Добірка наукової літератури з теми "Converter-Based impedance spectroscopy (IS)"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Converter-Based impedance spectroscopy (IS)".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Converter-Based impedance spectroscopy (IS)"
Dam, Shimul Kumar, and Vinod John. "High-Resolution Converter for Battery Impedance Spectroscopy." IEEE Transactions on Industry Applications 54, no. 2 (March 2018): 1502–12. http://dx.doi.org/10.1109/tia.2017.2771498.
Повний текст джерелаNamin, Reyhaneh L., and Shahin J. Ashtiani. "Effect of ADC Resolution on Low-Frequency Electrical Time-Domain Impedance Spectroscopy." Metrology and Measurement Systems 24, no. 2 (June 27, 2017): 425–36. http://dx.doi.org/10.1515/mms-2017-0019.
Повний текст джерелаWang, Ke Ning, Heng Zhao, and Wei Wang. "Design of a Bioelectrical Impedance Spectrometer Based on AD5933." Applied Mechanics and Materials 239-240 (December 2012): 392–96. http://dx.doi.org/10.4028/www.scientific.net/amm.239-240.392.
Повний текст джерелаDam, Shimul Kumar, and Vinod John. "Battery impedance spectroscopy using bidirectional grid connected converter." Sādhanā 42, no. 8 (July 4, 2017): 1343–54. http://dx.doi.org/10.1007/s12046-017-0686-9.
Повний текст джерелаSchmidt, Wolfram, Carsten Tautorat, Klaus-Peter Schmitz, Niels Grabow, Frank Kamke, Sylvia Pfensig, and Stefan Siewert. "Multi-channel impedance analyzer for automated testing of networks and biomaterials." Current Directions in Biomedical Engineering 6, no. 3 (September 1, 2020): 414–17. http://dx.doi.org/10.1515/cdbme-2020-3107.
Повний текст джерелаChen, Tse-An, Wen-Jui Wu, Chia-Ling Wei, Robert B. Darling, and Bin-Da Liu. "Novel 10-Bit Impedance-to-Digital Converter for Electrochemical Impedance Spectroscopy Measurements." IEEE Transactions on Biomedical Circuits and Systems 11, no. 2 (April 2017): 370–79. http://dx.doi.org/10.1109/tbcas.2016.2592511.
Повний текст джерелаArceo-Gómez, David Enrique, Javier Reyes-Trujeque, Patricia Balderas-Hernández, Andrés Carmona-Hernández, Araceli Espinoza-Vázquez, Ricardo Galván-Martínez, and Ricardo Orozco-Cruz. "Performance and Surface Modification of Cast Iron Corrosion Products by a Green Rust Converter (Mimosa tenuiflora Extract)." Surfaces 7, no. 1 (March 13, 2024): 143–63. http://dx.doi.org/10.3390/surfaces7010010.
Повний текст джерелаShin, Sounghun, Yoontae Jung, Soon-Jae Kweon, Eunseok Lee, Jeong-Ho Park, Jinuk Kim, Hyung-Joun Yoo, and Minkyu Je. "Design of Reconfigurable Time-to-Digital Converter Based on Cascaded Time Interpolators for Electrical Impedance Spectroscopy." Sensors 20, no. 7 (March 29, 2020): 1889. http://dx.doi.org/10.3390/s20071889.
Повний текст джерелаLi, Wang, Gen Wang Liu, and Fu He Yang. "Design of Automatic Measurement System of Lithium Battery Electrochemical Impedance Spectroscopy Based on Microcomputer." Applied Mechanics and Materials 241-244 (December 2012): 259–64. http://dx.doi.org/10.4028/www.scientific.net/amm.241-244.259.
Повний текст джерелаWang, Hanqing, Arnaud Gaillard, and Daniel Hissel. "A review of DC/DC converter-based electrochemical impedance spectroscopy for fuel cell electric vehicles." Renewable Energy 141 (October 2019): 124–38. http://dx.doi.org/10.1016/j.renene.2019.03.130.
Повний текст джерелаДисертації з теми "Converter-Based impedance spectroscopy (IS)"
Wang, Xin. "Online health monitoring of photovoltaic panels by converter-based impedance spectroscopy." Electronic Thesis or Diss., Université de Lorraine, 2024. https://docnum.univ-lorraine.fr/ulprive/DDOC_T_2024_0039_WANG.pdf.
Повний текст джерелаTo meet the world's growing energy needs and with a view to sustainable development, the use of solar energy is leading a significant increase in the installation of photovoltaic (PV) panels, enabling the production of clean and renewable electricity. However, the PV panels are susceptible to faults during operating. These faults can result in power losses, low efficiency, system instability, even pose a risk of security. Health monitoring can mitigate these issues and improve the overall operating reliability and efficiency of PV panels. Among existing health monitoring tools for PV panels, impedance spectroscopy (IS) provides a powerful, non-destructive way to acquire PV panels' internal impedance over a wide frequency range. Compared with specific workstation-based IS, converter-based IS can help reduce overall system costs and facilitate online applications, as no additional equipment is required. However, the control strategy of the power converter needs to be specifically designed. Firstly, the bandwidth of the converter will limit the maximum frequency of the perturbation signal. Obtaining a complete IS spectrum with sufficient accuracy can thus be challenging. Secondly, to ensure a quasi-maximum output power of PV panels even during IS implementation, a cooperative control scheme between maximum power point tracking (MPPT) and IS modes should be considered. The major objectives of this research are twofold: (1) to propose a systematic design guideline for control strategies of converter-based IS implementation; (2) to establish an appropriate AC equivalent circuit model (AC-ECM) for PV panels and extract valuable health indicators for online health monitoring of PV panels. In one aspect, a bi-level control strategy of the power converter including an upper-level and a lower-level control is proposed. The upper-level control achieves the cooperative control of different operating modes, including MPPT, injection point tracking (IPT) and IS modes. The lower-level control includes the separate control of each mode. Particularly, for the IS mode, both open-loop control and closed-loop control have been systematically studied and compared. Under open-loop control, an analysis of the intrinsic resonance of the converter and the frequency limitation of the perturbation signal is performed. Furthermore, an adaptive configuration method for the amplitude of the AC duty cycle is proposed to eliminate the influence of the resonance and enhance the accuracy of IS measurement. Under closed-loop control, based on three commonly used compensation controllers, two control methods, named unified control and separated control, are designed and compared. In the unified control, a single proportional-integral (PI) controller controls the DC and AC components together to meet the control objectives. Meanwhile, in the separated control, a segmented lower pass filter (LPF) with a variable cut-off frequency is designed to effectively separate the DC component of the PV panel current from the AC perturbation signal. A proportional (P) and a quasi-proportional resonant (QPR) are further applied separately to control the AC component. In the other aspect, based on the acquired IS measurements, a simplified AC-ECM of the PV panel is proposed. This AC-ECM offers a fitting approach for the incomplete spectrum obtained through converter-based IS. Additionally, four health features are extracted and defined for monitoring the health states of the PV panel under various operating conditions. Finally, an experimental platform has been developed for online IS implementation. An experimental study has been conducted to verify that under the proposed control strategies, reliable and accurate IS measurements can be achieved. Under various operating conditions, the effectiveness of the online IS monitoring method based on the extracted features of the PV panel is verified as well
Ocaña, Tejada Cristina. "Aptasensors based on electrochemical impedance spectroscopy." Doctoral thesis, Universitat Autònoma de Barcelona, 2015. http://hdl.handle.net/10803/305103.
Повний текст джерелаIn the recent years, due to the need for rapid diagnosis and improvements in sensing, new recognition elements are employed in biosensors. One kind of these new recognition elements are aptamers. Aptamers are synthetic strands of DNA or RNA which are selected in vitro and have the ability to bind to proteins, ions, whole cells, drugs and low molecular weight ligands recognizing their target with high affinity and specificity. Several aptamer-based biosensors, also called aptasensors, have been recently developed. Among all the transduction techniques employed in biosensors, Electrochemical Impedance Spectroscopy has widely used as a tool for characterizing sensor platforms and for studying biosensing events at the surface of the electrodes. The important feature presented by this technique is that it does not require any labelled species for the transduction; thus, this detection technique can be used for designing label-free protocols thus avoiding more expensive and time-consuming assays. The main aim of this PhD work was the development of aptasensors using the electrochemical impedance technique previously mentioned for protein detection. For that, different types of electrodes were used, such as Graphite Epoxy Composite electrodes (GECs), Avidin Graphite Epoxy Composite electrodes (AvGECs) and commercial Multi-Walled carbon nanotubes screen printed electrodes (MWCNT-SPE). The work was divided in two main parts according to the detection of the two different proteins. The first part was focused on thrombin detection. First of all, different impedimetric label-free aptasensors based on several aptamer immobilization techniques such as wet physical adsorption, avidin-biotin affinity and covalent bond via electrochemical activation of the electrode surface and via electrochemical grafting were developed and evaluated. Then, AvGECs electrodes were compared as a platform for genosensing and aptasensing. With the aim to amplying the obtained impedimetric signal using AvGECs, an aptamer sandwich protocol for thrombin detection was used including streptavidin gold-nanoparticles (Strep-AuNPs) and silver enhancement treatment. The second part of the study was based on cytochrome c detection. Firstly, a simple label-free aptasensor for the detection of this protein using a wet physical adsorption immobilization technique was performed. Finally, with the goal to amplify the impedimetric signal, a hybrid aptamer-antibody sandwich assay using MWCNT-SPE for the detection of the target protein was carried out. In this way, the thesis explores and compares a wide scope of immobilization procedures, the use of label-free or nanocomponent modified biomolecules in different direct or amplified protocols, and the use of direct recognition and sandwich alternatives to enhance sensitivity and/or selectivity of the assay
Mosunmola, Faloye Omolola. "Design and Implementation of A Three-Level Boost converter for Battery Impedance Spectroscopy." Master's thesis, Faculty of Engineering and the Built Environment, 2021. http://hdl.handle.net/11427/32664.
Повний текст джерелаHa, Sungjae. "A malaria diagnostic system based on electric impedance spectroscopy." Thesis, Massachusetts Institute of Technology, 2011. http://hdl.handle.net/1721.1/66030.
Повний текст джерелаCataloged from PDF version of thesis.
Includes bibliographical references (p. 69-71).
Malaria caused by Plasmodium falciparum infection is one of the major threats to world health and especially to the community without proper medical care. New approach to cost-efficient, portable, miniaturized diagnostic kit is needed. This work explores electric impedance spectroscopy (EIS) on a microfluidic device as a means of malaria diagnosis. This work introduces a microfabricated probe with microfluidic channel, and a high speed impedance analyzer circuit board. Combination of microfluidic device and circuit board resulted in a small-sized EIS system for micro-particles such as human red blood cell (RBC). After invasion by the parasites, RBC undergoes physiological changes including electrical property of cytoplasm and membrane. Detection of infected RBC is demonstrated as well as differentiation of micro-beads by surface charge density using EIS-based diagnostic system. Diagnosis based on EIS has merits over other diagnostic methods since it is label-free and quantitative test and applicable to whole blood, and also the test does not need bulky optical and electrical equipments.
by Sungjae Ha.
S.M.
Lagares, Lemos Miguel. "Matlab Based Specific Impedance Spectroscopy Simulator for Suspension of Cells." Thesis, Högskolan i Borås, Institutionen Ingenjörshögskolan, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:hb:diva-19348.
Повний текст джерелаGuermazi, Mahdi. "In-Vitro Biological Tissue State Monitoring based on Impedance Spectroscopy." Doctoral thesis, Universitätsverlag der Technischen Universität Chemnitz, 2016. https://monarch.qucosa.de/id/qucosa%3A20484.
Повний текст джерелаAuf der Basis von Impedanzspektroskopie wurde ein neuartiges in-vitro-Messverfahren zur Überwachung der Frische von biologischem Gewebe entwickelt. Die wichtigsten Herausforderungen stellen dabei die Reproduzierbarkeit der Impedanzmessung und die Klassifizierung der Gewebeart sowie dessen Zustands dar. Für die Reproduzierbarkeit von Impedanzmessungen an biologischen Geweben, wurde ein zylindrischer Multielektrodensensor realisiert, der die 2D-Anisotropie des Gewebes berücksichtigt und einen guten Kontakt zum Gewebe realisiert. Experimentelle Untersuchungen wurden an verschiedenen Geweben über einen längeren Zeitraum durchgeführt und mittels eines modifizierten Fricke-Cole-Cole-Modells analysiert. Die Ergebnisse sind reproduzierbar und entsprechen dem physikalisch-basierten erwarteten Verhalten. Als Merkmale für die Klassifikation wurden die Modellparameter genutzt.
Yaremyk, R. Ya. "DSP-Based Information-Measuring Microdevice for Electrical Impedance Spectroscopy Analysis." Thesis, Sumy State University, 2016. http://essuir.sumdu.edu.ua/handle/123456789/47278.
Повний текст джерелаGuermazi, Mahdi. "In-Vitro Biological Tissue State Monitoring based on Impedance Spectroscopy." Doctoral thesis, Universitätsbibliothek Chemnitz, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-206710.
Повний текст джерелаAuf der Basis von Impedanzspektroskopie wurde ein neuartiges in-vitro-Messverfahren zur Überwachung der Frische von biologischem Gewebe entwickelt. Die wichtigsten Herausforderungen stellen dabei die Reproduzierbarkeit der Impedanzmessung und die Klassifizierung der Gewebeart sowie dessen Zustands dar. Für die Reproduzierbarkeit von Impedanzmessungen an biologischen Geweben, wurde ein zylindrischer Multielektrodensensor realisiert, der die 2D-Anisotropie des Gewebes berücksichtigt und einen guten Kontakt zum Gewebe realisiert. Experimentelle Untersuchungen wurden an verschiedenen Geweben über einen längeren Zeitraum durchgeführt und mittels eines modifizierten Fricke-Cole-Cole-Modells analysiert. Die Ergebnisse sind reproduzierbar und entsprechen dem physikalisch-basierten erwarteten Verhalten. Als Merkmale für die Klassifikation wurden die Modellparameter genutzt
Moore, Sean. "Online condition monitoring of lithium ion batteries by performing impedance spectroscopy using a DC-DC converter." Master's thesis, University of Cape Town, 2018. http://hdl.handle.net/11427/29186.
Повний текст джерелаBhatnagar, Purva. "A microcontroller-based Electrochemical Impedance Spectroscopy Platform for Health Monitoring Systems." University of Cincinnati / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1439307617.
Повний текст джерелаЧастини книг з теми "Converter-Based impedance spectroscopy (IS)"
Burgot, Jean-Louis. "Techniques Based on Concept of Impedance Impedance Spectroscopy." In General Analytical Chemistry, 110–16. Boca Raton: CRC Press, 2024. http://dx.doi.org/10.1201/9781003224556-18.
Повний текст джерелаEdwards, Doreen. "Impedance Spectroscopy of Clay-Based Systems." In Whitewares and Materials: Ceramic Engineering and Science Proceedings, Volume 24, Issue 2, 67. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2008. http://dx.doi.org/10.1002/9780470294796.ch8.
Повний текст джерелаBhatt, Manoj, Mayank Punetha, Mitesh Upreti, Manoj Singh Adhikari, and Sanjay Mathur. "CMOS-based electrochemical impedance sensors." In Impedance Spectroscopy and its Application in Biological Detection, 185–99. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003358091-12.
Повний текст джерелаSmirnov, Aleksej. "Electrical Characterization of Oxide-Based Materials Using Impedance Spectroscopy." In Oxide-Based Materials and Structures, 31–74. First edition. | Boca Raton : CRC Press, 2020.: CRC Press, 2020. http://dx.doi.org/10.1201/9780429286728-3.
Повний текст джерелаKatz, Eugenii, and Itamar Willner. "Immunosensors and DNA Sensors Based on Impedance Spectroscopy." In Ultrathin Electrochemical Chemo- and Biosensors, 67–116. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-05204-4_4.
Повний текст джерелаChugh, Vibhas, Adreeja Basu, Ramesh N. Pudake, Rajkumar Saha, and Aviru Kumar Basu. "Recent progress in aptamer-based smart detection techniques for agriculture." In Impedance Spectroscopy and its Application in Biological Detection, 223–44. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003358091-14.
Повний текст джерелаBar-On, Lee, Umberto Garlando, Harpreet Singh, Adi Avni, Nir Sade, Yarden Zeron, Danilo Demarchi, and Yosi Shacham-Diamand. "Plant-Based Electrical Impedance Spectroscopy for Plant Health Monitoring." In Digital Agriculture, 485–517. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-43548-5_16.
Повний текст джерелаJaffrezic-Renault, Nicole. "Label-Free Affinity Biosensors Based on Electrochemical Impedance Spectroscopy." In Neuromethods, 295–318. Totowa, NJ: Humana Press, 2013. http://dx.doi.org/10.1007/978-1-62703-370-1_14.
Повний текст джерелаEtayash, Hashem, Thomas Thundat, and Kamaljit Kaur. "Bacterial Detection Using Peptide-Based Platform and Impedance Spectroscopy." In Biosensors and Biodetection, 113–24. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-6911-1_8.
Повний текст джерелаAlahi, Md Eshrat E., Xie Li, Subhas Mukhopadhyay, and L. Burkitt. "Application of Practical Nitrate Sensor Based on Electrochemical Impedance Spectroscopy." In Sensors for Everyday Life, 109–36. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-47322-2_6.
Повний текст джерелаТези доповідей конференцій з теми "Converter-Based impedance spectroscopy (IS)"
Abi Nakhoul, Issam Kury, Olivier Francais, Patricia Davidson, Lionel Rousseau, Patrick Poulichet, Stijn Robben, Jordan Roy, Pauline Thiebaud, and Ana Rita Ribeiro. "Impedance-Based Spectroscopy System for Monitoring Cell Polarizations on MEA." In 2024 Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS (DTIP), 1–5. IEEE, 2024. http://dx.doi.org/10.1109/dtip62575.2024.10613283.
Повний текст джерелаLi, Yanqing, Wenhao Li, Yufei Yao, Qiang Li, and Tao Han. "Cable Defects Location Method Based on M-sequence with Broadband Impedance Spectroscopy." In 2024 IEEE 5th International Conference on Dielectrics (ICD), 1–4. IEEE, 2024. http://dx.doi.org/10.1109/icd59037.2024.10613176.
Повний текст джерелаDam, Shimul Kumar, and Vinod John. "High resolution converter for battery impedance spectroscopy." In 2016 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES). IEEE, 2016. http://dx.doi.org/10.1109/pedes.2016.7914335.
Повний текст джерелаFerrero, R., C. Wu, A. Carboni, S. Toscani, M. De Angelis, H. George-Williams, E. Patelli, and P. A. Pegoraro. "Low-Cost Battery Monitoring by Converter-Based Electrochemical Impedance Spectroscopy." In 2017 IEEE International Workshop on Applied Measurements for Power Systems (AMPS). IEEE, 2017. http://dx.doi.org/10.1109/amps.2017.8078334.
Повний текст джерелаBautista-Quijano, Jose Roberto, and Olfa Kanoun. "Soft Nanocomposite-Based Pressure Sensors as Smart Seals." In 2021 International Workshop on Impedance Spectroscopy (IWIS). IEEE, 2021. http://dx.doi.org/10.1109/iwis54661.2021.9711834.
Повний текст джерелаSkorina, Erik Howard, Shu Guo, Maqsood Mughal, Cagdas D. Onal, and Ahmet C. Sabuncu. "Contact Testing of an Impedance-based Cancer Detection Probe." In 2021 International Workshop on Impedance Spectroscopy (IWIS). IEEE, 2021. http://dx.doi.org/10.1109/iwis54661.2021.9711846.
Повний текст джерелаWei, Wenzuo, and Juergen F. Kolb. "Impedance Properties of Trabecular Bone Based on Different Analytical Methods." In 2021 International Workshop on Impedance Spectroscopy (IWIS). IEEE, 2021. http://dx.doi.org/10.1109/iwis54661.2021.9711811.
Повний текст джерелаDjemal, Achraf, Dhouha Bouchaala, Ahmed Fakhfakh, and Olfa Kanoun. "Epileptic Seizure Motion Classification based on sEMG and Artificial Neural Network." In 2021 International Workshop on Impedance Spectroscopy (IWIS). IEEE, 2021. http://dx.doi.org/10.1109/iwis54661.2021.9711793.
Повний текст джерелаNasraoui, Salem, Ammar Al-Hamry, Sami Ameur, Mounir Ben Ali, and Olfa Kanoun. "Electrochemical Sensor for 4-Aminophenol Based on Flexible Laser Induced Graphene." In 2021 International Workshop on Impedance Spectroscopy (IWIS). IEEE, 2021. http://dx.doi.org/10.1109/iwis54661.2021.9711859.
Повний текст джерелаMisaaoui, Sarra, Ayda Bouhamed, Hamadi Khemakhem, and Olfa Kanoun. "Influence of Polar Solvents on Lead Free BCZT Based Flexible Nanogenerators Performance." In 2022 International Workshop on Impedance Spectroscopy (IWIS). IEEE, 2022. http://dx.doi.org/10.1109/iwis57888.2022.9975120.
Повний текст джерелаЗвіти організацій з теми "Converter-Based impedance spectroscopy (IS)"
Hermes, Uwe. Impedance spectroscopy of bilayer lipid membranes and TiO₂ based solar cells. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.7275.
Повний текст джерелаBastawros, Ashraf. DTPH56-16H-CAP01 Mechanochemistry-Based Detection of Early Stage Corrosion Degradation of Pipeline Steels. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), May 2020. http://dx.doi.org/10.55274/r0011990.
Повний текст джерела