crystal X-ray diffraction. The CP 1 is a fourfold interpenetrating 66-diamond (dia) architecture, while 2 is a 2D (4, 4) square lattice (sql) layer based on the Zn2(cis-1,2-ophda2−)2 binuclear Zn(II) subunits. The luminescent property, including luminescence lifetime and quantum yield (QY), have been investigated for CPs 1 and 2.
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Borkowski, Lauren A., and Christopher L. Cahill. "Crystal Engineering with the Uranyl Cation I. Aliphatic Carboxylate Coordination Polymers: Synthesis, Crystal Structures, and Fluorescent Properties." Crystal Growth & Design 6, no. 10 (October 2006): 2241–47. http://dx.doi.org/10.1021/cg060329h.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Saalfrank, Rolf W., Roland Harbig, Oliver Struck, Frank Hampel, Eva Maria Peters, Karl Peters, and Hans Georg von Schnering. "Eindimensionale Kupfer(II)-Koordinationspolymere: Kristall-Engineering durch variable Verknüpfungsmuster [1] / One Dimensional Copper(II) Coordination Polymers: Crystal Engineering through Variable Types of Linkage [1]." Zeitschrift für Naturforschung B 52, no. 1 (January 1, 1997): 125–34. http://dx.doi.org/10.1515/znb-1997-0124.

Повний текст джерела
Анотація:
Reaction of a methanolic copper(II) acetate solution with tetrazolyl enol derivatives 2a or 2b leads to the formation of the corresponding lD-coordination polymer 1∞[CuL2] 3a and pseudo 1D-coordination polymer [CuL2]2 3b, respectively. On the contrary, reaction of 2c with methanolic copper(II) acetate solution yields OH-bridged 1D-coordination polymer 1∞[CuL2(MeOH)2 3c. Single-crystal X-ray diffraction of the supramolecular species 3 established unequivocally the structures of the stairlike coordination compounds. Reaction of a methanolic copper(II) acetate solution with amidotetrazole derivative 6 leads to the formation of the lD-coordination polymer 1∞ [CuL2] 7. The structure of 7 has been established by X-ray structure analysis
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Craciun, Nicoleta, Diana Chisca, Elena Melnic, and Marina S. Fonari. "Unprecedented Coordination Compounds with 4,4′-Diaminodiphenylethane as a Supramolecular Agent and Ditopic Ligand: Synthesis, Crystal Structures and Hirshfeld Surface Analysis." Crystals 13, no. 2 (February 8, 2023): 289. http://dx.doi.org/10.3390/cryst13020289.

Повний текст джерела
Анотація:
In this pioneering research, mononuclear coordination complexes and coordination polymers were obtained using the conformationally flexible ditopic ligand 4,4′-diaminodiphenylethane and different metal salts (nitrates, sulfates, tetrafluoroborates and perchlorates). Seven new products, including the mononuclear complexes [Cd(2,2′-bpy)3](ClO4)2](dadpe)(4,4′-bpy) (1), [Ni(dadpe)2(H2O)4](SO4).H2O (2), one-dimensional coordination polymers {[Zn(NO3)(dadpe)(dmf)2](NO3)}n (3), {[Cd(2,2′-bpy)2(dadpe)](ClO4)2}n (4), and two-dimensional coordination polymers, {[Cd(4,4′-bpy)2(H2O)2](ClO4)2(dadpe)(EtOH)2}n (5), {[Co(4,4′-bpy)2(H2O)2](BF4)2(dadpe)(EtOH)2}n (6) and {[Cd(adi)(dadpe)](H2adi)}n (7), (dadpe=4,4′-diaminodiphenylethane, 2,2′-bpy=2,2′-bipyridine, 4,4′-bpy=4,4′-bipyridine, H2adi=adipic acid) were produced. The synthesized compounds were characterized by FTIR and single-crystal X-ray diffraction analyses. The dadpe was recorded as a neutral guest in the crystals of mononuclear complex 1 and in coordination polymers 5 and 6. In compound 2, two dadpe ligands coordinate in a monodentate mode and occupy two trans-positions in the [Ni(H2O)4(dadpe)2]2+ octahedral complex cation. Coordination polymers 3 and 4 represent single chains originating from dadpe as a bidentate linker in both. The H-donor’s possibilities of amino groups were utilized in the interconnection of coordination chains into H-bonded networks via NH(NH2)···O hydrogen bonds. The isostructural coordination polymers 5 and 6 comprise similar cationic square grids [M(4,4′-bpy)2(H2O)2]2+ [M=Cd (5), M=Co (6)], with sql topology balanced by the charge-compensated anions, while dadpe and EtOH as neutral guests are situated in the interlayer space. The neutral 2D coordination network in 7 with the sql topology originates from both adi and dadpe linkers as bidentate-bridging ligands, and the neutral H2adi is entrapped as a guest in crystal lattice. The impact of different types of intermolecular interactions was evaluated by Hirshfeld surface analysis.
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Xia, Lingling, Qinyue Wang, and Ming Hu. "Recent advances in nanoarchitectures of monocrystalline coordination polymers through confined assembly." Beilstein Journal of Nanotechnology 13 (August 12, 2022): 763–77. http://dx.doi.org/10.3762/bjnano.13.67.

Повний текст джерела
Анотація:
Various kinds of monocrystalline coordination polymers are available thanks to the rapid development of related synthetic strategies. The intrinsic properties of coordination polymers have been carefully investigated on the basis of the available monocrystalline samples. Regarding the great potential of coordination polymers in various fields, it becomes important to tailor the properties of coordination polymers to meet practical requirements, which sometimes cannot be achieved through molecular/crystal engineering. Nanoarchitectonics offer unique opportunities to manipulate the properties of materials through integration of the monocrystalline building blocks with other components. Recently, nanoarchitectonics has started to play a significant role in the field of coordination polymers. In this short review, we summarize recent advances in nanoarchitectures based on monocrystalline coordination polymers that are formed through confined assembly. We first discuss the crystallization of coordination polymer single crystals inside confined liquid networks or on substrates through assembly of nodes and ligands. Then, we discuss assembly of preformed coordination polymer single crystals inside confined liquid networks or on substrates. In each part, we discuss the properties of the coordination polymer single crystals as well as their performance in energy, environmental, and biomedical applications.
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Pasán, Jorge, Joaquín Sanchiz, Francesc Lloret, Miguel Julve, and Catalina Ruiz-Pérez. "Crystal engineering of 3-D coordination polymers by pillaring ferromagnetic copper(ii)-methylmalonate layers." CrystEngComm 9, no. 6 (2007): 478–87. http://dx.doi.org/10.1039/b701788j.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Ashafaq, Mo, Mohd Khalid, Mukul Raizada, Anzar Ali, Mohd Faizan, M. Shahid, Musheer Ahmad, and Ray J. Butcher. "Crystal Engineering and Magnetostructural Properties of Newly Designed Azide/Acetate-Bridged Mn12 Coordination Polymers." Crystal Growth & Design 19, no. 4 (February 25, 2019): 2366–79. http://dx.doi.org/10.1021/acs.cgd.9b00058.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Hawes, Chris S., Boujemaa Moubaraki, Keith S. Murray, Paul E. Kruger, David R. Turner, and Stuart R. Batten. "Exploiting the Pyrazole-Carboxylate Mixed Ligand System in the Crystal Engineering of Coordination Polymers." Crystal Growth & Design 14, no. 11 (October 9, 2014): 5749–60. http://dx.doi.org/10.1021/cg501004u.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Lu, Jack Y. "Erratum to “Crystal engineering of Cu-containing metal–organic coordination polymers under hydrothermal conditions”." Coordination Chemistry Reviews 248, no. 11-12 (June 2004): 1159. http://dx.doi.org/10.1016/j.ccr.2004.08.016.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Zhang, Jie-Peng, and Xiao-Ming Chen. "ChemInform Abstract: Crystal Engineering of Coordination Polymers via Solvothermal in situ Metal-Ligand Reactions." ChemInform 41, no. 41 (September 16, 2010): no. http://dx.doi.org/10.1002/chin.201041237.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Thapa, Kedar Bahadur, and Jhy-Der Chen. "ChemInform Abstract: Crystal Engineering of Coordination Polymers Containing Flexible Bis-pyridyl-bis-amide Ligands." ChemInform 47, no. 8 (February 2016): no. http://dx.doi.org/10.1002/chin.201608231.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Zavakhina, M. S., D. G. Samsonenko, M. P. Yutkin, D. N. Dybtsev, and V. P. Fedin. "Synthesis, crystal structure, and luminescence properties of coordination polymers based on cadmium isonicotinates." Russian Journal of Coordination Chemistry 39, no. 4 (April 2013): 321–27. http://dx.doi.org/10.1134/s1070328413030081.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Dragancea, Diana, Ghenadie Novitchi, Augustin M. Mădălan, and Marius Andruh. "New Cyanido-Bridged Heterometallic 3d-4f 1D Coordination Polymers: Synthesis, Crystal Structures and Magnetic Properties." Magnetochemistry 7, no. 5 (April 28, 2021): 57. http://dx.doi.org/10.3390/magnetochemistry7050057.

Повний текст джерела
Анотація:
Three new 1D cyanido-bridged 3d-4f coordination polymers, {[Gd(L)(H2O)2Fe(CN)6]·H2O}n (1GdFe), {[Dy(L)(H2O)2Fe(CN)6]·3H2O}n (2DyFe), and {[Dy(L)(H2O)2Co(CN)6]·H2O}n (3DyCo), were assembled following the building-block approach (L = pentadentate bis-semicarbazone ligand resulting from the condensation reaction between 2,6-diacetyl-pyridine and semicarbazide). The crystal structures consist of crenel-like LnIII-MIII alternate chains, with the LnIII ions connected by the hexacyanido metalloligands through two cis cyanido groups. The magnetic properties of the three complexes have been investigated. Field-induced slow relaxation of the magnetization was observed for compounds 2DyFe and 3DyCo. Compound 3DyCo is a new example of chain of Single Ion Magnets.
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Wu, Guo-Yun, Yi-Xia Ren, Zheng Yin, Feng Sun, Ming-Hua Zeng, and Mohamedally Kurmoo. "Effects of substituent groups on the structures and luminescence properties of 2D/3D CdII complexes with mixed rigid and flexible carboxylate ligands." RSC Adv. 4, no. 46 (2014): 24183–88. http://dx.doi.org/10.1039/c4ra04755a.

Повний текст джерела
Анотація:
Three Cd(ii) coordination polymers employing rigid benzimidazole carboxylate and flexible adipate demonstrate the effect of substituent groups on the crystal structures and their luminescence properties.
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Chen, Junling, Bo Li, Zhenzhen Shi, Cheng He, Chunying Duan, Tiexin Zhang та Li-Ya Wang. "Crystal engineering of coordination-polymer-based iodine adsorbents using a π-electron-rich polycarboxylate aryl ether ligand". CrystEngComm 22, № 40 (2020): 6612–19. http://dx.doi.org/10.1039/d0ce01004a.

Повний текст джерела
Анотація:
This work revealed that the synergy of microporous channels and convergent arrangements of halogen bonding and charge-transfer interaction sites within coordination polymers facilitated the iodine adsorption process.
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Pinto, Camila B., Leonardo H. R. Dos Santos, and Bernardo L. Rodrigues. "Understanding metal–ligand interactions in coordination polymers using Hirshfeld surface analysis." Acta Crystallographica Section C Structural Chemistry 75, no. 6 (May 20, 2019): 707–16. http://dx.doi.org/10.1107/s2053229619005874.

Повний текст джерела
Анотація:
Properties related to the size and shape of Hirshfeld surfaces provide insight into the nature and strength of interactions among the building blocks of molecular crystals. In this work, we demonstrate that functions derived from the curvatures of the surface at a point, namely, shape index (S) and curvedness (C), as well as the distances from the surface to the nearest external (d e) and internal (d i) nuclei, can be used to help understand metal–ligand interactions in coordination polymers. The crystal structure of catena-poly[[[(1,10-phenanthroline-κ2 N,N′)copper(II)]-μ-4-nitrophthalato-κ2 O 1:O 2] trihydrate], {[Cu(C8H3NO6)(C12H8N2)]·3H2O} n , described here for the first time, was used as a prototypical system for our analysis. Decomposition of the coordination polymer into its metal centre and ligand molecules followed by joint analysis of the Hirshfeld surfaces generated for each part unveil qualitative and semi-quantitative information that cannot be easily obtained either from conventional crystal packing analysis or from Hirshfeld surface analysis of the entire polymeric units. The shape index function S is particularly sensitive to the coordination details and its mapping on the surface of the metallic centre is highly dependent on the nature of the ligand and the coordination bond distance. Correlations are established between the shape of the Hirshfeld surface of the metal and the geometry of the metal–ligand contacts in the crystals. This could be applied not only to estimate limiting coordination distances in metal–organic compounds, but also to help establish structure–property relationships potentially useful for the crystal engineering of such materials.
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Zhao, Jing, Xianglong Qu, and Bing Yan. "Lanthanide coordination polymers of viologen carboxylic acid: Crystal structures and luminescence response tuning." Journal of Photochemistry and Photobiology A: Chemistry 390 (March 2020): 112296. http://dx.doi.org/10.1016/j.jphotochem.2019.112296.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Biradha, Kumar, Madhushree Sarkar, and Lalit Rajput. "Crystal engineering of coordination polymers using 4,4′-bipyridine as a bond between transition metal atoms." Chem. Commun., no. 40 (2006): 4169–79. http://dx.doi.org/10.1039/b606184b.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Zhou, Huajun, Konstantia C. Strates, Miguel Á. Muñoz, Kevin J. Little, Daniel M. Pajerowski, Mark W. Meisel, Daniel R. Talham, and Abdessadek Lachgar. "Inorganic Crystal Engineering through Cation Metathesis: One-, Two-, and Three-Dimensional Cluster-Based Coordination Polymers." Chemistry of Materials 19, no. 9 (May 2007): 2238–46. http://dx.doi.org/10.1021/cm063005p.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Tzeng, Biing-Chiau, Yung-Chi Huang, Bo-So Chen, Wan-Min Wu, Shih-Yang Lee, Gene-Hsiang Lee, and Shie-Ming Peng. "Crystal-Engineering Studies of Coordination Polymers and a Molecular-Looped Complex Containing Dipyridyl-Amide Ligands." Inorganic Chemistry 46, no. 1 (January 2007): 186–95. http://dx.doi.org/10.1021/ic061528t.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Munakata, Megumu, Liang Ping Wu, and Takayoshi Kuroda-Sowa. "Crystal Engineering of Multidimensional Copper(I) and Silver(I) Coordination Supermolecules and Polymers with Functions." Bulletin of the Chemical Society of Japan 70, no. 8 (August 1997): 1727–43. http://dx.doi.org/10.1246/bcsj.70.1727.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Ye, C. H., G. Chen, and Y. L. Gong. "Two Heteroligand Cd(II)-coordination Polymers: Crystal Structures and Anti-Lung Cancer Activity Evaluation." Russian Journal of Coordination Chemistry 46, no. 9 (September 2020): 653–61. http://dx.doi.org/10.1134/s1070328420090080.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Zhu, Xiaofei, Ning Wang, Xiaoyan Xie, Ruibin Hou, Defeng Zhou, Yafeng Li, Jun Hu, Xinyuan Li, He Liu, and Wang Nie. "A series of interdigitated Cd(ii) coordination polymers based on 4,6-dibenzoylisophthalic acid and flexible triazole ligands." RSC Adv. 4, no. 30 (2014): 15816–19. http://dx.doi.org/10.1039/c4ra00246f.

Повний текст джерела
Анотація:
Different bridging ligands with various flexibilities and lengths were utilized to assemble interdigitated coordination polymers with Cd(ii) cations. The length and flexibility of the ligands could significantly influence the interdigitation level of the crystal structure.
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Abbas Omran, Khalida. "The Construct and Interpretation of Chelated Coordination Polymers and Their Use in Nanomaterials Research." Journal of Environmental and Public Health 2022 (August 10, 2022): 1–13. http://dx.doi.org/10.1155/2022/3937375.

Повний текст джерела
Анотація:
Presently, an important step from basic research to practical applications is synthesizing nanostructured materials. Metal-organic structures, as well as coordination polymers, are a diverse group of materials with a wide range of potential and properties applications. It has been difficult to get these materials into commercial use because of many drawbacks. Polymers containing chelated units are described and assessed for their advancements and problems in preparation, properties, and structure. Here, a proposed approach based on designing coordination polymeric materials with chelated units using the metal-ligand approach (CPM-CU-MA) has been introduced for a columnar-layered plan, supramolecular components, and building levels. Nanocomposite materials can be formed through the thermal transformation of coordination polymers based on donor atoms. The polymeric metal chelates (PMCs) are categorized according to luminescent coordination polymer (LCoP) development. It is classified as macrocyclic intracomplex, polynuclear, and molecular according to its macrostructure. Supramolecular networks (SMNs) can be transformed into a coordination polymer by introducing cyclo-dehydrogenation of natural building blocks on a surface. The structure-property connections of LCPs can influence a framework of liquid crystal display (LCP) that has been given based on LC phase modulators with a large modulation depth and has useful applications in LC lens. In the spatial organization of PMCs, the main focus is on the commonalities and contrasts between higher- and lower-molecular-weight chelates based on molecularly imprinted sensors (MISs) and nanomaterial sensors for a wide range of uses. New functional nanoparticles based on the molecular components have exciting potential, as demonstrated by these findings based on parameters risk factors for human health, hazards reduction in the environment, lack of cost-effectiveness, environmental sustainability, and bioavailability of polymers with an overall performance of 95.3%.
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Borkowski, Lauren A., and Christopher L. Cahill. "Crystal Engineering with the Uranyl Cation II. Mixed Aliphatic Carboxylate/Aromatic Pyridyl Coordination Polymers: Synthesis, Crystal Structures, and Sensitized Luminescence." Crystal Growth & Design 6, no. 10 (October 2006): 2248–59. http://dx.doi.org/10.1021/cg060330g.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Wang, Chih-Chieh, Zi-Ling Huang, Yueh-Yi Tseng, Gia-Bin Sheu, Shih-I. Lu, Gene-Hsiang Lee, and Hwo-Shuenn Sheu. "Synthesis, Structural Characterization and Hirshfeld Surface Analysis of a 2D Coordination Polymer, [Co(4-dpds)(bdc)(H2O)2] 4-dpds." Crystals 10, no. 5 (May 24, 2020): 419. http://dx.doi.org/10.3390/cryst10050419.

Повний текст джерела
Анотація:
A two-dimensional (2D) coordination polymer, [Co(4-dpds)(bdc)(H2O)2]·4-dpds (1) (4-dpds = 4,4′-dipyridyldusulfide and bdc2− = dianion of benzenedicarboxylic acid), has been synthesized and structurally determined by single-crystal X-ray diffractometer. In 1, the bdc2− and 4-dpds both act as bridging ligands connecting the Co(II) ions to form a 2D wrinkled-like layered coordination polymer. Two wrinkled-like layered coordination polymers are mutually penetrated to generate a doubly interpenetrated framework, and then extended to its 3D architecture via the supramolecular forces between doubly interpenetrated 2D frameworks and free 4-dpds ligands by intermolecular O–H⋅⋅⋅N hydrogen bonding interaction. Crystal packing arrangements were characterized by fingerprint plots, which were derived from the Hirshfeld Surfaces analysis, and showed that intermolecular hydrogen bonding interactions are the most important interactions on the construction of the crystal 1.
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Lopez, Susan, and Steven W. Keller. "Subtle changes, profound effects: crystal engineering of one-dimensional helical copper(I):4,7-phenanthroline coordination polymers." Crystal Engineering 2, no. 2-3 (June 1999): 101–14. http://dx.doi.org/10.1016/s1463-0184(99)00011-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії