Добірка наукової літератури з теми "Contrôle par mode glisant"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Contrôle par mode glisant".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Contrôle par mode glisant"
Silva, Rosimeri Carvalho da. "Les nouveaux mécanismes du contrôle organisationnel." Cadernos EBAPE.BR 1, no. 2 (December 2003): 01–23. http://dx.doi.org/10.1590/s1679-39512003000200003.
Повний текст джерелаBultez, Alain. "Mode de diagnostic de marchés concurrentiels." Recherche et Applications en Marketing (French Edition) 11, no. 4 (December 1996): 3–34. http://dx.doi.org/10.1177/076737019601100401.
Повний текст джерелаPaladi, Irina. "Une analyse dynamique du système de contrôle de gestion de la firme post-soviétique." Comptabilité Contrôle Audit Tome 29, no. 3 (April 17, 2023): 43–83. http://dx.doi.org/10.3917/cca.293.0043.
Повний текст джерелаGilonne, Yves. "La Télé-commande." Nottingham French Studies 59, no. 3 (December 2020): 289–310. http://dx.doi.org/10.3366/nfs.2020.0292.
Повний текст джерелаVANDYCKE, Robert. "Les droits de l’homme et leurs modes d’emploi. À propos de la charte constitutionnelle de 1982." Sociologie et sociétés 18, no. 1 (September 30, 2002): 139–52. http://dx.doi.org/10.7202/001821ar.
Повний текст джерелаLafontaine, Michèle. "La vente sous contrôle de justice : comment le législateur se porte à la défense d’intérêts contradictoires." Revue générale de droit 29, no. 1 (March 18, 2016): 5–59. http://dx.doi.org/10.7202/1035694ar.
Повний текст джерелаBarou, Jacques. "Les cultures et leur espace de cohabitation. Modes de vie et transmission." Migrants formation 98, no. 1 (1994): 123–31. http://dx.doi.org/10.3406/diver.1994.6986.
Повний текст джерелаSerhir, N., and C. Marche. "La simulation assistée par ordinateur dans le contrôle et l'utilisation optimale des ressources hydriques." Canadian Journal of Civil Engineering 19, no. 3 (June 1, 1992): 432–40. http://dx.doi.org/10.1139/l92-052.
Повний текст джерелаMarcotte, Claude, and Pierre-André Julien. "Partage d'information et performance de coentreprises implantées par les PME québécoises dans les pays en développement." Notes de recherche 8, no. 2 (February 16, 2012): 175–201. http://dx.doi.org/10.7202/1008354ar.
Повний текст джерелаDesvaux, Stéphanie, and Muriel Figuié. "Systèmes de surveillance formel et informel : comment construire des liens." Revue d’élevage et de médecine vétérinaire des pays tropicaux 68, no. 1 (November 19, 2015): 33. http://dx.doi.org/10.19182/remvt.20574.
Повний текст джерелаДисертації з теми "Contrôle par mode glisant"
Huber, Olivier. "Analyse et implémentation du contrôle par modes glissants en temps discret." Thesis, Université Grenoble Alpes (ComUE), 2015. http://www.theses.fr/2015GREAT042.
Повний текст джерелаSliding Mode Control is a control technique with a long history, with research efforts dating back to the 50's. The basic idea is to define the control input as a discontinuous function of the sliding variable, which solely depends on the state, and to constraint the system to evolve on a manifold, hence the term sliding. Over the years a strong theory was build around this technique, but only in continuous time. In our context, this means that control input value can change value at any time. The discrete-time case is when the control input can only change at isolated time instants and the dynamical system on which the control is still a continuous-time process. The control input is therefore a step function. This case appears when the controller is digitally implemented, for instance with the help of a microcontroller. This kind of setup is nowadays ubiquitous in benchmarks and industrial applications. One of the main limitation of the applicability of sliding mode control is the chattering phenomenon that is witnessed when this control technique is applied in practice, but already in simulations. In contrast to previous approaches, we single out the chattering that is already witnessed in simulation, even with no disturbance and with perfect knowledge of the dynamics. This is called the numerical chattering and one of its distinct feature is the constant chattering, or high-frequency bang-bang behavior, of the control input. This naturally induces a chattering of the sliding variable. The claim that this type of chattering is usually predominant and that it is due to a bad discretization of the signum multifunction. The approach developed in this work was inspired by the research effort in the nonsmooth mechanical to properly simulate some systems like those with dry friction and/or unilateral constraints. The main point is to discretize the signum in an implicit fashion, that is its argument is the value of the sliding variable at the end of the next sampling period. With this change, the numerical chattering can be removed in the simplest cases, largely attenuated. The research effort was focused on classical sliding mode controller, rather than the higher order ones. The frameworks used to perform the analysis are convex analysis and variational inequalities. This discrete-time controller enjoys several interesting theoretical properties. First it is finite-time Lyapunov stable: the sliding variable goes to 0 in finite-time. The discrete-time control input converges to the continuous-time one as the sampling period goes to 0. The control action also attenuates the effect of matched perturbations. Also the increase of the gain of the controller does not affect the performances when the system is sliding. The twisting controller can be discretized in the same way and is also finite-time Lyapunov stable. This good theoretical properties have been verified in simulations, but also on experimental setups. Two tests were conducted: the first one on an electropneumatic system, where both the classical first-order sliding mode controller and the twisting algorithm were tested. The objective was to track a reference trajectory. The second one was an inverted pendulum on a cart with only the classical SMC. The goal was to stabilize the system at the unstable equilibrium. The analysis from the data collected during those experiments shows that the proposed controllers perform better than the their explicitly discretized versions. The performances are better and the chattering is effectively reduced
Chovet, Camila. "Manipulation de la turbulence en utilisant le contrôle par mode glissant et le contrôle par apprentissage : de l'écoulement sur une marche descendante à une voiture réelle." Thesis, Valenciennes, 2018. http://www.theses.fr/2018VALE0016/document.
Повний текст джерелаThe present work aims to pre-evaluate flow control parameters to reduce the drag in a real vehicle. Two different actuation mechanisms (Murata’s micro-blower, and air-knives) are characterized and compared to define their advantages and limitations. Murata micro-blowers energized the boundary layer to directly perturb the vortex structures formed in the shear layer region. The air-knife has a rounded surface, adjacent to the slit exit, that could be considered as an active boat-tail (Coanda effect) for drag reduction. Different open-loop and closed-loop control strategies are examined, such as continuous blowing, periodic forcing, sliding mode control (SMC) and machine learning control (MLC). SMC is a robust closed-loop algorithm to track, reach and maintain a predefined set-point; this approach has on-line adaptivity in changing conditions. Machine learning control is a model-free control that learns an effective control law that is judged and optimized with respect to a problem-specific cost/objective function. A hybrid between MLC and SMC may provide adaptive control exploiting the best non-linear actuation mechanisms. Finally, all these parameters are brought together and tested in real experimental applications representative of the mean wake and shear-layer structures related to control of real cars. For the backward-facing step, the goal is to experimentally reduce the recirculation zone. The flow is manipulated by a row of micro-blowers and sensed by pressure sensors. Initial measurements were carried out varying the periodic forcing. MLC is used to improve performance optimizing a control law with respect to a cost function. MLC is shown to outperform periodic forcing. For the Ahmed body, the goal is to reduce the aerodynamic drag of the square-back Ahmed body. The flow is manipulated by an air-knife placed on the top trailing edge and sensed by a force balance. Continuous blowing and periodic forcing are used as open-loop strategies. SMC and MLC algorithms are applied and compared to the open-loop cases. The pre-evaluation of the flow control parameters yielded important information to reduce the drag of a car. The first real vehicle experiments were performed on a race track. The first actuator device concept and sensor mechanism are presented
Perozzi, Gabriele. "Exploration sécurisée d’un champ aérodynamique par un mini drone." Thesis, Ecole centrale de Lille, 2018. http://www.theses.fr/2018ECLI0007/document.
Повний текст джерелаThis thesis is part of the project "Small drones in the wind" carried by the ONERA center of Lille. This project aims to use the drone as a "wind sensor" to manage a UAV quadrotor in disturbed wind conditions using wind field prediction. In this context, the goal of the thesis is to make the quadrotor a wind sensor to provide local information to update the navigation system. With real-time on-board wind estimation, the quadrotor can compute a trajectory planning avoiding dangerous areas and the corresponding trajectory control, based on anexisting cartography and information on the aerodynamic behavior of airflow close to obstacles. Thus, the results of this thesis, whose main objectives are to estimate instant wind and position control, will be merged with another study dealing with trajectory planning. An important problem is that pressure sensors, such as the aeroclinometer and the Pitot tube, are not usable in rotary-wing vehicles because rotors air inflow interferes with the atmospheric flow and lightweight LIDAR sensors generally are not available. Another approach to estimate the wind is to implement an estimation software (or an intelligent sensor). In this thesis, three estimators are developed using the sliding mode approach, based on an adequate drone model, available measurements on the quadrotor and inertial tracking position systems. We are then interested in the control of the trajectory also by sliding mode considering the nonlinear model of the quadrotor. In addition, we are still studying quite an early alternative solution based on the H control, considering the linearized model for different equilibrium points as a function of the wind speed. The control and estimation algorithms are strictly based on the detailed model of the quadrotor, which highlights the influence of the wind
Balogoun, Ismaïla. "Contributions à la théorie du contrôle des systèmes de dimension infinie soumis à des perturbations/incertitudes." Electronic Thesis or Diss., Ecole centrale de Nantes, 2023. http://www.theses.fr/2023ECDN0017.
Повний текст джерелаIn this thesis, we study problems ofstabilization and output regulation for infinitedimensionalsystems subjected to disturbances.First, we consider the problem of the stabilizationof an abstract linear infinite-dimensional systemwith unbounded control operators and subject toa matched disturbance. To solve this problem, wefollow a sliding mode control strategy. Secondly, weconsider the problem of the boundary stabilizationof a linear hyperbolic system (a transport equationand a system of transport equations) subjected toa matched disturbance. The objective here is topropose for this particular case a control which requiresmuch less in terms of measurement than thedesign proposed before. To solve this problem, wepropose an active disturbance rejection control. Finally,we are interested in the construction of aninput-to-state stability Lyapunov functional and theoutput regulation of a Korteweg-de Vries equation
Feingesicht, Maxime. "Contrôle non linéaire actif d’écoulements turbulents décollés : Théorie et expérimentations." Thesis, Ecole centrale de Lille, 2017. http://www.theses.fr/2017ECLI0024/document.
Повний текст джерелаFlow control is a strongly growing field aiming at modifying fluid flows using actuators and control algorithms. An important part of flow control is the control of flow separation as boundary layer separation increases drag and therefore energy losses and fuel consumption. This thesis focuses on developing control algorithms for flow reattachment using pulsed jets actuators. The first part of this work develops a model identification technique based on experimental data. The models are derived from physical and control theory considerations. They provide a good fit to the data while remaining simple and using few coefficients. The second part of this work uses this models in order to design two different control algorithms : the first one is an optimal feedforward control while the second one is a robust feedback control. The control algorithms have been applied on several experimental setups (LML, ONERA, LAMIH) and their properties have been experimentally tested. The tests were conducted using a simple Arduino Uno for the measurements and computation of the control, showing that the developed method is easy to apply and requires very few computational resources
Gaye, Oumar. "CONTRÔLE DU PROFIL DE FACTEUR DE SECURITE DANS LES PLASMAS DE TOKAMAK EN DIMENSION INFINIE." Phd thesis, Université d'Angers, 2012. http://tel.archives-ouvertes.fr/tel-00774718.
Повний текст джерелаMajid, Hirsh. "Contribution à l'estimation et à la commande des systèmes de transport intelligents." Thesis, Artois, 2014. http://www.theses.fr/2014ARTO0203/document.
Повний текст джерелаThe works presented in this PhD dissertation fit into the framework of Intelligent TransportationSystems. Although the beginnings of these systems have started since the 60s, their development, basedon information and communication technologies, has reached maturity during the early 80s. The ITS usesthe intelligence of different systems (embedded systems, intelligents sensors, intelligents highways, etc.)in order to optimize road infrastructures performances and respond to the daily problems of congestions.The dissertation presents four contributions into the framework of road traffic flow and tackles theestimation and control problems in order to eliminate or at least reduce the “recurrent" congestionsphenomena. The first point treats the problem of traffic state estimation which is of most importance inthe field of ITS. Indeed, the implementation and performance of any control strategy is closely relatedto the ability to have all needed information about the traffic state describing the dynamic behavior ofthe studied system. Two estimation algorithms are then proposed. The first one uses the “metanet"model and high order sliding mode techniques. The second is based on the so-called Cell TransmissionModels. Several comparative studies with the Kalman filters, which are the most used in road traffic flowengineering, are established in order to demonstrate the effectiveness of the proposed approaches. Thethree other contributions concern the problem of traffic flow control. At first, the focus is on the isolatedramp metering using an algorithm based on the high order sliding mode control. The second contributiondeals with the dynamic traffic routing problem based on the high order sliding mode control. Such controlstrategy is enriched by introducing the concept of integration, in the third contribution. Indeed, integratedcontrol consists of a combination of several traffic control algorithms. In this thesis the proposed approachcombines an algorithm of on-ramp control with a dynamic traffic routing control. The obtained results arevalidated via numerical simulations. The validated results of the proposed isolated ramp metering controlare compared with the most used ramp metering strategy : ALINEA. Finally, the last contributiontreats the coordination problems. The objective is to coordinate several ramps which cooperate andchange information in order to optimize the highway traffic flow and reduce the total travel time in theapplied area. All these contributions were validated using real data mostly from French freeways. Theobtained results show substantial gains in term of performances such as travel time, energetic consumptiondecreasing, as well as the increasing in the mean speed. These results allow to consider several furtherworks in order to provide more interesting and efficient solutions in the ITS field
Rahmani, Mustapha Amine. "Gestion de l'énergie d'une micro-centrale solaire thermodynamique." Thesis, Grenoble, 2014. http://www.theses.fr/2014GRENT077/document.
Повний текст джерелаThis Ph.D thesis was prepared in the scope of the MICROSOL project, ledby Schneider Electric, that aims at developing Off-grid solar thermodynamic micro powerplants exploiting the solar thermal energy. The aim of this thesis being the development of innovative and efficient control strategies for the energy management of two kinds of solar thermodynamic micro power plants: based on Stirling engine and based and Organic RankineCycle (ORC) machines.In a first part, we consider the Stirling based solar thermodynamic micro power planthybridized with a supercapacitor as an energy buffer. Within this framework, we propose afirst experimentally validated control strategy, associated to the energy conversion system ofthe Stirling engine, that endows the system with quasi optimal performances in term of settlingtime enabling the size reduction of the supercapacitor. A second control strategy that handlesexplicitly the system constraints while providing the system with optimal performances interm of settling time , is also proposed. This control strategy is in fact more than a simplecontroller, it is a control framework that holds for a family of energy conversion systems.In a second part, we consider the Organic Rankine Cycle (ORC) based thermodynamicmicro power plant hybridized with a battery bank as an energy buffer. Since this system worksat constant speed for the asynchronous generator electrically connected to a commercial energyconversion system, we propose a model predictive controller that acts on the thermodynamicpart of this system to move from an operating point to another, during the load power demandtransients, as fast as possible (to reduce the size of the battery banks) while respecting thephysical system constraints. The developed predictive controller is based upon a dynamicmodel, for the ORC power plant, identified experimentally thanks to an adequate nonlinearidentification algorithm
Chokor, Abbas. "Design of several centralized and decentralized multilayer robust control architectures for global chassis control." Thesis, Compiègne, 2019. http://www.theses.fr/2019COMP2514.
Повний текст джерелаGlobal Chassis Control (GCC) is crucial task in intelligent vehicles. It consists of assisting the driver by several automated functionalities especially for active safety and comfort purposes. Due to the fact that the dynamics of these functionalities are interconnected, thus the awaited performances are sometimes contradictory. Hence, the main task in GCC field is to coordinate the different Advanced Driving Assistance Systems (ADAS) to create synergies between the interconnected dynamics in order to improve the overall vehicle performance. Several powerful coordination strategies have already been developed either in the academic world or in the industrial one to manage these interconnections. Because the active safety needs are increasing from one side, and the technology that can be embedded into vehicles is evolving, an intense research and development is still involved in the field of global chassis control. This thesis analyzes di_erent dynamics interconnections and develops new several GCC strategies where the Active Front Steering, Active Differential Braking, and the Active Suspensions are coordinated - all together or partially - to improve the vehicle overall performance i.e. the rollover avoidance, the lateral stability, the driving comfort (maneuverability), and the ride comfort. Several multilayer architectures formed by three hierarchical layers are proposed. The lower layer represents the actuators implemented into the vehicle which generate their control inputs based on the orders sent from the middle layer. The middle layer is the control layer which is responsible to generate the control inputs that minimize the errors between the desired and actual vehicle state variables i.e. the yaw, side-slip, roll, pitch, and heave motions, regardless of the driving situation. The higher layer is the decision making layer. It instantly monitors the vehicle dynamics by di_erent criteria, then, it generates weighting parameters to adapt the controllers performances according to the driving conditions i.e. to improve the vehicle's maneuverability, lateral stability, rollover avoidance, and ride comfort. The proposed architectures di_er in the control and decision layers depending on the proposed embedded actuators. For instance, the decision layers di_er in the monitored criteria and the way the decision is taken (fuzzy logic or explicit relations). The control layers di_er in structure, where centralized and decentralized controllers are developed. In the centralized architecture, one single Multi-Input-Multi-Output optimal controller generates the optimal control inputs based on the Linear Parameter Varying (LPV)/H-infinity control technique. In the decentralized architecture, the controllers are decoupled, where the Super-Twisting Sliding Mode (STSM) technique is applied to derive each control input apart. The proposed architectures are tested and validated on the professional simulator « SCANeR Studio » and on a Full vehicle nonlinear complex model. Simulation shows that all architectures are relevant to the global chassis control. The centralized one is optimal, complex and overall stability is guaranteed, while the decentralized one does not guarantee the overall stability, but it is intuitive, simple, and robust
Merheb, Abdel-Razzak. "Diagnostic and fault-tolerant control applied to an unmanned aerial vehicle." Thesis, Aix-Marseille, 2016. http://www.theses.fr/2016AIXM4367/document.
Повний текст джерелаUnmanned Aerial Vehicles (UAV) are more and more popular for their civil and military applications. Classical control laws usually show weaknesses in the presence of parameter uncertainties, environmental disturbances, and actuator and sensor faults. Therefore, it is judicious to design a control law capable of stabilizing the UAV not only in the fault-free nominal cases, but also in the presence of disturbances and faults. In this thesis, a new bio-inspired search algorithm called Ecological Systems Algorithm (ESA) suitable for engineering optimization problems is developed. The algorithm is used over the thesis to find optimal gains for the fault tolerant controllers. Sliding Mode Control theory is used to develop two Passive Fault Tolerant Controllers for quadrotor UAVs: Regular and Cascaded SMC. Because Passive Controllers handle a few numbers of faults, an Active Sliding Mode Fault Tolerant Controller using Kalman Filter is developed. To overcome severe faults and failures, an emergency controller based on the Quadrotor-to-Trirotor conversion maneuver is developed. The Controllers developed so far (Passive, Active, and emergency controllers) are then integrated to form the Integrated Fault Tolerant Controller (IFTC). The IFTC is a powerful controller that is able to handle a wide number of faults, and save actuator resources as well as processor computational effort. Finally, Passive and Active Fault Tolerant Controllers are designed for octorotor UAVs based on First Order and Second Order Sliding Mode Control. The AFTC uses Dynamic and Pseudo-Inverse Control Allocation methods to redistribute the control effort among healthy actuators reducing the effect of fault
Книги з теми "Contrôle par mode glisant"
Wilfrid, Perruquetti, and Barbot Jean Pierre 1958-, eds. Sliding mode control in engineering. New York: M. Dekker, 2002.
Знайти повний текст джерелаSliding mode control for synchronous electric drives. Boca Raton: CRC Press, 2012.
Знайти повний текст джерелаPerruquetti, Wilfrid, and Jean Pierre Barbot. Sliding Mode Control in Engineering. Taylor & Francis Group, 2002.
Знайти повний текст джерелаPerruquetti, Wilfrid, and Jean Pierre Barbot. Sliding Mode Control in Engineering. Taylor & Francis Group, 2002.
Знайти повний текст джерелаPerruquetti, Wilfrid, and Jean Pierre Barbot. Sliding Mode Control in Engineering. Taylor & Francis Group, 2002.
Знайти повний текст джерелаPerruquetti, Wilfrid, and Jean-Pierre Barbot. Sliding Mode Control in Engineering. Taylor & Francis Group, 2002.
Знайти повний текст джерелаRyvkin, Sergey E., and Eduardo Palomar Lever. Sliding Mode Control for Synchronous Electric Drives. Taylor & Francis Group, 2011.
Знайти повний текст джерелаRyvkin, Sergey E., and Eduardo Palomar Lever. Sliding Mode Control for Synchronous Electric Drives. Taylor & Francis Group, 2011.
Знайти повний текст джерелаRyvkin, Sergey E., and Eduardo Palomar Lever. Sliding Mode Control for Synchronous Electric Drives. Taylor & Francis Group, 2011.
Знайти повний текст джерелаRyvkin, Sergey E., and Eduardo Palomar Lever. Sliding Mode Control for Synchronous Electric Drives. Taylor & Francis Group, 2019.
Знайти повний текст джерелаЧастини книг з теми "Contrôle par mode glisant"
MBULI, John, and Damien TRENTESAUX. "Impact des systèmes industriels cyber-physiques sur les transports." In Digitalisation et contrôle des systèmes industriels cyber-physiques, 257–76. ISTE Group, 2023. http://dx.doi.org/10.51926/iste.9085.ch13.
Повний текст джерела