Дисертації з теми "Convergence of Riemannian manifolds"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-50 дисертацій для дослідження на тему "Convergence of Riemannian manifolds".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.
Zergänge, Norman [Verfasser]. "Convergence of Riemannian manifolds with critical curvature bounds / Norman Zergänge." Magdeburg : Universitätsbibliothek, 2017. http://d-nb.info/1141230488/34.
Повний текст джерелаMartins, Tiberio Bittencourt de Oliveira. "Newton's methods under the majorant principle on Riemannian manifolds." Universidade Federal de Goiás, 2015. http://repositorio.bc.ufg.br/tede/handle/tede/4847.
Повний текст джерелаApproved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2015-11-03T14:25:04Z (GMT) No. of bitstreams: 2 Tese - Tiberio Bittencourt de Oliveira Martins.pdf: 1155588 bytes, checksum: add1eac74c4397efc29678341b834448 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
Made available in DSpace on 2015-11-03T14:25:04Z (GMT). No. of bitstreams: 2 Tese - Tiberio Bittencourt de Oliveira Martins.pdf: 1155588 bytes, checksum: add1eac74c4397efc29678341b834448 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Previous issue date: 2015-06-26
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
Apresentamos, nesta tese, uma an álise da convergência do m étodo de Newton inexato com tolerância de erro residual relativa e uma an alise semi-local de m etodos de Newton robustos exato e inexato, objetivando encontrar uma singularidade de um campo de vetores diferenci avel de nido em uma variedade Riemanniana completa, baseados no princ pio majorante a m invariante. Sob hip oteses locais e considerando uma fun ção majorante geral, a Q-convergância linear do m etodo de Newton inexato com uma tolerância de erro residual relativa xa e provada. Na ausência dos erros, a an alise apresentada reobtem o teorema local cl assico sobre o m etodo de Newton no contexto Riemanniano. Na an alise semi-local dos m etodos exato e inexato de Newton apresentada, a cl assica condi ção de Lipschitz tamb em e relaxada usando uma fun ção majorante geral, permitindo estabelecer existência e unicidade local da solu ção, uni cando previamente resultados pertencentes ao m etodo de Newton. A an alise enfatiza a robustez, a saber, e dada uma bola prescrita em torno do ponto inicial que satifaz as hip oteses de Kantorovich, garantindo a convergência do m etodo para qualquer ponto inicial nesta bola. Al em disso, limitantes que dependem da função majorante para a taxa de convergência Q-quadr atica do m étodo exato e para a taxa de convergência Q-linear para o m etodo inexato são obtidos.
A local convergence analysis with relative residual error tolerance of inexact Newton method and a semi-local analysis of a robust exact and inexact Newton methods are presented in this thesis, objecting to nd a singularity of a di erentiable vector eld de ned on a complete Riemannian manifold, based on a ne invariant majorant principle. Considering local assumptions and a general majorant function, the Q-linear convergence of inexact Newton method with a xed relative residual error tolerance is proved. In the absence of errors, the analysis presented retrieves the classical local theorem on Newton's method in Riemannian context. In the semi-local analysis of exact and inexact Newton methods presented, the classical Lipschitz condition is also relaxed by using a general majorant function, allowing to establish the existence and also local uniqueness of the solution, unifying previous results pertaining Newton's method. The analysis emphasizes robustness, being more speci c, is given a prescribed ball around the point satisfying Kantorovich's assumptions, ensuring convergence of the method for any starting point in this ball. Furthermore, the bounds depending on the majorant function for Q-quadratic convergence rate of the exact method and Q-linear convergence rate of the inexact method are obtained.
Luckhardt, Daniel [Verfasser], Thomas [Akademischer Betreuer] Schick, Thomas [Gutachter] Schick, Ralf [Gutachter] Meyer, Stephan [Gutachter] Huckemann, Russell [Gutachter] Luke, Viktor [Gutachter] Pidstrygach, and Ingo [Gutachter] Witt. "Benjamini-Schramm Convergence of Normalized Characteristic Numbers of Riemannian Manifolds / Daniel Luckhardt ; Gutachter: Thomas Schick, Ralf Meyer, Stephan Huckemann, Russell Luke, Viktor Pidstrygach, Ingo Witt ; Betreuer: Thomas Schick." Göttingen : Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2020. http://d-nb.info/1209358239/34.
Повний текст джерелаGuevara, Stefan Alberto Gómez. "Unificando o análise local do método de Newton em variedades Riemannianas." Universidade Federal de Goiás, 2017. http://repositorio.bc.ufg.br/tede/handle/tede/6951.
Повний текст джерелаApproved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2017-03-20T13:11:14Z (GMT) No. of bitstreams: 2 Dissertação - Stefan Alberto Gómez Guevara - 2017.pdf: 2201042 bytes, checksum: bd12be92bd41bae24c13758a1fc1a73d (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Made available in DSpace on 2017-03-20T13:11:14Z (GMT). No. of bitstreams: 2 Dissertação - Stefan Alberto Gómez Guevara - 2017.pdf: 2201042 bytes, checksum: bd12be92bd41bae24c13758a1fc1a73d (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2017-03-08
In this work we consider the problem of finding a singularity of a field of differentiable vectors X on a Riemannian manifold. We present a local analysis of the convergence of Newton's method to find a singularity of field X on an increasing condition. The analysis shows a relationship between the major function and the vector field X. We also present a semi-local Kantorovich type analysis in the Riemannian context under a major condition. The two results allow to unify some previously unrelated results.
Neste trabalho consideramos o problema de encontrar uma singularidade de um campo de vetores diferenciável X sobre uma variedade Riemanniana. Apresentamos uma análise local da convergência do método de Newton para encontrar uma singularidade do Campo X sobre uma condição majorante. A análise mostra uma relação entre a função majorante e o campo de vetores X. Também apresentamos uma análise semi-local do tipo Kantorovich no contexto Riemanniana sob uma condição majorante. Os dois resultados permitem unificar alguns resultados não previamente.
Erb, Wolfgang. "Uncertainty principles on Riemannian manifolds." kostenfrei, 2010. https://mediatum2.ub.tum.de/node?id=976465.
Повний текст джерелаDunn, Corey. "Curvature homogeneous pseudo-Riemannian manifolds /." view abstract or download file of text, 2006. http://proquest.umi.com/pqdweb?did=1188874491&sid=3&Fmt=2&clientId=11238&RQT=309&VName=PQD.
Повний текст джерелаTypescript. Includes vita and abstract. Includes bibliographical references (leaves 146-147). Also available for download via the World Wide Web; free to University of Oregon users.
Longa, Eduardo Rosinato. "Hypersurfaces of paralellisable Riemannian manifolds." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2017. http://hdl.handle.net/10183/158755.
Повний текст джерелаWe introduce a Gauss map for hypersurfaces of paralellisable Riemannian manifolds and de ne an associated curvature. Next, we prove a Gauss- Bonnet theorem. As an example, we carefully study the case where the ambient space is an Euclidean sphere minus a point and obtain a topological rigidity theorem. We use it to provide an alternative proof for a theorem of Qiaoling Wang and Changyu Xia, which asserts that if an orientable immersed hypersurface of the sphere is contained in an open hemisphere and has nowhere zero Gauss-Kronecker curvature, then it is di eomorphic to a sphere. Later, we obtain some topological invariants for hypersurfaces of translational manifolds that depend on the geometry of the manifold and the ambient space. Finally, we nd obstructions to the existence of certain codimension-one foliations.
Catalano, Domenico Antonino. "Concircular diffeomorphisms of pseudo-Riemannian manifolds /." [S.l.] : [s.n.], 1999. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=13064.
Повний текст джерелаAfsari, Bijan. "Means and averaging on riemannian manifolds." College Park, Md. : University of Maryland, 2009. http://hdl.handle.net/1903/9978.
Повний текст джерелаThesis research directed by: Dept. of Mathematics. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Popiel, Tomasz. "Geometrically-defined curves in Riemannian manifolds." University of Western Australia. School of Mathematics and Statistics, 2007. http://theses.library.uwa.edu.au/adt-WU2007.0119.
Повний текст джерелаDesa, Zul Kepli Bin Mohd. "Riemannian manifolds with Einstein-like metrics." Thesis, Durham University, 1985. http://etheses.dur.ac.uk/7571/.
Повний текст джерелаParmar, Vijay K. "Harmonic morphisms between semi-Riemannian manifolds." Thesis, University of Leeds, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.305696.
Повний текст джерелаDahmani, Kamilia. "Weighted LP estimates on Riemannian manifolds." Thesis, Toulouse 3, 2018. http://www.theses.fr/2018TOU30188/document.
Повний текст джерелаThe topics addressed in this thesis lie in the field of harmonic analysis and more pre- cisely, weighted inequalities. Our main interests are the weighted Lp-bounds of the Riesz transforms on complete Riemannian manifolds and the sharpness of the bounds in terms of the power of the characteristic of the weights. We first obtain a linear and dimensionless result on non necessarily homogeneous spaces, when p = 2 and the Bakry-Emery curvature is non-negative. We use here an analytical approach by exhibiting a concrete Bellman function. Next, using stochastic techniques and sparse domination, we prove that the Riesz transforms are Lp-bounded for p ∈ (1, +∞) and obtain the previous result for free. Finally, we use an elegant change in the precedent proof to weaken the condition on the curvature and assume it is bounded from below
ZEESTRATEN, MARTINUS. "Programming by Demonstration on Riemannian Manifolds." Doctoral thesis, Università degli studi di Genova, 2018. http://hdl.handle.net/11567/930621.
Повний текст джерелаFinkelstein, Shlomit Ritz. "Gravity in hyperspin manifolds." Diss., Georgia Institute of Technology, 1987. http://hdl.handle.net/1853/27974.
Повний текст джерелаLu, Zhuoran. "Properties of Soft Maps on Riemannian Manifolds." Thesis, New York University, 2017. http://pqdtopen.proquest.com/#viewpdf?dispub=10617234.
Повний текст джерелаThis paper concerns the soft map f from a Riemannian manifold to a probability space that minimizes the Dirichlet energy. First we give the explicit formula from any Riemannian manifold M to Prob(R). Secondly we discuss the map from M to Prob(Rd), prove the classic boundary condition implies classic solution. Then we proceed to the map from M to Prob(N), where N is a Riemannian manifold, and shows that if N is non-positive curvature, simply-connected, f has classic boundary condition, then f is classic solution and a harmonic map. Counter-examples are given when some of the above conditions are not fulfilled. In the last part we restrict the discussion in Gaussian measures. Using the Riemannian structure of the space of Gaussian measures, we prove an old result with a new method. We also show the soft map from M to non-degenerate Gaussian measures on R d is harmonic map, give the explicit formula for the soft map in a special case.
Kangaslampi, Riikka. "Uniformly quasiregular mappings on elliptic riemannian manifolds /." Helsinki : Suomalainen Tiedeakat, 2008. http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&doc_number=018603114&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA.
Повний текст джерелаFriswell, Robert Michael. "Harmonic vector fields on pseudo-Riemannian manifolds." Thesis, University of York, 2014. http://etheses.whiterose.ac.uk/7878/.
Повний текст джерелаGarcia-Leon, Joel. "Cheeger constant and isoperimetric inequalities on Riemannian manifolds." Thesis, Imperial College London, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.417041.
Повний текст джерелаAlcantara, Priscila Rodrigues de. "Hypersurfaces with prescribed mean curvature in Riemannian manifolds." Universidade Federal do CearÃ, 2010. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=5278.
Повний текст джерелаThis work shows results existence and uniqueness of graphs with prescribed mean curvature. We demonstrate that a natural fixation Dirichlet problem for graphs of average curvature is required to consider those graphs like leaves on a Riemannian submersion Killing transversal cylinder, the cylinder given by flow lines of a Killing vector field. Using this approach, we are able to solve the problem in a way more comprehensive, giving a unified proof and existence results.
O objetivo deste trabalho à exibir resultados de existÃncia e unicidade de grÃficos com curvatura mÃdia prescrita. Demonstraremos que uma fixacÃo natural do problema de Dirichlet para grÃficos de curvatura mÃdia prescrita à considerar esses grÃficos como folhas em uma submersÃo Riemanniana transversal ao cilindro de Killing, isto Ã, ao cilindro dado pelas linhasde fluxo de um campo de vetores de Killing. Usando essa aproximaÃÃo, somos capazes de resolver o problema em um modo mais compreensivo, dando uma prova unificada e resultados de existÃncia para uma ampla gama do ambiente de variedades Riemannianas.
Barrett, Dennis Ian. "Contributions to the study of nonholonomic Riemannian manifolds." Thesis, Rhodes University, 2017. http://hdl.handle.net/10962/7554.
Повний текст джерелаMenegaz, Henrique Marra Taira. "Unscented kalman filtering on euclidean and riemannian manifolds." reponame:Repositório Institucional da UnB, 2016. http://repositorio.unb.br/handle/10482/21617.
Повний текст джерелаSubmitted by Fernanda Percia França (fernandafranca@bce.unb.br) on 2016-08-08T20:08:43Z No. of bitstreams: 1 2016_HenriqueMarraTairaMenegaz.pdf: 4698576 bytes, checksum: 0e95622bdc8a0e9ab76ddd058427d256 (MD5)
Approved for entry into archive by Raquel Viana(raquelviana@bce.unb.br) on 2016-10-24T13:56:05Z (GMT) No. of bitstreams: 1 2016_HenriqueMarraTairaMenegaz.pdf: 4698576 bytes, checksum: 0e95622bdc8a0e9ab76ddd058427d256 (MD5)
Made available in DSpace on 2016-10-24T13:56:05Z (GMT). No. of bitstreams: 1 2016_HenriqueMarraTairaMenegaz.pdf: 4698576 bytes, checksum: 0e95622bdc8a0e9ab76ddd058427d256 (MD5)
Nesta tese, nós estudamos com profundidade uma técnica cada vez mais popular conhecida como Filtro de Kalman Unscented (FKU). Consideremos tanto aspectos teóricos como práticos da filtragem Unscented. Na primeira parte deste trabalho, propomos uma sistematização da teoria de filtragem de Kalman Unscented. Nessa sistematização nós i) agrupamos todos os FKUs da literatura, ii) apresentamos correções para inconsistências teóricas detectadas, e iii) propomos uma ferramenta para a construção de novos FKU's de forma consistente. Essencialmente, essa sistematização é feita mediante a revisão dos conceitos de conjunto sigma (SS), Transformação Unscented (TU), Transformação Unscented Escalada (TUE), Transformação Unscented Raiz-Quadrada (TURQ), FKU, e Filtro de Kalman Unscented Raiz-Quadrada (FKURQ). Introduzimos FKUs tempo-contínuo e tempo-contínuo-discreto. Ilustramos os resultados em i) alguns exemplos analíticos e numéricos, e ii) um experimento prático que consiste em estimar a posição de uma válvula de aceleração eletrônica utilizando FKUs desenvolvidos neste trabalho; essa estimação da posição de válvula é também uma contribuição por si só desde um ponto de vista tecnológico. Na segunda parte, primeiro, nós i) revelamos inconsistência na teoria por trás dos FKUs e FKURQs para sistemas de quatérnios unitários da literatura — tais como definições de quatérnios aleatórios e de sistemas quaterniônicos com ruídos aditivos —, ii) propomos um FKU englobando todos esses FKU's, e iii) propomos um FKURQ com propriedades numéricas superiores a esses FKURQs. Segundo, propomos uma extensão de alguns resultados da literatura relativos a estatísticas em variedades Riemannianas. Terceiro, usamos esses resultados estatísticos para apresentar uma extensão para sistemas riemannianos da sistematização euclidiana desenvolvida na primeira parte. Nessa sistematização riemanniana, introduzimos i) sistemas riemannianos com ruídos aditivos; e versões riemannianas dos conceitos de SS, TU, TUE, TURQ, FKU, e FKURQ. Diversos novos FKUs são introduzidos. Depois, apresentamos formas fechadas para quase todas as operações contidas nos filtros riemannianos para sistemas de quatérnios unitários. Também introduzimos consistentes i) FKUs para sistemas de quatérnios unitários duais, e ii) FKUs tempo-contínuo e tempo-contínuo-discreto. __________________________________________________________________________________________________ ABSTRACT
In this thesis, we take an in-depth study of an increasingly popular estimation technique known as Unscented Kalman Filter (UKF). We consider theoretical and practical aspects of the unscented filtering. In the first part of this work, we propose a systematization of the Unscented Kalman filtering theory on Euclidean spaces. In this systematization, we i) gather all available UKF's in the literature, ii) present corrections to theoretical inconsistencies, and iii) provide a tool for the construction of new UKF's in a consistent way. Mainly, this systematization is done by revisiting the concepts of sigma set (SS), Unscented Transformation (UT), Scaled Unscented Transformation (SUT), Square-Root Unscented Transformation (SRUT), UKF, and Square-Root Unscented Kalman Filter (SRUKF). We introduce continuous-time and continuous-discrete-time UKF's. We illustrate the results in i) some analytical and numerical examples, and ii) a practical experiment consisting of estimating the position of an automotive electronic throttle valve using UKF's developed in this work; this valve's position estimation is also, from a technological perspective, a contribution on its own. In the second part, first, we i) unfold some consistence issues in the theory behind the UKF's and SRUKF's for unit quaternion systems of the literature—such as definitions of random quaternions and additive-noise quaternion systems—, ii) propose an UKF embodying all these UKF's, and iii) propose an SRUKF with better computational properties than all these SRUKF's. Second, we propose an extension of some results of the literature concerning statistics on Riemannian manifolds. Third, we use these statistical results to present an extension to Riemannian systems of the Euclidean systematization developed in the first part. In this Riemannian systematization, we propose i) additive-noise Riemannian systems; and ii) Riemannian versions of the concepts of SS, UT, SUT, SRUT, UKF, and SRUKF. Several new consistent UKF's are introduced. Afterwards, we present closed forms of almost all the operations contained in the Unscented-type Riemannian filters for unit quaternion systems. We also introduce consistent i) UKF's for systems of unit dual quaternions, and ii) continuous-time and continuous-discrete-time UKF's for Riemannian manifolds.
VALTORTA, DANIELE. "ON THE P-LAPLACE OPERATOR ON RIEMANNIAN MANIFOLDS." Doctoral thesis, Università degli Studi di Milano, 2013. http://hdl.handle.net/2434/217559.
Повний текст джерелаTENCONI, MARINA. "Localization for Riesz Means on compact Riemannian manifolds." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2016. http://hdl.handle.net/10281/101979.
Повний текст джерелаLord, Steven. "Riemannian non-commutative geometry /." Title page, abstract and table of contents only, 2002. http://web4.library.adelaide.edu.au/theses/09PH/09phl8661.pdf.
Повний текст джерелаPeng, Xiao-Wei. "Kollaps Riemannscher Mannigfaltigkeiten." Bonn : [s.n.], 1988. http://catalog.hathitrust.org/api/volumes/oclc/18440158.html.
Повний текст джерелаTaringoo, Farzin. "Control and optimization of hybrid systems on Riemannian manifolds." Thesis, McGill University, 2013. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=114351.
Повний текст джерелаLa motivation première du travail accompli dans cette thèse est l'analyse du contrôle optimal de systèmes hybrides sur les variétés riemanniennes en utilisant le language de la géométrie differentielle. La théorie des systèmes hybrides constitue un des cadres majeurs dans lequel on peut modeler et analyser le comportement de systèmes grands et complexes; en particulier, le contrôle optimal de systèmes hybrides a été le centre d'intérêt des recherches dans les décennies précédentes ayant comme résultat une importante généralisation du Principe Minimum (Maximum) du contrôle optimal classique aux systèmes hybrides.Le travail de Shaikh et Caines (2007) et leurs prédécesseurs propose une formule pour une classe de problèmes de contrôle optimal pour les systèmes hybrides généraux avec des dynamiques non linéaires et autonomes ou des commutations contrôlées aux états et temps de commutation. Cette thèse élargit le cadre de Shaikh et Caines (2007) à une classe générale de systèmes hybrides définis sur les variétés riemanniennes. En raison de la nature générale de la formulation, cette classe de systèmes hybrides couvre un vaste éventail d'exemples pratiques survenant dans différents domaines tels que les systèmes mécaniques, les procédés chimiques, le contrôle des systèmes de navigation aérienne, ainsi que les systèmes de manipulation de la robotique coopérative. Premièrement, cette thèse présente une formulation pour le cas des systèmes hybrides généraux sur les variétés riemaniennes différentielles. Dans le cas des commutations autonomes, les variétés de commutation sont modélisées par les sous-variétés prolongées et orientables de la variété d'état ambiante et conséquemment, les problèmes de contrôle optimal hybrides sont définis pour les systèmes hybrides dans ce contexte général. Deuxièmement, le Principe Minimum classique est étendu au Principe Minimum Hybride (HMP), produisant les conditions nécessaires d'optimalité pour les systèmes hybrides aux états et temps optimaux de commutation. L'énoncé du Principe Minimum Hybride (HMP) dans cette thèse est obtenu en utilisant la commande de variation d'aiguille, ainsi nommée, dans l'espace de valeur de contrôle. Cette classe de variation donne des variations de trajectoire au long de la trajectoire d'état nominale dans la variété d'état ambiante. Les conditions d'optimalité sont obtenues en analysant la variation de la fonction de coût en respectant les variations d'état. Finalement, la dernière partie de la thèse met l'accent sur la question d'optimisation des problèmes de contrôle optimal autonomes hybrides en ce qui concerne les caractéristiques géométriques des variétés de commutation. De telles caractéristiques comprennent des informations de premier et de second ordre sur les variétés de commutation telles que les tenseurs de courbures et les formes différentielles normales.
CHIRA, JOSE LUIS LIZARBE. "ASYMPTOTIC LINKING INVARIANTS FOR RKACTIONS IN COMPACT RIEMANNIAN MANIFOLDS." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2005. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=7761@1.
Повний текст джерелаArnold no seu trabalho The asymptotic Hopf Invariant and its applications de 1986, considerou sobre um domínio (ômega maiúsculo) compacto de R3 com bordo suave e homología trivial campos X e Y de divergência nula e tangentes ao bordo de (ômega maiúsculo) e definiu o índice de enlaçamento assintótico lk(X; Y ) e o invariante de Hopf associados a X e Y pela integral I(X; Y ) = (integral em ômega maiúsculo de alfa produto d- beta), onde (d-alfa) = iX-vol e (d-beta) = iy-vol, e mostrou que I(X; Y ) = lk(X; Y ). Agora, no presente trabalho estenderemos estas definições de índices de enlaçamento assintótico lk(fi maiúsculo,xi maiúsculo) e de invariante de Hopf I(fi maiúsculo,xi maiúsculo), onde (fi maiúsculo) e (xi maiúsculo) são ações de Rk e de Rs, k+s = n-1, respectivamente de difeomorfismos que preservam volume em (ômega maiúsculo n) a bola unitária fechada em Rn e mostraremos que lk (fi maiúsculo, xi maiúsculo) = I(fi maiúsculo,xi maiúsculo).
V.I. Arnold, in his paper The algebraic Hopf invariant and its applications published in 1986, considered a compact domain (ômega maiúsculo) in R3 with a smooth boundary and trivial homology and two divergence free vector fields X and Y in (ômega maiúsculo) tangent to the boundary. He defined an asymptotic linking invariant lk(X; Y ) and a Hopf invariant associated to X and Y by the integral I(X; Y ) = (integral em ômega maiúsculo de alfa produto d-beta) where (d-alfa) = iX-vol e (d-beta) = iy- vol. He showed that que I(X; Y ) = lk(X; Y ). In the present work we extend these definitions of the asymptotic linking invariant lk(fi maiúsculo,xi maiúsculo) and the Hopf invariant I(fi maiúsculo,xi maiúsculo) where (fi maiúsculo) and (xi maiúsculo) are actions Rk and Rs, k+s = n-1 by volume preserving diffeomorphisms, on the closed unit ball (ômega maiúsculo n) in and we show lk (fi maiúsculo, xi maiúsculo) = I(fi maiúsculo,xi maiúsculo).
Sathaye, Bakul Sathaye. "Obstructions to Riemannian smoothings of locally CAT(0) manifolds." The Ohio State University, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=osu1531416481628579.
Повний текст джерелаNdumu, Martin Ngu. "Brownian motion and the heat kernel on Riemannian manifolds." Thesis, University of Warwick, 1989. http://wrap.warwick.ac.uk/108565/.
Повний текст джерелаPark, Jiewon. "Convergence of complete Ricci-βat manifolds". Thesis, Massachusetts Institute of Technology, 2020. https://hdl.handle.net/1721.1/126935.
Повний текст джерелаCataloged from the official PDF of thesis.
Includes bibliographical references (pages 57-59).
This thesis is focused on the convergence at inαnity of complete Ricci βat manifolds. In the αrst part of this thesis, we will give a natural way to identify between two scales, potentially arbitrarily far apart, in the case when a tangent cone at inαnity has smooth cross section. The identiαcation map is given as the gradient βow of a solution to an elliptic equation. We use an estimate of Colding-Minicozzi of a functional that measures the distance to the tangent cone. In the second part of this thesis, we prove a matrix Harnack inequality for the Laplace equation on manifolds with suitable curvature and volume growth assumptions, which is a pointwise estimate for the integrand of the aforementioned functional. This result provides an elliptic analogue of matrix Harnack inequalities for the heat equation or geometric βows.
by Jiewon Park.
Ph. D.
Ph.D. Massachusetts Institute of Technology, Department of Mathematics
Onodera, Mitsuko. "Study of rigidity problems for C2[pi]-manifolds." Sendai : Tohoku Univ, 2006. http://www.gbv.de/dms/goettingen/52860726X.pdf.
Повний текст джерелаOsipova, Daria. "Symmetric submanifolds in symmetric spaces." Thesis, University of Hull, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.342976.
Повний текст джерелаD'Azevedo, Breda A. M. R. "Isometric foldings." Thesis, University of Southampton, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.235197.
Повний текст джерелаBär, Christian, and Frank Pfäffle. "Wiener measures on Riemannian manifolds and the Feynman-Kac formula." Universität Potsdam, 2012. http://opus.kobv.de/ubp/volltexte/2012/5999/.
Повний текст джерелаEmmerich, Patrick [Verfasser]. "Rigidity of Complete Riemannian Manifolds without Conjugate Points / Patrick Emmerich." Aachen : Shaker, 2013. http://d-nb.info/1049384369/34.
Повний текст джерелаMiker, Julie. "Eigenvalue Inequalities for a Family of Spherically Symmetric Riemannian Manifolds." UKnowledge, 2009. http://uknowledge.uky.edu/gradschool_diss/783.
Повний текст джерелаWhiting, James K. (James Kalani) 1980. "Path optimization using sub-Riemannian manifolds with applications to astrodynamics." Thesis, Massachusetts Institute of Technology, 2011. http://hdl.handle.net/1721.1/63035.
Повний текст джерелаCataloged from PDF version of thesis.
Includes bibliographical references (p. 131).
Differential geometry provides mechanisms for finding shortest paths in metric spaces. This work describes a procedure for creating a metric space from a path optimization problem description so that the formalism of differential geometry can be applied to find the optimal paths. Most path optimization problems will generate a sub-Riemannian manifold. This work describes an algorithm which approximates a sub-Riemannian manifold as a Riemannian manifold using a penalty metric so that Riemannian geodesic solvers can be used to find the solutions to the path optimization problem. This new method for solving path optimization problems shows promise to be faster than other methods, in part because it can easily run on parallel processing units. It also provides some geometrical insights into path optimization problems which could provide a new way to categorize path optimization problems. Some simple path optimization problems are described to provide an understandable example of how the method works and an application to astrodynamics is also given.
by James K. Whiting.
Ph.D.
Stenzel, Matthew B. (Matthew Briggs). "Kähler structures on cotangent bundles of real analytic Riemannian manifolds." Thesis, Massachusetts Institute of Technology, 1990. http://hdl.handle.net/1721.1/49577.
Повний текст джерелаReam, Robert. "Darboux Intergrability Of Wave Maps Into 2-Dimensional Riemannian Manifolds." DigitalCommons@USU, 2008. https://digitalcommons.usu.edu/etd/203.
Повний текст джерелаBotros, Amir A. "GEODESICS IN LORENTZIAN MANIFOLDS." CSUSB ScholarWorks, 2016. https://scholarworks.lib.csusb.edu/etd/275.
Повний текст джерелаRaske, David Timothy. "Q-curvature on closed Riemannian manifolds of dimension greater than four /." Diss., Digital Dissertations Database. Restricted to UC campuses, 2005. http://uclibs.org/PID/11984.
Повний текст джерелаFranke, Dirk Christoph. "Quasiregular mappings and Hölder continuity of differential forms on Riemannian manifolds." [S.l. : s.n.], 1999. http://www.diss.fu-berlin.de/1999/57/index.html.
Повний текст джерелаFonn, Eivind. "Computing Metrics on Riemannian Shape Manifolds : Geometric shape analysis made practical." Thesis, Norwegian University of Science and Technology, Department of Mathematical Sciences, 2009. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-9868.
Повний текст джерелаShape analysis and recognition is a field ripe with creative solutions and innovative algorithms. We give a quick introduction to several different approaches, before basing our work on a representation introduced by Klassen et. al., considering shapes as equivalence classes of closed curves in the plane under reparametrization, and invariant under translation, rotation and scaling. We extend this to a definition for nonclosed curves, and prove a number of results, mostly concerning under which conditions on these curves the set of shapes become manifolds. We then motivate the study of geodesics on these manifolds as a means to compute a shape metric, and present two methods for computing such geodesics: the shooting method from Klassen et. al. and the ``direct'' method, new to this paper. Some numerical experiments are performed, which indicate that the direct method performs better for realistically chosen parameters, albeit not asymptotically.
Tashiro, Kenshiro. "Gromov-Hausdorff limits of compact Heisenberg manifolds with sub-Riemannian metrics." Doctoral thesis, Kyoto University, 2021. http://hdl.handle.net/2433/263433.
Повний текст джерелаZuddas, Daniele. "Branched coverings and 4-manifolds." Doctoral thesis, Scuola Normale Superiore, 2007. http://hdl.handle.net/11384/85677.
Повний текст джерелаSchüth, Dorothee. "Stetige isospektrale Deformationen." Bonn : [s.n.], 1994. http://catalog.hathitrust.org/api/volumes/oclc/31760957.html.
Повний текст джерелаRenesse, Max-K. von. "Comparison properties of diffusion semigroups on spaces with lower curvature bounds." Bonn : Mathematisches Institut der Universität Bonn, 2003. http://catalog.hathitrust.org/api/volumes/oclc/52348149.html.
Повний текст джерелаvon, Deylen Stefan Wilhelm [Verfasser]. "Numerical Approximation in Riemannian Manifolds by Karcher Means / Stefan Wilhelm von Deylen." Berlin : Freie Universität Berlin, 2015. http://d-nb.info/1066645108/34.
Повний текст джерелаWeber, Patrick. "Cohomology groups on hypercomplex manifolds and Seiberg-Witten equations on Riemannian foliations." Doctoral thesis, Universite Libre de Bruxelles, 2017. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/252914.
Повний текст джерелаDoctorat en Sciences
info:eu-repo/semantics/nonPublished