Добірка наукової літератури з теми "Controlled atmosphere calorimeter cone"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Controlled atmosphere calorimeter cone".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Controlled atmosphere calorimeter cone":

1

Leonard, J. E., P. A. Bowditch, and V. P. Dowling. "Development of a controlled-atmosphere cone calorimeter." Fire and Materials 24, no. 3 (2000): 143–50. http://dx.doi.org/10.1002/1099-1018(200005/06)24:3<143::aid-fam728>3.0.co;2-l.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Babrauskas, Vytenis, William H. Twilley, Marc Janssens, and Shyuitsu Yusa. "A cone calorimeter for controlled-atmosphere studies." Fire and Materials 16, no. 1 (January 1992): 37–43. http://dx.doi.org/10.1002/fam.810160106.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Hshieh, Fu-Yu, and Robert R. Buch. "Controlled-atmosphere cone calorimeter studies of silicones." Fire and Materials 21, no. 6 (November 1997): 265–70. http://dx.doi.org/10.1002/(sici)1099-1018(199711/12)21:6<265::aid-fam620>3.0.co;2-u.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Guillaume, Eric, Damien Michel Marquis, and Carine Chivas. "Experience plan for controlled-atmosphere cone calorimeter by Doehlert method." Fire and Materials 37, no. 2 (January 31, 2012): 171–76. http://dx.doi.org/10.1002/fam.2114.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Marquis, D., E. Guillaume, and A. Camillo. "Effects of oxygen availability on the combustion behaviour of materials in a controlled atmosphere cone calorimeter." Fire Safety Science 11 (2014): 138–51. http://dx.doi.org/10.3801/iafss.fss.11-138.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Werrel, Martin, Jan H. Deubel, Simone Krüger, Anja Hofmann, and Ulrich Krause. "The calculation of the heat release rate by oxygen consumption in a controlled-atmosphere cone calorimeter." Fire and Materials 38, no. 2 (January 3, 2013): 204–26. http://dx.doi.org/10.1002/fam.2175.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Beji, Tarek, Olivier Helson, Thomas Rogaume, and Jocelyn Luche. "Experimental and numerical study on the evaporation rates of liquid fuels using a controlled atmosphere cone calorimeter." Fire Safety Journal 121 (May 2021): 103317. http://dx.doi.org/10.1016/j.firesaf.2021.103317.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Hshieh, Fu-Yu, and Harold D. Beeson. "Note: measuring the effective heats of combustion of transformer-insulating fluids using a controlled-atmosphere cone calorimeter." Fire and Materials 26, no. 1 (January 2002): 47–49. http://dx.doi.org/10.1002/fam.778.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Hermouet, Fabien, Thomas Rogaume, Eric Guillaume, Franck Richard, Damien Marquis, and Xavier Ponticq. "Experimental characterization of the reaction-to-fire of an Acrylonitrile-Butadiene-Styrene (ABS) material using controlled atmosphere cone calorimeter." Fire Safety Journal 121 (May 2021): 103291. http://dx.doi.org/10.1016/j.firesaf.2021.103291.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Chaudhari, Dushyant M., Stanislav I. Stoliarov, Mark W. Beach, and Kali A. Suryadevara. "Polyisocyanurate Foam Pyrolysis and Flame Spread Modeling." Applied Sciences 11, no. 8 (April 13, 2021): 3463. http://dx.doi.org/10.3390/app11083463.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Polyisocyanurate (PIR) foam is a robust thermal insulation material utilized widely in the modern construction. In this work, the flammability of one representative example of this material was studied systematically using experiments and modeling. The thermal decomposition of this material was analyzed through thermogravimetric analysis, differential scanning calorimetry, and microscale combustion calorimetry. The thermal transport properties of the pyrolyzing foam were evaluated using Controlled Atmosphere Pyrolysis Apparatus II experiments. Cone calorimetry tests were also carried out on the foam samples to quantify the contribution of the blowing agent (contained within the foam) to its flammability, which was found to be significant. A complete pyrolysis property set was developed and was shown to accurately predict the results of all aforementioned measurements. The foam was also subjected to full-scale flame spread tests, similar to the Single Burning Item test. A previously developed modeling approach based on a coupling between detailed pyrolysis simulations and a spatially-resolved relationship between the total heat release rate and heat feedback from the flame, derived from the experiments on a different material in the same experimental setup, was found to successfully predict the evolution of the heat release rate measured in the full-scale tests on the PIR foam.

Дисертації з теми "Controlled atmosphere calorimeter cone":

1

Chatenet, Sarah. "An instrumented controlled-atmosphere cone calorimeter to characterize electrical cable behavior in depleted fires." Thesis, Lille 1, 2019. http://www.theses.fr/2019LIL1R047.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Les câbles électriques constituent la charge calorifique la plus abondante dans les centrales nucléaires et l'incendie est la source d'agression interne ayant la plus grande occurrence (un départ de feu par tranche et par an en France). Le risque incendie est caractérisé par deux vecteurs : la chaleur dégagée, qui peut conduire à la propagation de l’incendie, et la fumée produite, composée de gaz et d'aérosols, qui peuvent être toxiques et corrosifs et interagir avec les composants présents dans le local. À un stade avancé, un incendie confiné devient sous-ventilé et vicié car la combustion consomme l'oxygène disponible. La production d'imbrûlés augmente donc considérablement, ce qui a pour effet de rendre l'incendie possiblement plus agressif. Pour se protéger des risques d’un incendie confiné, il est donc important de quantifier la chaleur libérée, les gaz et les aérosols produits lors de la combustion de câbles électriques dans des conditions de déplétion d’oxygène. Pour ce faire, un banc expérimental à l'échelle intermédiaire, connu sous le nom de cône calorimètre à atmosphère contrôlée (CCAC), a été développé. Ce banc d’essai a été caractérisé préalablement à l’aide de plaques de PMMA. Des matériaux modèles représentatifs de gaines de câbles électriques à base de PVC ont été formulés puis manufacturés sous forme de plaques échantillons. Ces matériaux ont été caractérisés simultanément en termes de paramètres liés à l'incendie (taux de dégagement de chaleur, perte de masse), de gaz produits et d'aérosols émis, en conditions de sous-ventilation et de viciation à l’aide du couplage CCAC/FTIR/ELPI. La viciation a pour effet de diminuer le débit calorifique et le débit de pyrolyse de façon linéaire, alors que la sous-ventilation favorise la production d’imbrûlées et d’aérosols
Electrical cable sheaths are the most abundant fire load in nuclear power plants and fire is the most frequent internal aggression (one fire outbreak per year and per nuclear unit in France). A fire is threatening by two means: the heat it releases that may drive a fire growth and the smoke it yields, composed of gases and aerosols, that may be toxic and corrosive and interact with components in the area. At advanced stages, confined fires become oxygen depleted and the combustion regime shifts towards under-ventilated and vitiated combustion with the production of unburnt species leading to a higher threat. To assess the potential hazard of a confined fire, it is then of high importance to quantify the heat release, the gases and the aerosols produced by electrical cable sheaths fires in oxygen depleted conditions. To do so, a bench scale apparatus known as the controlled-atmosphere cone calorimeter (CACC) has been developed. The apparatus has been primarily qualified with PMMA plaques. Representative materials of PVC based electrical cable sheath have been formulated and manufactured in the shape of plaque samples. These materials have been characterized in terms of fire parameters (heat release rate, mass loss rate), evolved gases and evolved aerosols under different oxygen concentrations in under-ventilated conditions thanks to the CACC/FTIR/ELPI coupling. Vitiation lowers the heat release rate and decreases the fuel mass loss rate while under-ventilation increases unburnt species and aerosols production
2

Chatenet, Sarah. "An instrumented controlled-atmosphere cone calorimeter to characterize electrical cable behavior in depleted fires." Electronic Thesis or Diss., Université de Lille (2018-2021), 2019. http://www.theses.fr/2019LILUR047.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Les câbles électriques constituent la charge calorifique la plus abondante dans les centrales nucléaires et l'incendie est la source d'agression interne ayant la plus grande occurrence (un départ de feu par tranche et par an en France). Le risque incendie est caractérisé par deux vecteurs : la chaleur dégagée, qui peut conduire à la propagation de l’incendie, et la fumée produite, composée de gaz et d'aérosols, qui peuvent être toxiques et corrosifs et interagir avec les composants présents dans le local. À un stade avancé, un incendie confiné devient sous-ventilé et vicié car la combustion consomme l'oxygène disponible. La production d'imbrûlés augmente donc considérablement, ce qui a pour effet de rendre l'incendie possiblement plus agressif. Pour se protéger des risques d’un incendie confiné, il est donc important de quantifier la chaleur libérée, les gaz et les aérosols produits lors de la combustion de câbles électriques dans des conditions de déplétion d’oxygène. Pour ce faire, un banc expérimental à l'échelle intermédiaire, connu sous le nom de cône calorimètre à atmosphère contrôlée (CCAC), a été développé. Ce banc d’essai a été caractérisé préalablement à l’aide de plaques de PMMA. Des matériaux modèles représentatifs de gaines de câbles électriques à base de PVC ont été formulés puis manufacturés sous forme de plaques échantillons. Ces matériaux ont été caractérisés simultanément en termes de paramètres liés à l'incendie (taux de dégagement de chaleur, perte de masse), de gaz produits et d'aérosols émis, en conditions de sous-ventilation et de viciation à l’aide du couplage CCAC/FTIR/ELPI. La viciation a pour effet de diminuer le débit calorifique et le débit de pyrolyse de façon linéaire, alors que la sous-ventilation favorise la production d’imbrûlées et d’aérosols
Electrical cable sheaths are the most abundant fire load in nuclear power plants and fire is the most frequent internal aggression (one fire outbreak per year and per nuclear unit in France). A fire is threatening by two means: the heat it releases that may drive a fire growth and the smoke it yields, composed of gases and aerosols, that may be toxic and corrosive and interact with components in the area. At advanced stages, confined fires become oxygen depleted and the combustion regime shifts towards under-ventilated and vitiated combustion with the production of unburnt species leading to a higher threat. To assess the potential hazard of a confined fire, it is then of high importance to quantify the heat release, the gases and the aerosols produced by electrical cable sheaths fires in oxygen depleted conditions. To do so, a bench scale apparatus known as the controlled-atmosphere cone calorimeter (CACC) has been developed. The apparatus has been primarily qualified with PMMA plaques. Representative materials of PVC based electrical cable sheath have been formulated and manufactured in the shape of plaque samples. These materials have been characterized in terms of fire parameters (heat release rate, mass loss rate), evolved gases and evolved aerosols under different oxygen concentrations in under-ventilated conditions thanks to the CACC/FTIR/ELPI coupling. Vitiation lowers the heat release rate and decreases the fuel mass loss rate while under-ventilation increases unburnt species and aerosols production
3

Lamande, Adèle. "Assemblage de matériaux bois : effet de l’oxygène sur le développement de l’incendie et sur l’émission de gaz et d’aérosols." Electronic Thesis or Diss., Centrale Lille Institut, 2023. http://www.theses.fr/2023CLIL0034.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Les matériaux bois jouent un rôle clé dans la construction durable pour lutter contre le changement climatique. Cependant, en cas d'incendie, ils peuvent contribuer au développement du feu, challengeant leur utilisation. Afin d'améliorer la compréhension des risques d'incendie, des études expérimentales ont été menées pour examiner le comportement du Cross-Laminated Timber (CLT) et de la fibre de bois (WF) à diverses échelles, allant du banc d'essai à l'échelle intermédiaire. Ces études ont pris en compte des variations de température et de concentration en oxygène. Ces recherches se sont concentrées sur l'interaction potentielle entre le CLT et la WF, notamment dans une configuration mur/isolation. Les résultats indiquent que la diminution en oxygène a un impact significatif sur le comportement au feu, les émissions de gaz et d'aérosols du CLT, de la WF et du CLT/WF. De plus, la fibre de bois peut influencer négativement l'allumage du CLT dans certaines conditions. À une échelle plus large, le comportement au feu et la production de gaz de l'assemblage CLT/WF sont similaires à ceux de la WF, sans interactions observées entre les deux matériaux
.Wood materials play a key role in sustainable construction to tackle climate change. However, in the event of fire, they can contribute to fire growth, challenging their use. To improve understanding of fire risk, experimental studies have been carried out to examine the behavior of Cross-Laminated Timber (CLT) and wood fiber (WF) at various scales, from test bench to intermediate scale. These studies considered variations in temperature and oxygen concentration. The research focused on the potential interaction between CLT and WF, particularly in a wall/insulation configuration. The results indicated that oxygen depletion had a significant impact on the fire behavior, gas, and aerosol emissions of CLT, WF and CLT/WF. In addition, wood fiber negatively influenced the ignition of CLT under certain conditions. On a larger scale, the fire behavior and gas production of the CLT/WF assembly are like those of WF, with no interactions observed between the two materials
4

Nohra, Rita. "Modeling of the Reaction to Fire of Materials in Under-Ventilated Spaces. Application on the PMMA." Electronic Thesis or Diss., Chasseneuil-du-Poitou, Ecole nationale supérieure de mécanique et d'aérotechnique, 2024. http://www.theses.fr/2024ESMA0004.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Dans le domaine de la sécurité incendie, l'inflammation et la combustion des matériaux polymères sont étroitement liées aux conditions ambiantes, notamment à la concentration en oxygène. Dans les premiers instant, l'incendie présente des caractéristiques similaires à une situation bien ventilée, mais au fur et à mesure que le feu se développe et que les matériaux combustibles se consument, la disponibilité d'oxygène peut diminuer. Le feu passe alors à un état de sous-oxygénation caractérisé par un comportement complexe et instable de la phase gazeuse. La diminution de l'oxygène influence également le transfert de chaleur et de masse à l'intérieur du matériau étudié, affectant sa décomposition thermique et sa combustion, ainsi que la cinétique et la nature des produits gazeux émis. Les études expérimentales ayant pour enjeu de caractériser l’influence de la sous oxygénation sur la réaction au feu des matériaux solides restent très limitées, et de manière corrélée, les modèles numériques sont souvent non validés pour des telles atmosphères. Dans ce contexte, le présent travail vise à caractériser la décomposition thermique et la combustion des matériaux polymères dans des environnements viciés, en se focalisant sur le poly(méthyl)méthacrylate (PMMA). Un cône calorimètre à atmosphère contrôlée (CACC) a alors été instrumenté de sorte à caractériser l’influence de la concentration d’oxygène sur les processus de décomposition thermique et de combustion : perte de masse, champs de températures, flux de chaleur, composition gazeuse. Au cours de l’étude expérimentale des concentrations d’oxygène allant de 10% à 21% ont été étudiées, pour 3 flux de chaleur.Les résultats expérimentaux soulignent l'influence significative de la concentration d'oxygène et du flux thermique externe sur le transfert de chaleur et de masse ainsi que sur la combustion du PMMA. La perte de masse, le taux de dégagement de chaleur et les températures représentent des progressions linéaires avec la concentration d’oxygène jusqu’à une certaine concentration pour laquelle le comportement devient chaotique et imprévisible. Un paramètre adimensionné représentant la concentration d’oxygène a été introduit, permettant de trouver des corrélations adaptées pour les différents paramètres étudiés
In the field of fire safety, the ignition and combustion of polymeric materials are closely linked to the ambient conditions, particularly the oxygen concentration. In the initial stages, the fire displays characteristics similar to a well-ventilated situation, but as the fire develops and the combustible materials burn, the availability of oxygen decreases. The fire moves into a state of under-oxygenation characterised by complex and unstable behaviour of the gaseous phase. Oxygen depletion also affects heat and mass transfer within the material under study, affecting its thermal decomposition and combustion, as well as the kinetics and nature of the gaseous products. Experimental studies aimed at characterising the influence of the under-oxygenation on the reaction to fire of solid materials are still very limited in the literature, and numerical models are often not validated for such atmospheres. In this context, the present work aims to characterise the thermal decomposition and the combustion of polymeric materials in contaminated environments, focusing on poly(methyl)methacrylate (PMMA). A controlled atmosphere calorimeter cone (CACC) was instrumented to characterise the influence of oxygen concentration on thermal decomposition and combustion processes: mass loss, temperature fields, heat flux, gas composition. During the experimental study, oxygen concentrations ranging from 10% to 21% were studied, for 3 different heat flows. The experimental results highlight the significant influence of oxygen concentration and external heat flux on heat and mass transfer as well as on PMMA combustion. Mass loss, heat release rate and temperatures show linear progression with oxygen concentration up to a certain value where the behaviour becomes chaotic and unpredictable. A dimensionless parameter representing the oxygen concentration was introduced, allowing suitable correlations to be found for the various parameters studied
5

Mathis, Etienne. "Evaluation du risque d'inflammation de gaz imbrûlés au cours d'un incendie en milieu sous-ventilé." Thesis, Chasseneuil-du-Poitou, Ecole nationale supérieure de mécanique et d'aérotechnique, 2016. http://www.theses.fr/2016ESMA0012/document.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Lors du déclenchement d’un incendie en milieu clos, la quantité d’oxygène du local décroît, entrainant une combustion incomplète. Des gaz chauds imbrûlés peuvent alors s’accumuler dans le local ou dans les gaines de ventilation et un accident thermique peut survenir suite à un apport d’air frais. Ce travail, réalisé pour AREVA, vise à quantifier et d’analyser ce risque, afin de pouvoir le prédire et le prévenir. Tout d’abord, une étude bibliographique a été réalisée afin de définir les paramètres d’auto-inflammation à partir du modèle de Frank-Kamenetskii. Celui-ci permet, après un bilan d’énergie, l’établissement d’un paramètre critique, δC, d’auto-inflammation du mélange. δC réunit la géométrie, la température (et la température ambiante) et la composition du mélange à l’auto-inflammation.Puis, la dégradation thermique du Polyéthylène Haute Densité en fonction de la densité surfacique de flux incident à la surface du matériau et de la sous-ventilation a été caractérisée (cinétique de dégradation, productions gazeuses). Le Cône Calorimètre à Atmosphère Contrôlée a été employé.Ce travail expérimental a permis d’obtenir plusieurs mélanges gazeux suivant les conditions. La dernière partie de l’étude a permis, à partir de δC, de poser le volume de mélange via le rayon comme critère d’auto-inflammabilité des mélanges. En imposant une température, en faisant varier la fraction volumique de chaque gaz combustible entre sa LII et LSI le risque d’accident thermique a été défini
After the beginning of a fire in a closed room, the oxygen rate in the atmosphere decreases. This implies an incomplete combustion and unburnt gases production. These ones may accumulate in the room or in ventilation pipes, and, after mixing with fresh air, auto-ignite. This could trigger a thermal accident such as backdraft. This present work, conducted for AREVA, aims to analyse this hazard and provide some methods to predict and prevent it. First, a bibliographical research, was carried on to define a mixture’s auto-ignition parameters. This study was based on Frank-Kamenetskii’s model: after establishing the energetics balance between the heat produced by combustion, and the one consumed by conduction, an auto-ignition critical parameter, δC, was defined. It reunites the system’s geometry, temperature (or the room temperature) and composition.Then, the High Density Polythene degradation in a Controlled Atmosphere Cone Calorimeter was studied. The effect on the material’s degradation of under-ventilation and of the energy brought has been tested through the oxygen concentration in the atmosphere and the incident heat flux.During this work many different gas mixtures were analyzed. On the ground of δC formula, the final step was to set the volume, through the radius (characteristic size of the system), as an auto-ignition parameter. Making the concentration of each combustible varying between the LFL and UFL and imposing the temperature allowed to predict this hazard

Частини книг з теми "Controlled atmosphere calorimeter cone":

1

Christy, M. Robert, Ronald V. Petrella, and John J. Penkala. "Controlled-Atmosphere Cone Calorimeter." In ACS Symposium Series, 498–517. Washington, DC: American Chemical Society, 1995. http://dx.doi.org/10.1021/bk-1995-0599.ch031.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Gong, Weixuan, Juan Cuevas, and Albert Simeoni. "A Study of the Ignition Mechanism for Dead Pinus Palustris Needles." In Advances in Forest Fire Research 2022, 498–504. Imprensa da Universidade de Coimbra, 2022. http://dx.doi.org/10.14195/978-989-26-2298-9_77.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Combinations of cumulative impacts of drought, invasive species, climate variability, and ever-expanding wildland-urban interface make landscapes more susceptible to devastating wildland fires. To treat the increasing risks of wildland fires, one of the ways is to mitigate the risk of ignition, which requires a solid understanding of the ignition mechanism of vegetation fuels. This can be achieved mainly through discerning the degradation stage and the ignition criteria. Scaling up the experiments for the degradation stage and evaluating the suitability of existing ignition criteria are two of the primary challenges for ignition studies on vegetation fuels. Motivated by the challenges, two series of experiments were conducted using a modified Cone Calorimeter to understand the mechanisms driving the ignition of dead Pinus palustris needles. In the first set of experiments, the ignition of pine needles was studied for varied incident heat fluxes (20-35 kW/m2) and air flow rates (buoyancy-induced - 100 l/min forced flow). In the second set of experiments, Fourier transform infrared (FTIR) spectroscopy was used to characterize the composition of the pyrolysis gases generated from the thermal degradation of pine needles when exposed to various incident heat fluxes (20-35 kW/m2) under an inert atmosphere obtained using a flow of pure nitrogen (50-100 l/min). The results for the first series of experiments show that critical mass loss rate at ignition increase with both flow rates and heat flux, while the heat release rate at ignition was only influenced by the flow conditions. From the second set of experiments, it was found that methane (CH4), carbon monoxide (CO), carbon dioxide (CO2), and water vapor (H2O) are the main constituents of the pyrolysis gases. The predominance of these compounds was found to be independent of the external heat flux while their individual concentrations are sensitive to it. The flammability of pyrolysis gas was found to increase with external heat flux. The average content of flammable species, CH4 and CO, in the pyrolysis gas account for more than 31% at 20 kW/m2 and more than 40% at 30 kW/m2.

Тези доповідей конференцій з теми "Controlled atmosphere calorimeter cone":

1

Andrews, Gordon E., Aysha Irshad, Herodotus N. Phylaktou, and Bernard M. Gibbs. "Solid Biomass to Medium CV Gas Conversion With Rich Combustion." In ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/gt2019-90196.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract A modified cone calorimeter for controlled atmosphere combustion was used to investigate the gases released from fixed bed rich combustion of solid biomass. The cone calorimeter was used with 50 kW/m2 of radiant heat that simulated a larger gasification system. The test specimen in the cone calorimeter is 100mm square and this sits on a load cell so that the mass burn rate can be determined. Pine wood was burned with fixed air ventilation that created rich combustion at 1.5–4 equivalence ratio, Ø. The raw exhaust gas was sampled using a multi-hole gas sample probe in a discharge chimney above the cone heater, connected via heated sample lines, filters and pumps to the heated Gasmet FTIR. The FTIR was calibrated for 60 species, including 40+ hydrocarbons. The hydrogen in the gas was computed from the measured CO concentration using the water-gas shift reaction. The exhaust gas temperature was also measured so that the sensible heat from the gasification zone was included in the energy balance. The GCV of the pine was 18.8 MJ/kgpine and at the optimum Ø the energy in the rich combustion zone gases was 14.5 MJ/kgpine, which is a 77% energy conversion from solid biomass to a gaseous fuel feed for potential gas turbine applications. This conversion efficiency is comparable with the best conventional gasification of biomass and higher than most published conversion efficiencies for coal gasifiers. Of the energy in the gas from the rich combustion 35% was from the CO, 20% from hydrogen, 35% from hydrocarbons and 10% sensible heat. Ash remained in the rich burning gasification zone. As the biomass is a carbon neutral fuel there is no need to convert the gasified gases to hydrogen, with the associated energy losses.
2

Zhao, Z. F., and J. Gou. "Study of Flame Retardancy of Carbon Nanopaper Sheets in Glass Fiber-Reinforced Polyester Composites." In ASME 2007 International Mechanical Engineering Congress and Exposition. ASMEDC, 2007. http://dx.doi.org/10.1115/imece2007-43185.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In recent years, more severe requirement of budget and safety from industrial fields, especially space exploration and defense field, demand a new class of materials whose characteristics can satisfy both various engineering requirement and strict safety standard. The latter demands materials to have good thermal properties and significantly improved fire retardant property. In this research, multifunctional materials with layered structures are made from polyester resin, glass fiber mats and carbon nanofibers (CNFs). CNFs are added to the resin component of the composite laminates as additives in pulverised form and carbon nanofiber paper sheets (CNFS), respectively. Their flammability behaviors are investigated with cone calorimeter under well-controlled combustion conditions. And their heat release rate and other test parameters are compared and discussed, such as ignition time, heat release rate (HRR), peak heat release rate (PHRR), and so on. Although its PHRR is sharply increased to higher level for CNFS enforced composite laminates, its HRR curve is lowered greatly in most flaming time. Therefore, the pre-incorporated CNFS may act as an excellent insulator and mass transport barrier, improving the flame retardant property.
3

Pribicevic, I., and T. Sattelmayer. "Study of Diesel Air-Fuel Mixing and Combustion at High Injection Pressures in a Rapid Compression Machine." In ASME 2012 Internal Combustion Engine Division Fall Technical Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/icef2012-92058.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Diesel air-fuel mixing and combustion have been investigated in a Rapid Compression Machine (RCM). The measurements were performed at high injection pressures up to 260 MPa and under reacting and non-reacting conditions. The spray was injected through solenoid-controlled multi-hole injectors. Two nozzles were applied with orifice diameters of 175 μm (D175) and 150 μm (D150), respectively. The visualization of the penetration of the liquid and the gaseous phase as well as the spray cone angle under evaporative, non-reacting conditions was carried out by the shadowgraph imaging technique in combination with a high speed camera. For combustion studies the flame luminosity of the flame as well as the chemiluminescence signals emitted by the OH radicals in the UV range were detected. Investigations revealed different behavior of the macroscopic spray characteristics with the two applied nozzles when increasing the injection pressure from 200 MPa to 260 MPa. With the larger nozzle diameter (D175) the spray penetration and the spray propagation velocity increase as the injection pressure is increased. On the contrary to that, with the smaller nozzle diameter (D150) an increase of the injection pressure had no effect on the spray velocity. With 260 MPa a higher spray penetration was only observed at the beginning of the injection due to the faster opening of the needle. The further propagation of the tip of the spray was similar with 200 MPa and 260 MPa. With both applied nozzles the injection pressure has little effect on the penetration length of the liquid phase. At an applied injection pressure of 200 MPa the near-nozzle spray angle is wider with D175, whereas similar spray angles were observed at 260 MPa. From the measurements in reacting atmosphere an earlier ignition of the fuel and a faster combustion could be shown with nozzle D150. In addition, a higher combustion pressure was measured. This can be attributed to better air-fuel mixing and a higher premixed portion, which was confirmed by the analysis of the spray angles in the far-nozzle region obtained from the shadowgraph images at non-reacting conditions.

До бібліографії