Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Contrôle nano-fonctionnalisation de surface.

Статті в журналах з теми "Contrôle nano-fonctionnalisation de surface"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Contrôle nano-fonctionnalisation de surface".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Zhang, Shuo, Qin Jiang, Yi Xu, Chuan Fei Guo, and Zhigang Wu. "Facile Fabrication of Self-Similar Hierarchical Micro-Nano Structures for Multifunctional Surfaces via Solvent-Assisted UV-Lasering." Micromachines 11, no. 7 (July 14, 2020): 682. http://dx.doi.org/10.3390/mi11070682.

Повний текст джерела
Анотація:
Cross-scale self-similar hierarchical micro–nano structures in living systems often provide unique features on surfaces and serve as inspiration sources for artificial materials or devices. For instance, a highly self-similar structure often has a higher fractal dimension and, consequently, a larger active surface area; hence, it would have a super surface performance compared to its peer. However, artificial self-similar surfaces with hierarchical micro–nano structures and their application development have not yet received enough attention. Here, by introducing solvent-assisted UV-lasering, we establish an elegant approach to fabricate self-similar hierarchical micro–nano structures on silicon. The self-similar structure exhibits a super hydrophilicity, a high light absorbance (>90%) in an ultra-broad spectrum (200–2500 nm), and an extraordinarily high efficiency in heat transfer. Through further combinations with other techniques, such surfaces can be used for capillary assembling soft electronics, surface self-cleaning, and so on. Furthermore, such an approach can be transferred to other materials with minor modifications. For instance, by doping carbon in polymer matrix, a silicone surface with hierarchical micro–nano structures can be obtained. By selectively patterning such hierarchical structures, we obtained an ultra-high sensitivity bending sensor. We believe that such a fabrication technique of self-similar hierarchical micro–nano structures may encourage researchers to deeply explore the unique features of functional surfaces with such structures and to further discover their potentials in various applications in diverse directions.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Ren, Yingming, and Zhiyu Zhang. "Influences of Initial Surface Conditions on Response Characteristics of Amorphous Silicon Films to Nanosecond Laser Irradiation." Micromachines 12, no. 7 (July 9, 2021): 807. http://dx.doi.org/10.3390/mi12070807.

Повний текст джерела
Анотація:
Although laser-produced micro-/nano-structures have been extensively studied, the effects of the initial surface conditions on the formed micro-/nano-structures have rarely been investigated. In this study, through nanosecond pulsed laser irradiation of unpolished and polished amorphous silicon films, entirely different surface characteristics were observed. The effects of laser irradiation parameters, such as repetition frequency, beam overlap ratio, and scanning velocity, on the surface characteristics were investigated, followed by the characterization of surface roughness, energy-dispersive X-ray spectroscopy, and Raman spectroscopy of the irradiated surfaces. For the unpolished surface, novel micro-protrusions were generated after laser irradiation, whereas no such micro-protrusions were formed on the polished surface. The experimental results indicated that the height of the micro-protrusions could be tuned using laser irradiation parameters and that laser irradiation promoted the crystallization of the amorphous silicon film. Moreover, the formation mechanism of the micro-protrusions was linked to fluctuations of the solid–liquid interface caused by continuous laser pulse shocks at higher repetition frequencies. The findings of this study suggest important correlations between the initial surface conditions and micro-/nano-structure formation, which may enhance our fundamental understanding of the formation of micro-/nano-structures.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Zhang, Xiu, Shuqi Li, Baoxing Wang, Baojin Chen, Haojie Guo, Rui Yue, and Yong Cai. "Enhanced Light Extraction Efficiency by Self-Masking Technology with Carbonized Photoresist for Light-Emitting Diodes." Micromachines 14, no. 3 (February 24, 2023): 534. http://dx.doi.org/10.3390/mi14030534.

Повний текст джерела
Анотація:
This work investigates a self-masking technology for roughening the surface of light-emitting diodes (LEDs). The carbonized photoresist with a naturally nano/micro-textured rough surface was used as a mask layer. After growing the Si3N4 passivation layer on LEDs, the texture pattern of the mask layer was transferred to the surface of the passivation layer via reactive ion beam (RIE) dry etching, resulting in LEDs with nano-textured surfaces. This nano-textured surface achieved by self-masking technology can alleviate the total internal reflection at the top interface and enhance light scattering, thereby improving the light extraction efficiency. As a result, the wall-plug efficiency (WPE) and external quantum efficiency (EQE) of rough-surface LEDs reached 53.9% and 58.8% at 60 mA, respectively, which were improved by 10.3% and 10.5% compared to that of the flat-surface Si3N4-passivated LED. Additionally, at the same peak, both LEDs emit a wavelength of 451 nm at 350 mA. There is also almost no difference between the I–V characteristics of LEDs before and after roughening. The proposed self-masking surface roughening technology provides a strategy for LEE enhancement that is both cost-effective and compatible with conventional fabrication processes.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Novotny, Jakub, Petra Juskova, Rudolf Kupcik, Zuzana Bilkova, and Frantisek Foret. "Simple Fabrication of Structured Magnetic Metallic Nano-Platelets for Bio-Analytical Applications." Micromachines 10, no. 2 (February 3, 2019): 106. http://dx.doi.org/10.3390/mi10020106.

Повний текст джерела
Анотація:
This short communication presents a simple method of preparation of thin-metal nano-platelets utilizing metal sputtering and lift-off photolithography. The method offers complete control over size, shape and properties of nano-platelets of sub-micrometer thickness. Platelets with a thickness of 50–200 nm and with defined arbitrary shapes and sizes in the range of 15–300 μm were prepared from single or multiple metal layers by magnetron sputtering. Deposition of different metals in layers enabled fabrication of bi- or tri-metallic platelets with a magnetic core and differently composed surfaces. Highly reflective nano-platelets with a magnetic core allowed manipulation by magnetic fields, while different metallic surfaces served for functionalization by selected molecules. Submicron thin nano-platelets are extremely light (e.g., ~20 ng for a 100 μm × 100 μm × 0.1 μm gold nano-platelet) so that they can be attached to surfaces by only a few chemical bonds. At the same time their area is sufficiently large for simple optical recognition of their shape which is intended to label various characteristics depending on the specific surface functionalization of the given shape.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Moylan, S. P., S. Kompella, S. Chandrasekar, and T. N. Farris. "A New Approach for Studying Mechanical Properties of Thin Surface Layers Affected by Manufacturing Processes." Journal of Manufacturing Science and Engineering 125, no. 2 (April 15, 2003): 310–15. http://dx.doi.org/10.1115/1.1559161.

Повний текст джерела
Анотація:
Nano-indentation has become an important tool in the study of mechanical properties of solids at small length scales, ever since its formulation as a technique in the early 1980s. The small size of an indentation, typically one micrometer or less in surface extent, makes it a potentially attractive tool also for the quantitative study of the characteristics of surface layers in monolithic solids. Here, we report results from a study in which nano-indentation has been combined with taper-sectioning to analyze the mechanical properties of thin surface layers affected by manufacturing processes. The so-called white etching layer (WL) produced in steel surfaces by machining and abrasion is characterized. The WL is found to have a hardness in the range of 11.5–16.2 GPa, which is significantly greater than that of untempered martensite produced by heat treatment processes. These hardness values are close to those measured on steel piano wires. The so-called “burn-layer” produced on ground surfaces of steels is found to have a hardness distribution very similar to that of a white layer, suggesting that the two layers are of the same type. Localized hardening and softening of surface layers, over spatial extents of a few micro-meters, caused by material removal processes are accurately resolved by the combined use of nano-indentation and taper-sectioning. The taper-sectioning/nano-indentation approach is also shown to be a good procedure for characterizing the hardness of PVD-TiN films deposited onto hard metal substrates.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Lu, Xizhao, Lei Kang, Binggong Yan, Tingping Lei, Gaofeng Zheng, Haihe Xie, Jingjing Sun, and Kaiyong Jiang. "Evolution of a Superhydrophobic H59 Brass Surface by Using Laser Texturing via Post Thermal Annealing." Micromachines 11, no. 12 (November 29, 2020): 1057. http://dx.doi.org/10.3390/mi11121057.

Повний текст джерела
Анотація:
To fabricate an industrial and highly efficient super-hydrophobic brass surface, annealed H59 brass samples have here been textured by using a 1064 nm wavelength nanosecond fiber laser. The effects of different laser parameters (such as laser fluence, scanning speed, and repetition frequency), on the translation to super-hydrophobic surfaces, have been of special interest to study. As a result of these studies, hydrophobic properties, with larger water contact angles (WCA), were observed to appear faster than for samples that had not been heat-treated (after an evolution time of 4 days). This wettability transition, as well as the evolution of surface texture and nanograins, were caused by thermal annealing treatments, in combination with laser texturing. At first, the H59 brass samples were annealed in a Muffle furnace at temperatures of 350 °C, 600 °C, and 800 °C. As a result of these treatments, there were rapid formations of coarse surface morphologies, containing particles of both micro/nano-level dimensions, as well as enlarged distances between the laser-induced grooves. A large number of nanograins were formed on the brass metal surfaces, onto which an increased number of exceedingly small nanoparticles were attached. This combination of fine nanoparticles, with a scattered distribution of nanograins, created a hierarchic Lotus leaf-like morphology containing both micro-and nanostructured material (i.e., micro/nanostructured material). Furthermore, the distances between the nano-clusters and the size of nano-grains were observed, analyzed, and strongly coupled to the wettability transition time. Hence, the formation and evolution of functional groups on the brass surfaces were influenced by the micro/nanostructure formations on the surfaces. As a direct consequence, the surface energies became reduced, which affected the speed of the wettability transition—which became enhanced. The micro/nanostructures on the H59 brass surfaces were analyzed by using Field Emission Scanning Electron Microscopy (FESEM). The chemical compositions of these surfaces were characterized by using an Energy Dispersive Analysis System (EDS). In addition to the wettability, the surface energy was thereby analyzed with respect to the different surface micro/nanostructures as well as to the roughness characteristics. This study has provided a facile method (with an experimental proof thereof) by which it is possible to construct textured H59 brass surfaces with tunable wetting behaviors. It is also expected that these results will effectively extend the industrial applications of brass material.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Saritas, Resul, Majed Al-Ghamdi, Taylan Memik Das, Omar Rasheed, Samed Kocer, Ahmet Gulsaran, Asif Abdullah Khan, et al. "Nano Groove and Prism-Structured Triboelectric Nanogenerators." Micromachines 14, no. 9 (August 31, 2023): 1707. http://dx.doi.org/10.3390/mi14091707.

Повний текст джерела
Анотація:
Enhancing the output power of triboelectric nanogenerators (TENGs) requires the creation of micro or nano-features on polymeric triboelectric surfaces to increase the TENGs’ effective contact area and, therefore, output power. We deploy a novel bench-top fabrication method called dynamic Scanning Probe Lithography (d-SPL) to fabricate massive arrays of uniform 1 cm long and 2.5 µm wide nano-features comprising a 600 nm deep groove (NG) and a 600 nm high triangular prism (NTP). The method creates both features simultaneously in the polymeric surface, thereby doubling the structured surface area. Six thousand pairs of NGs and NTPs were patterned on a 6×5 cm2 PMMA substrate. It was then used as a mold to structure the surface of a 200 µm thick Polydimethylsiloxane (PDMS) layer. We show that the output power of the nano-structured TENG is significantly more than that of a TENG using flat PDMS films, at 12.2 mW compared to 2.2 mW, under the same operating conditions (a base acceleration amplitude of 0.8 g).
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Jahnel, Kirk, Robert Michels, Dennis Patrick Wilhelm, Tim Grunwald, and Thomas Bergs. "Investigation of Surface Integrity Induced by Ultra-Precision Grinding and Scratching of Glassy Carbon." Micromachines 14, no. 12 (December 14, 2023): 2240. http://dx.doi.org/10.3390/mi14122240.

Повний текст джерела
Анотація:
Glassy carbon provides material characteristics that make it a promising candidate for use as a mould material in precision glass moulding. However, to effectively utilize glassy carbon, a thorough investigation into the machining of high-precision optical surfaces is necessary, which has not been thoroughly investigated. This research analyses the process of material removal and its resulting surface integrity through the use of nano-scratching and ultra-precision grinding. The nano-scratching process begins with ductile plastic deformation, then progresses with funnel-shaped breakouts in the contact zone, and finally concludes with brittle conchoidal breakouts when the cutting depth is increased. The influence of process factors and tool-related parameters resulting from grinding has discernible impacts on the ultimate surface roughness and topography. Enhancing the cutting speed during cross-axis kinematic grinding results in improved surface roughness. Increasing the size of diamond grains and feed rates leads to an increase in surface roughness. An achievable surface roughness of Ra < 5 nm together with ductile-regime grinding behaviour meet optical standards, which makes ultra-precision grinding a suitable process for optical surface generation.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Aizawa, Inohara, and Wasa. "Femtosecond Laser Micro-/Nano-Texturing of Stainless Steels for Surface Property Control." Micromachines 10, no. 8 (July 31, 2019): 512. http://dx.doi.org/10.3390/mi10080512.

Повний текст джерела
Анотація:
Surface geometry has had an influence on the surface property, in addition to the intrinsic surface energy, of materials. Many physical surface modification methods had been proposed to control the solid surface geometry for modification of surface properties. Recently, short-pulse lasers were utilized to perform nano-texturing onto metallic and polymer substrates for the improvement of surface properties. Most of the papers reported that the hydrophilic metallic surface was modified to have a higher contact angle than 120–150°. Little studies explained the relationship between surface geometry and surface properties. In the present study, the laser micro-/nano-texturing was developed to describe this surface-geometric effect on the static contact angles for pure water. Micropatterns with multi spatial frequencies are designed and synthesized into a microtexture. This tailored microtexture was utilized to prepare for computer aided machining (CAM) data to control the femtosecond laser beams. The nano-length ripples by laser induced periodic surface structuring (LIPSS) supposed onto this microtexture to form the micro-/nano-texture on the AISI304 substrate surface. Computational geometry was employed to describe this geometric profile. The fractal dimension became nearly constant by 2.26 and insensitive to increase of static contact angle (θ) for θ > 150°. Under this defined self-similarity, the micro-/nano-textured surface state was controlled to be super-hydrophobic by increasing the ratio of the highest spatial frequency in microtextures to the lowest one. This controllability of surface property on the stainless steels was supported by tailoring the wavelength and pitch of microtextures. Exposure testing was also used to evaluate the engineering durability of this micro-/nano-textured surface. Little change of the measured fractal dimension during the testing proved that this physically modified AISI304 surface had sufficient stability for its long-term usage in air.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Aizawa, Tatsuhiko, Tomoaki Yoshino, Yohei Suzuki, and Tadahiko Inohara. "Micro-/Nano-Texturing onto Plasma-Nitrided Tool Surface by Laser Printing for CNC Imprinting and Piercing." Micromachines 13, no. 2 (February 6, 2022): 265. http://dx.doi.org/10.3390/mi13020265.

Повний текст джерела
Анотація:
A new data transformation method for micro-manufacturing using a topological model for a micro-/nano-texture was proposed for a surface-decorated product. Femtosecond laser printing was utilized to form the micro-/nano-textures into the hardened thick layer of dies by plasma nitriding. At first, the plasma-nitrided AISI316L flat substrate was laser-printed as a punch to imprint the tailored nano-textures onto the AA1060 aluminum plate for its surface decoration with topological emblems. Second, the plasma-nitrided SKD11 cylindrical punch was laser-trimmed to form the nanostructures on its side surface. This nano-texture was imprinted onto the hole surface concurrently with piercing a circular hole into electrical steel sheet. The fully burnished surface had a shiny, metallic quality due to the nano-texturing. The plasma nitriding, the laser printing and the CNC (computer numerical control) imprinting provided a way of transforming the tailored textures on the metallic product.
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Zou, Yanhua, Ryunosuke Satou, Ozora Yamazaki, and Huijun Xie. "Development of a New Finishing Process Combining a Fixed Abrasive Polishing with Magnetic Abrasive Finishing Process." Machines 9, no. 4 (April 12, 2021): 81. http://dx.doi.org/10.3390/machines9040081.

Повний текст джерела
Анотація:
High quality, highly efficient finishing processes are required for finishing difficult-to-machine materials. Magnetic abrasive finishing (MAF) process is a finishing method that can obtain a high accuracy surface using fine magnetic particles and abrasive particles, but has poor finishing efficiency. On the contrary, fixed abrasive polishing (FAP) is a polishing process can obtain high material removal efficiency but often cannot provide a high-quality surface at the nano-scale. Therefore, this work proposes a new finishing process, which combines the magnetic abrasive finishing process and the fixed abrasive polishing process (MAF-FAP). To verify the proposed methodology, a finishing device was developed and finishing experiments on alumina ceramic plates were performed. Furthermore, the mechanism of the MAF-FAP process was investigated. In addition, the influence of process parameters on finishing characteristics is discussed. According to the experimental results, this process can achieve high-efficiency finishing of brittle hard materials (alumina ceramics) and can obtain nano-scale surfaces. The surface roughness of the alumina ceramic plate is improved from 202.11 nm Ra to 3.67 nm Ra within 30 min.
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Brock, Larry, and Jian Sheng. "Robust Fabrication of Polymeric Nanowire with Anodic Aluminum Oxide Templates." Micromachines 11, no. 1 (December 30, 2019): 46. http://dx.doi.org/10.3390/mi11010046.

Повний текст джерела
Анотація:
Functionalization of a surface with biomimetic nano-/micro-scale roughness (wires) has attracted significant interests in surface science and engineering as well as has inspired many real-world applications including anti-fouling and superhydrophobic surfaces. Although methods relying on lithography include soft-lithography greatly increase our abilities in structuring hard surfaces with engineered nano-/micro-topologies mimicking real-world counterparts, such as lotus leaves, rose petals, and gecko toe pads, scalable tools enabling us to pattern polymeric substrates with the same structures are largely absent in literature. Here we present a robust and simple technique combining anodic aluminum oxide (AAO) templating and vacuum-assisted molding to fabricate nanowires over polymeric substrates. We have demonstrated the efficacy and robustness of the technique by successfully fabricating nanowires with large aspect ratios (>25) using several common soft materials including both cross-linking polymers and thermal plastics. Furthermore, a model is also developed to determine the length and molding time based on nanowires material properties (e.g., viscosity and interfacial tension) and operational parameters (e.g., pressure, vacuum, and AAO template dimension). Applying the technique, we have further demonstrated the confinement effects on polymeric crosslinking processes and shown substantial lengthening of the curing time.
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Xie, Xiaofan, Yunfei Li, Gong Wang, Zhenxu Bai, Yu Yu, Yulei Wang, Yu Ding, and Zhiwei Lu. "Femtosecond Laser Processing Technology for Anti-Reflection Surfaces of Hard Materials." Micromachines 13, no. 7 (July 8, 2022): 1084. http://dx.doi.org/10.3390/mi13071084.

Повний текст джерела
Анотація:
The anti-reflection properties of hard material surfaces are of great significance in the fields of infrared imaging, optoelectronic devices, and aerospace. Femtosecond laser processing has drawn a lot of attentions in the field of optics as an innovative, efficient, and green micro-nano processing method. The anti-reflection surface prepared on hard materials by femtosecond laser processing technology has good anti-reflection properties under a broad spectrum with all angles, effectively suppresses reflection, and improves light transmittance/absorption. In this review, the recent advances on femtosecond laser processing of anti-reflection surfaces on hard materials are summarized. The principle of anti-reflection structure and the selection of anti-reflection materials in different applications are elaborated upon. Finally, the limitations and challenges of the current anti-reflection surface are discussed, and the future development trend of the anti-reflection surface are prospected.
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Zhang, Li, Zheng Tan, Chong Zhang, Jingrong Tang, Chi Yao, Xiangyu You, and Bo Hao. "Research on Metal Corrosion Resistant Bioinspired Special Wetting Surface Based on Laser Texturing Technology: A Review." Micromachines 13, no. 9 (August 30, 2022): 1431. http://dx.doi.org/10.3390/mi13091431.

Повний текст джерела
Анотація:
Metal substrates are widely used in engineering production. However, material life reduction and economic loss due to chemical and electrochemical corrosion are a major problem facing people. Electrochemical corrosion is the main corrosion mode of metals, such as seawater corrosion. It is found that the superhydrophobic surface treated by laser texturing plays an important role in the corrosion resistance of the substrate, with the laser texturing process and post-treatment affecting the corrosion resistance. The corrosion resistance is positively correlated with the superhydrophobic property of the surface. For the mechanism of corrosion resistance, this paper summarizes the effect of micro-nano structure, surface-modified coating, oxidation layer or new product layer, surface inhomogeneity, crystal structure, and slippery surface on corrosion resistance. Superhydrophobic surface and slippery surface are two common types of bioinspired, special wetting surfaces. In order to prepare better superhydrophobic and corrosion-resistant surfaces, this paper summarizes the selection and optimization of laser parameters, surface structure, processing media, and post-treatment from the point of view of mechanism and law. In addition, after summarizing the corrosion resistance mechanism, this paper introduces a series of characterization experiments that can measure the corrosion resistance, providing a reference for preparation and evaluation of the surface.
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Wu, Liqun, Jianlong Chen, Linan Zhang, Hongcheng Wang, and Chao Chen. "Study for Laser Controlled Fabrication of Micro/Nano-Structures of Silicon Based on Multi-Physics Model." Micromachines 12, no. 5 (May 7, 2021): 528. http://dx.doi.org/10.3390/mi12050528.

Повний текст джерела
Анотація:
This work proposes a detailed process of micro/nano-structure surface modification in relation to temperature field. In this paper, a femtosecond laser is used to induce the surface morphology of a silicon substrate. We provide a new method for the fabrication of a micro/nano-cantilever probe by controlling the aspect ratio of the silicon surface morphology. A computational method is used to investigate the mechanical behaviors of early perturbation to late-stage structure. A diffuse interface model is employed to describe the evolution and provide a general framework. The theoretical model of femtosecond laser control surface morphology is verified by the experiments. For systematic study, the model involves the interface energy and kinetics of diffusion. This method provides an effective way to improve the sensitivity of micro/nano-cantilever sensors.
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Xu, Xiaofeng, Laifei Cheng, Xiaojiao Zhao, Jing Wang, and Xinyi Chen. "Micro/Nano Periodic Surface Structures and Performance of Stainless Steel Machined Using Femtosecond Lasers." Micromachines 13, no. 6 (June 20, 2022): 976. http://dx.doi.org/10.3390/mi13060976.

Повний текст джерела
Анотація:
The machining of micro/nano periodic surface structures using a femtosecond laser has been an academic frontier and hotspot in recent years. With an ultrahigh laser fluence and an ultrashort pulse duration, femtosecond laser machining shows unique advantages in material processing. It can process almost any material and can greatly improve the processing accuracy with a minimum machining size and heat-affected zone. Meanwhile, it can fabricate a variety of micro/nano periodic surface structures and then change a material’s surface performance dramatically, such as the material’s wetting performance, corrosive properties, friction properties, and optical properties, demonstrating great application potential in defense, medical, high-end manufacturing, and many other fields. In recent years, the research is gradually deepening from the basic theory to optimization design, intelligent control, and application technology. Nowadays, while focusing on metal structure materials, especially on stainless steel, research institutions in the field of micro and nano manufacturing have conducted systematic and in-depth experimental research using different experimental environments and laser-processing parameters. They have prepared various surface structures with different morphologies and periods with sound performance, and are one step closer to many civilian engineering applications. This paper reviews the study of micro/nano periodic surface structures and the performance of stainless steel machined using a femtosecond laser, obtains the general evolution law of surface structure and performance with the femtosecond laser parameters, points out several key technical challenges for future study, and provides a useful reference for the engineering research and application of femtosecond laser micro/nano processing technology.
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Guo, Ning, Jiaming Sun, Yunlei Li, Xiaoyu Lv, Junguo Gao, Mingpeng He, and Yue Zhang. "Nonlinear Surface Conductivity Characteristics of Epoxy Resin-Based Micro-Nano Structured Composites." Energies 15, no. 15 (July 25, 2022): 5374. http://dx.doi.org/10.3390/en15155374.

Повний текст джерела
Анотація:
Nonlinear composite materials serve to homogenize electric fields and can effectively improve the local concentration of the electric field in power systems. In order to study the nonlinear surface conductivity properties of micro-nano epoxy composites, two types of epoxy micro-nano composite specimens were prepared in the laboratory using the co-blending method. The surface conductivity of the composites was tested under different conditions using a high-voltage DC surface conductivity test system. The results show that the surface conductivity of micro-nano structured composites increases and then decreases with the rise of nanofiller doping concentration. The nonlinear coefficient was 1.781 at 4 wt% of doped nanostructured SiC, which was the most significant nonlinear coefficient compared to other doping contents. For the same doping concentration, the micro-nano structured composites doped with nanostructured SiC have more significant surface conductivity at the same test temperature with a nonlinear coefficient of 1.635. As the temperature increases, the surface conductivity of the micro-nano structured composite increases significantly, and the threshold field strength moves towards the high electric field. Along with the increase in temperature, the nonlinear coefficients of micro-nano composites after doping with nanostructured SiC showed a gradually decreasing trend. The temperature has little effect on the nonlinear coefficients of the micro-nano structured composites after doping with O-MMT.
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Zhao, Pengyue, Qi Zhang, Yongbo Guo, Huan Liu, and Zongquan Deng. "Atomistic Simulation Study of Nanoparticle Effect on Nano-Cutting Mechanisms of Single-Crystalline Materials." Micromachines 11, no. 3 (March 4, 2020): 265. http://dx.doi.org/10.3390/mi11030265.

Повний текст джерела
Анотація:
Nanoparticle (NP), as a kind of hard-to-machine component in nanofabrication processes, dramatically affects the machined surface quality in nano-cutting. However, the surface/subsurface generation and the plastic deformation mechanisms of the workpiece still remain elusive. Here, the nano-cutting of a single-crystalline copper workpiece with a single spherical embedded nanoparticle is explored using molecular dynamics (MD) simulations. Four kinds of surface/subsurface cases of nanoparticle configuration are revealed, including being removed from the workpiece surface, moving as a part of the cutting tool, being pressed into the workpiece surface, and not interacting with the cutting tool, corresponding to four kinds of relative depth ranges between the center of the nanoparticle and the cutting tool. Significantly different plastic deformation mechanisms and machined surface qualities of the machined workpiece are also observed, suggesting that the machined surface quality could be improved by adjusting the cutting depth, which results in a change of the relative depth. In addition, the nanoparticle also significantly affects the processing forces in nano-cutting, especially when the cutting tool strongly interacts with the nanoparticle edge.
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Erdene-Ochir, Oyunchimeg, and Doo-Man Chun. "Robust Superhydrophobic Surface on Polypropylene with Thick Hydrophobic Silica Nanoparticle-Coated Films Prepared by Facile Compression Molding." Energies 14, no. 11 (May 28, 2021): 3155. http://dx.doi.org/10.3390/en14113155.

Повний текст джерела
Анотація:
Superhydrophobic surfaces have been extensively studied for their unique interfacial interaction between water and the surface, and they can be used for self-cleaning, drag reduction, anti-icing, and other applications. To make the superhydrophobic surfaces, nano/microscale structures and a low surface energy should be realized. The development of a durable superhydrophobic surface was hindered by the vulnerability of the surface to mechanical contact. To improve the robustness of the superhydrophobic surface toward mechanical damage, the hydrophobic polypropylene (PP) surface was coated with a thick layer of hydrophobic silica nanoparticles (SNPs) using a simple compression molding process. The thick layer consists of SNPs and PP, and the roles of SNPs and PP are nano/microscale structures with a low surface energy and binder for nanoparticles, respectively. This revealed improvement in the superhydrophobic tendency, with an apparent contact angle of about 170° and a sliding angle of less than 5°. The morphology and the corresponding elemental analysis of the PP/SNPs coated films were investigated using field emission scanning electron microscopy and energy-dispersive spectrometry. The mechanical durability of the superhydrophobic surface was evaluated by the scotch tape test and scratch test with sandpaper. The coated films with SNPs showed the superhydrophobic behavior after 25 tape tests. In addition, the coated films with SNPs showed a contact angle greater than 150° and a sliding angle less than 10° after a 100-cm scratch test with 1000 grit sandpaper, under a weight of 500 g, on an area of 40 × 40 mm2. The chemical stability of PP/SNPs coated films was also investigated in acidic, neutral, and alkaline medium solutions. The films showed good stability under the acidic and neutral medium solutions even after 24 h, but an alkaline medium could damage the surface. The obtained results demonstrated the robustness of the superhydrophobic coating with SNPs.
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Ren, Zhi Ying, ChengHui Gao, GuoQiang Han, Shen Ding, and JianXing Lin. "DT-CWT Robust Filtering Algorithm for The Extraction of Reference and Waviness from 3-D Nano Scalar Surfaces." Measurement Science Review 14, no. 2 (April 1, 2014): 87–93. http://dx.doi.org/10.2478/msr-2014-0012.

Повний текст джерела
Анотація:
Abstract Dual tree complex wavelet transform (DT-CWT) exhibits superiority of shift invariance, directional selectivity, perfect reconstruction (PR), and limited redundancy and can effectively separate various surface components. However, in nano scale the morphology contains pits and convexities and is more complex to characterize. This paper presents an improved approach which can simultaneously separate reference and waviness and allows an image to remain robust against abnormal signals. We included a bilateral filtering (BF) stage in DT-CWT to solve imaging problems. In order to verify the feasibility of the new method and to test its performance we used a computer simulation based on three generations of Wavelet and Improved DT-CWT and we conducted two case studies. Our results show that the improved DT-CWT not only enhances the robustness filtering under the conditions of abnormal interference, but also possesses accuracy and reliability of the reference and waviness from the 3-D nano scalar surfaces.
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Zhang, Siyuan, Dawei Li, and Yanwei Liu. "Friction Behavior of Rough Surfaces on the Basis of Contact Mechanics: A Review and Prospects." Micromachines 13, no. 11 (November 4, 2022): 1907. http://dx.doi.org/10.3390/mi13111907.

Повний текст джерела
Анотація:
Contact and friction are closely related as friction cannot happen without contact. They are widely used in mechanical engineering, traffic, and other fields. The real contact surface is not completely smooth, but it is made up of a series of tiny contact asperities as viewed in the micro-scale. This is just the complexity of the contact and friction behaviors of rough surfaces: the overall mechanical behavior is the result of all asperities which are involved during the contact. Due to the multiplicity of surface topography, the complexity of contact scale, and the nonlinearity of the constitutive material, there are still many open topics in the research of contact and friction behavior of rough surfaces. Based on the perspective of the macroscopic and micro-nano scale contact mechanics, this review gives a brief overview of friction for the latest developments and points out the existing issues and opportunities for future studies.
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Bhaskar, Seemesh. "Biosensing Technologies: A Focus Review on Recent Advancements in Surface Plasmon Coupled Emission." Micromachines 14, no. 3 (February 28, 2023): 574. http://dx.doi.org/10.3390/mi14030574.

Повний текст джерела
Анотація:
In the past decade, novel nano-engineering protocols have been actively synergized with fluorescence spectroscopic techniques to yield higher intensity from radiating dipoles, through the process termed plasmon-enhanced fluorescence (PEF). Consequently, the limit of detection of analytes of interest has been dramatically improvised on account of higher sensitivity rendered by augmented fluorescence signals. Recently, metallic thin films sustaining surface plasmon polaritons (SPPs) have been creatively hybridized with such PEF platforms to realize a substantial upsurge in the global collection efficiency in a judicious technology termed surface plasmon-coupled emission (SPCE). While the process parameters and conditions to realize optimum coupling efficiency between the radiating dipoles and the plasmon polaritons in SPCE framework have been extensively discussed, the utility of disruptive nano-engineering over the SPCE platform and analogous interfaces such as ‘ferroplasmon-on-mirror (FPoM)’ as well as an alternative technology termed ‘photonic crystal-coupled emission (PCCE)’ have been seldom reviewed. In light of these observations, in this focus review, the myriad nano-engineering protocols developed over the SPCE, FPoM and PCCE platform are succinctly captured, presenting an emphasis on the recently developed cryosoret nano-assembly technology for photo-plasmonic hotspot generation (first to fourth). These technologies and associated sensing platforms are expected to ameliorate the current biosensing modalities with better understanding of the biophysicochemical processes and related outcomes at advanced micro-nano-interfaces. This review is hence envisaged to present a broad overview of the latest developments in SPCE substrate design and development for interdisciplinary applications that are of relevance in environmental as well as biological heath monitoring.
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Yang, Kun, Zhifu Yin, and Lei Sun. "Fabrication of High Aspect Ratio Nano-Channels by Thermal Nano-Imprinting and Parylene Deposition." Micromachines 14, no. 7 (July 16, 2023): 1430. http://dx.doi.org/10.3390/mi14071430.

Повний текст джерела
Анотація:
A low-cost method of fabrication of high aspect ratio nano-channels by thermal nano-imprinting and Parylene deposition is proposed. SU-8 photoresist nano-channels were first manufactured by thermal nano-imprinting, and Parylene deposition was carried out to reduce the width of the nano-channels and increase the aspect ratio. During the process, the side walls of the SU-8 nano-channels were covered with the Parylene film, reducing the width of the nano-channels, and the depth of the channels increased due to the thickness of the Parylene film deposited on the surface of the SU-8 nano-channels, more so than that at the bottom. The influence of Parylene mass on the size of nano-channels was studied by theoretical analysis and experiments, and the deposition pressure of Parylene was optimized. The final high aspect ratio nano-channels are 46 nm in width and 746 nm in depth, of which the aspect ratio is 16. This simple and efficient method paves the way for the production of high aspect ratio nano-channels.
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Lou, Rui, Guodong Zhang, Guangying Li, Xuelong Li, Qing Liu, and Guanghua Cheng. "Design and Fabrication of Dual-Scale Broadband Antireflective Structures on Metal Surfaces by Using Nanosecond and Femtosecond Lasers." Micromachines 11, no. 1 (December 24, 2019): 20. http://dx.doi.org/10.3390/mi11010020.

Повний текст джерела
Анотація:
Antireflective surfaces, with their great potential applications, have attracted tremendous attention and have been the subject of extensive research in recent years. However, due to the significant optical impedance mismatch between a metal surface and free space, it is still a challenging issue to realize ultralow reflectance on a metal surface. To address this issue, we propose a two-step strategy for constructing antireflective structures on a Ti-6Al-4V (TC4) surface using nanosecond and femtosecond pulsed lasers in combination. By controlling the parameters of the nanosecond laser, microgrooves are first scratched on the TC4 surface to reduce the interface reflection. Then, the femtosecond laser is focused onto the sample surface with orthogonal scanning to induce deep air holes and nanoscale structures, which effectively enhances the broadband absorption. The antireflection mechanism of the dual-scale structures is discussed regarding morphological characterization and hemispherical reflectance measurements. Finally, the modified sample surface covered with micro-nano hybrid structures is characterized by an average reflectance of 3.1% over the wavelengths ranging from 250 nm to 2250 nm.
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Zhu, Shengguang, and Liyong Ni. "A Static Friction Model for Unlubricated Contact of Random Rough Surfaces at Micro/Nano Scale." Micromachines 12, no. 4 (March 29, 2021): 368. http://dx.doi.org/10.3390/mi12040368.

Повний текст джерела
Анотація:
A novel static friction model for the unlubricated contact of random rough surfaces at micro/nano scale is presented. This model is based on the energy dissipation mechanism that states that changes in the potential of the surfaces in contact lead to friction. Furthermore, it employs the statistical theory of two nominally flat rough surfaces in contact, which assumes that the contact between the equivalent rough peaks and the rigid flat plane satisfies the condition of interfacial friction. Additionally, it proposes a statistical coefficient of positional correlation that represents the contact situation between the equivalent rough surface and the rigid plane. Finally, this model is compared with the static friction model established by Kogut and Etsion (KE model). The results of the proposed model agree well with those of the KE model in the fully elastic contact zone. For the calculation of dry static friction of rough surfaces in contact, previous models have mainly been based on classical contact mechanics; however, this model introduces the potential barrier theory and statistics to address this and provides a new way to calculate unlubricated friction for rough surfaces in contact.
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Mohan, Chandra, Neeraj Kumari, Philippe Jeandet, Priyanka Kumari, and Arvind Negi. "Synthesis of Nano Pigments Using Clay Minerals and Organic Dyes and Their Application as Colorants in Polymer Matrix." Micromachines 14, no. 5 (May 21, 2023): 1087. http://dx.doi.org/10.3390/mi14051087.

Повний текст джерела
Анотація:
A new generation of clay-based nano pigments has been introduced, providing the advantage of both inorganic pigments and organic dyes. These nano pigments have been synthesized through a stepwise procedure where, initially, an organic dye is adsorbed onto the surface of the adsorbent, and then dye adsorbed adsorbent is used as pigment for further applications. The objective of the current paper was to examine the interaction of non-biodegradable toxic dyes, Crystal Violet (CV) and Indigo Carmine (IC), with clay minerals (montmorillonite (Mt), vermiculite (Vt), and clay bentonite (Bent)) and their organically modified forms (OMt, OBent, and OVt) and to develop a novel methodology for the synthesis of the value-added products and clay-based nano pigments without creating second generation waste materials. In our observation, the uptake of CV was more intense onto pristine Mt, Bent, and Vt, and the uptake of IC was more onto OMt, OBent, and OVt. CV was found to be in the interlayer region of Mt and Bent, as supported by XRD data. Zeta potential values confirmed the presence of CV on their surface. In contrast, in the case of Vt and organically modified forms, the dye was found on the surface, confirmed by XRD and zeta potential values. In the case of indigo carmine, the dye was found only on the surface of pristine Mt, Bent, Vt, and organo Mt, Bent, Vt. During the interaction of CV and IC with clay and organoclays, intense violet and blue-colored solid residues were obtained (also known as clay-based nano pigments). The nano pigments were used as colorants in a poly (methyl-methacrylate) (PMMA) polymer matrix to form transparent polymer films.
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Xu, Xiaofeng, Laifei Cheng, Xiaojiao Zhao, Jing Wang, Ke Tong, and Hua Lv. "Formation and Evolution of Micro/Nano Periodic Ripples on 2205 Stainless Steel Machined by Femtosecond Laser." Micromachines 14, no. 2 (February 11, 2023): 428. http://dx.doi.org/10.3390/mi14020428.

Повний текст джерела
Анотація:
The preparation of micro/nano periodic surface structures using femtosecond laser machining technology has been the academic frontier and hotspot in recent years. The formation and evolution of micro/nano periodic ripples were investigated on 2205 stainless steel machined by femtosecond laser. Using single spot irradiation with fixed laser fluences and various pulse numbers, typical ripples, including nano HSFLs (‖), nano LSFLs (⊥), nano HSFLs (⊥) and micro grooves (‖), were generated one after another in one test. The morphologies of the ripples were analyzed, and the underlying mechanisms were discussed. It was found that the nano holes/pits presented at all stages could have played a key role in the formation and evolution of micro/nano periodic ripples. A new kind of microstructure, named the pea pod-like structure here, was discovered, and it was suggested that the formation and evolution of the micro/nano periodic ripples could be well explained by the pea pod-like structure model.
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Morikawa, Kyojiro, Yutaka Kazoe, Yuto Takagi, Yoshiyuki Tsuyama, Yuriy Pihosh, Takehiko Tsukahara, and Takehiko Kitamori. "Advanced Top-Down Fabrication for a Fused Silica Nanofluidic Device." Micromachines 11, no. 11 (November 9, 2020): 995. http://dx.doi.org/10.3390/mi11110995.

Повний текст джерела
Анотація:
Nanofluidics have recently attracted significant attention with regard to the development of new functionalities and applications, and producing new functional devices utilizing nanofluidics will require the fabrication of nanochannels. Fused silica nanofluidic devices fabricated by top-down methods are a promising approach to realizing this goal. Our group previously demonstrated the analysis of a living single cell using such a device, incorporating nanochannels having different sizes (102–103 nm) and with branched and confluent structures and surface patterning. However, fabrication of geometrically-controlled nanochannels on the 101 nm size scale by top-down methods on a fused silica substrate, and the fabrication of micro-nano interfaces on a single substrate, remain challenging. In the present study, the smallest-ever square nanochannels (with a size of 50 nm) were fabricated on fused silica substrates by optimizing the electron beam exposure time, and the absence of channel breaks was confirmed by streaming current measurements. In addition, micro-nano interfaces between 103 nm nanochannels and 101 μm microchannels were fabricated on a single substrate by controlling the hydrophobicity of the nanochannel surfaces. A micro-nano interface for a single cell analysis device, in which a nanochannel was connected to a 101 μm single cell chamber, was also fabricated. These new fabrication procedures are expected to advance the basic technologies employed in the field of nanofluidics.
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Du, Mengdan, Quanquan Sun, Wei Jiao, Lifeng Shen, Xiao Chen, Junfeng Xiao, and Jianfeng Xu. "Fabrication of Antireflection Micro/Nanostructures on the Surface of Aluminum Alloy by Femtosecond Laser." Micromachines 12, no. 11 (November 16, 2021): 1406. http://dx.doi.org/10.3390/mi12111406.

Повний текст джерела
Анотація:
Designed micro-nano structures on the surface of aluminum alloy provide excellent light trapping properties that can be used extensively in thermal photovoltaics, sensors, etc. However, the fabrication of high-performance antireflective micro-nano structures on aluminum alloy is challenging because aluminum has shallow intrinsic losses and weak absorption. A two-step strategy is proposed for fabricating broadband antireflection structures by superimposing nanostructures onto microscale structures. By optimizing the processing parameters of femtosecond laser, the average reflectances of 2.6% within the visible spectral region (400–800 nm) and 5.14% within the Vis-NIR spectral region (400–2500 nm) are obtained.
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Plank, Harald, Robert Winkler, Christian H. Schwalb, Johanna Hütner, Jason D. Fowlkes, Philip D. Rack, Ivo Utke, and Michael Huth. "Focused Electron Beam-Based 3D Nanoprinting for Scanning Probe Microscopy: A Review." Micromachines 11, no. 1 (December 30, 2019): 48. http://dx.doi.org/10.3390/mi11010048.

Повний текст джерела
Анотація:
Scanning probe microscopy (SPM) has become an essential surface characterization technique in research and development. By concept, SPM performance crucially depends on the quality of the nano-probe element, in particular, the apex radius. Now, with the development of advanced SPM modes beyond morphology mapping, new challenges have emerged regarding the design, morphology, function, and reliability of nano-probes. To tackle these challenges, versatile fabrication methods for precise nano-fabrication are needed. Aside from well-established technologies for SPM nano-probe fabrication, focused electron beam-induced deposition (FEBID) has become increasingly relevant in recent years, with the demonstration of controlled 3D nanoscale deposition and tailored deposit chemistry. Moreover, FEBID is compatible with practically any given surface morphology. In this review article, we introduce the technology, with a focus on the most relevant demands (shapes, feature size, materials and functionalities, substrate demands, and scalability), discuss the opportunities and challenges, and rationalize how those can be useful for advanced SPM applications. As will be shown, FEBID is an ideal tool for fabrication/modification and rapid prototyping of SPM-tipswith the potential to scale up industrially relevant manufacturing.
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Al-Jeda, Muhanad, Emmanuel Mena-Morcillo, and Aicheng Chen. "Micro-Sized pH Sensors Based on Scanning Electrochemical Probe Microscopy." Micromachines 13, no. 12 (December 4, 2022): 2143. http://dx.doi.org/10.3390/mi13122143.

Повний текст джерела
Анотація:
Monitoring pH changes at the micro/nano scale is essential to gain a fundamental understanding of surface processes. Detection of local pH changes at the electrode/electrolyte interface can be achieved through the use of micro-/nano-sized pH sensors. When combined with scanning electrochemical microscopy (SECM), these sensors can provide measurements with high spatial resolution. This article reviews the state-of-the-art design and fabrication of micro-/nano-sized pH sensors, as well as their applications based on SECM. Considerations for selecting sensing probes for use in biological studies, corrosion science, in energy applications, and for environmental research are examined. Different types of pH sensitive probes are summarized and compared. Finally, future trends and emerging applications of micro-/nano-sized pH sensors are discussed.
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Wang, Chenying, Lei Li, Weixuan Jing, Yaxin Zhang, Song Wang, Qijing Lin, Dan Xian, et al. "A Study on the Sub-5 nm Nano-Step Height Reference Materials Fabricated by Atomic Layer Deposition Combined with Wet Etching." Micromachines 13, no. 9 (September 2, 2022): 1454. http://dx.doi.org/10.3390/mi13091454.

Повний текст джерела
Анотація:
Nano-steps, as classical nano-geometric reference materials, are very important for calibrating measurements in the semiconductor industry; therefore, controlling the height of nano-steps is critical for ensuring accurate measurements. Accordingly, in this study nano-steps with heights of 1, 2, 3 and 4 nm were fabricated with good morphology using atomic layer deposition (ALD) combined with wet etching. The roughness of the fabricated nano-steps was effectively controlled by utilizing the three-dimensional conformal ALD process. Moreover, the relationship between the surface roughness and the height was studied using a simulation-based analysis. Essentially, roughness control is crucial in fabricating nano-steps with a critical dimension of less than 5 nm. In this study, the minimum height of a nano-step that was successfully achieved by combining ALD and wet etching was 1 nm. Furthermore, the preconditions for quality assurance for a reference material and the influencing factors of the fabrication method were analyzed based on the 1 nm nano-step sample. Finally, the fabricated samples were used in time-dependent experiments to verify the optimal stability of the nano-steps as reference materials. This research is instructive to fabricate nano-geometric reference materials to within 5 nm in height, and the proposed method can be easily employed to manufacture wafer-sized step height reference materials, thus enabling its large-scale industrial application for in-line calibration in integrated circuit production lines.
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Muldoon, Kirsty, Yanhua Song, Zeeshan Ahmad, Xing Chen, and Ming-Wei Chang. "High Precision 3D Printing for Micro to Nano Scale Biomedical and Electronic Devices." Micromachines 13, no. 4 (April 18, 2022): 642. http://dx.doi.org/10.3390/mi13040642.

Повний текст джерела
Анотація:
Three dimensional printing (3DP), or additive manufacturing, is an exponentially growing process in the fabrication of various technologies with applications in sectors such as electronics, biomedical, pharmaceutical and tissue engineering. Micro and nano scale printing is encouraging the innovation of the aforementioned sectors, due to the ability to control design, material and chemical properties at a highly precise level, which is advantageous in creating a high surface area to volume ratio and altering the overall products’ mechanical and physical properties. In this review, micro/-nano printing technology, mainly related to lithography, inkjet and electrohydrodynamic (EHD) printing and their biomedical and electronic applications will be discussed. The current limitations to micro/-nano printing methods will be examined, covering the difficulty in achieving controlled structures at the miniscule micro and nano scale required for specific applications.
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Yan, Yanyan, Zhaoqing Zhang, Junli Liu, Haozhe Yan, and Xiaoxu Wang. "Study on the Algorithm of Three-Dimensional Surface Residual Material Height of Nano-ZrO2 Ceramics under Ultra-Precision Grinding." Micromachines 12, no. 11 (November 4, 2021): 1363. http://dx.doi.org/10.3390/mi12111363.

Повний текст джерела
Анотація:
A large number of studies have shown that the height of a residual material is the key factor affecting the surface quality of ultra-precision grinding. However, the grinding process contains several random factors, such as the randomness of grinding particle size and the random distribution of grinding particles, which cause the complexity of the material removal process. In this study, taking the Nano-ZrO2 as an example, the removal process of surface materials in ultra-precision grinding of hard and brittle materials was analyzed by probability. A new calculation method for the height of surface residual materials in ultra-precision grinding of Nano-ZrO2 was proposed, and the prediction model of the three-dimensional roughness Sa and Sq were established by using this calculation method. The simulation and experimental results show that this calculation method can obtain the more accurate surface residual material height value which accords with the characteristics of three-dimensional roughness sampling, which provides a theoretical reference for the analysis of the material removal process and the surface quality evaluation of ultra-precision grinding of hard and brittle materials.
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Chaudhari, Rakesh, Sakshum Khanna, Vivek K. Patel, Jay Vora, Soraya Plaza, and Luis Norberto López de Lacalle. "Experimental Investigations of Using Aluminum Oxide (Al2O3) and Nano-Graphene Powder in the Electrical Discharge Machining of Titanium Alloy." Micromachines 14, no. 12 (December 16, 2023): 2247. http://dx.doi.org/10.3390/mi14122247.

Повний текст джерела
Анотація:
In the present study, a comprehensive parametric analysis was carried out using the electrical discharge machining of Ti6Al4V, using pulse-on time, current, and pulse-off time as input factors with output measures of surface roughness and material removal rate. The present study also used two different nanopowders, namely alumina and nano-graphene, to analyze their effect on output measures and surface defects. All the experimental runs were performed using Taguchi’s array at three levels. Analysis of variance was employed to study the statistical significance. Empirical relations were generated through Minitab. The regression model term was observed to be significant for both the output responses, which suggested that the generated regressions were adequate. Among the input factors, pulse-off time and current were found to have a vital role in the change in material removal rate, while pulse-on time was observed as a vital input parameter. For surface quality, pulse-on time and pulse-off time were recognized to be influential parameters, while current was observed to be an insignificant factor. Teaching–learning-based optimization was used for the optimization of output responses. The influence of alumina and nano-graphene powder was investigated at optimal process parameters. The machining performance was significantly improved by using both powder-mixed electrical discharge machining as compared to the conventional method. Due to the higher conductivity of nano-graphene powder, it showed a larger improvement as compared to alumina powder. Lastly, scanning electron microscopy was operated to investigate the impact of alumina and graphene powder on surface morphology. The machined surface obtained for the conventional process depicted more surface defects than the powder-mixed process, which is key in aeronautical applications.
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Rani, Dipti, Oliver Roman Opaluch, and Elke Neu. "Recent Advances in Single Crystal Diamond Device Fabrication for Photonics, Sensing and Nanomechanics." Micromachines 12, no. 1 (December 30, 2020): 36. http://dx.doi.org/10.3390/mi12010036.

Повний текст джерела
Анотація:
In the last two decades, the use of diamond as a material for applications in nanophotonics, optomechanics, quantum information, and sensors tremendously increased due to its outstanding mechanical properties, wide optical transparency, and biocompatibility. This has been possible owing to advances in methods for growth of high-quality single crystal diamond (SCD), nanofabrication methods and controlled incorporation of optically active point defects (e.g., nitrogen vacancy centers) in SCD. This paper reviews the recent advances in SCD nano-structuring methods for realization of micro- and nano-structures. Novel fabrication methods are discussed and the different nano-structures realized for a wide range of applications are summarized. Moreover, the methods for color center incorporation in SCD and surface treatment methods to enhance their properties are described. Challenges in the upscaling of SCD nano-structure fabrication, their commercial applications and future prospects are discussed.
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Park, Jeong Eun, Chang-Soon Han, Won Seok Choi, and Donggun Lim. "Effect of Various Wafer Surface Etching Processes on c-Si Solar Cell Characteristics." Energies 14, no. 14 (July 7, 2021): 4106. http://dx.doi.org/10.3390/en14144106.

Повний текст джерела
Анотація:
In order to analyze the effects of various sizes of pyramid structure on solar cell characteristics, a pyramid structure was formed on the wafer through various etching processes. In this paper, etching was performed using one-step etching processes such as alkaline solution etching, reactive ion etching (RIE), and metal-assisted chemical etching (MACE), and two-step etching processes such as alkaline solution + MACE and alkaline solution + RIE. The micro-sized pyramid-structured wafers formed using the alkali solution showed higher reflectivity than nano-sized pyramid-structured wafers. Accordingly, it was expected that the characteristics of the cells fabricated with a nano-sized pyramid-structured wafer having low reflectivity would be higher than that of a micro-sized pyramid-structured wafer. However, it was confirmed that the quantum efficiency characteristics in the short wavelength region were higher in the micro-sized pyramid-structured wafers than in the nano-sized pyramid-structured wafers. To confirm the reason for this, surface characteristics were analyzed through the deposition of an emitter layer on a wafer formed in a pyramidal structure. As a result, in the case of the nano-sized pyramid-structured wafer, the sheet resistance characteristics were lower due to the increased depth of the emitter layer in comparison to the micro-sized pyramid-structured wafer. Accordingly, it was determined that the quantum efficiency was degraded as a result of the high recombination rate.
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Liu, Cheng, Qin, Wei, Borom, Su, Chen, Feng, Wang, and Rao. "Interactive Manipulation of Nonconductive Microparticles in Scanning Electron Microscope by a Virtual Nano-hand Strategy." Micromachines 10, no. 10 (October 2, 2019): 670. http://dx.doi.org/10.3390/mi10100670.

Повний текст джерела
Анотація:
Micro/nano-manipulation is the fabrication of particular constructs on devices at the micro/nano-scale. Precise manipulation of microparticles is one of the key technological difficulties in manufacturing micro/nano-scale components. Based on scanning electron microscopy and nanomanipulator, this paper adopts a direct push method to operate randomly distributed microparticles into ordered structures. A two-probe interaction strategy is proposed to enable microparticle movements in all directions efficiently and avoid scratching the substrate surface. To overcome the uncertainties in micromanipulation, a virtual nano-hand strategy was also implemented: long-range advance of each microparticle is realized by multiple single-step pushes, whose trajectory is theoretically analyzed. The pushes are well programmed to imitate effects of a more powerful and determined hand. Experimental results show that the theoretical single-step motion trajectory is in line with actual operation, and the proposed strategy can ensure precise operation of the microparticles in all directions and improve reliability and effectiveness of operation.
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Chuasontia, Itsarapong, Wichaya Sirisom, Natthapon Nakpathomkun, Surachet Toommee, Chiravoot Pechyen, Benchamaporn Tangnorawich, and Yardnapar Parcharoen. "Development and Characterization of Nano-Ink from Silicon Carbide/Multi-Walled Carbon Nanotubes/Synthesized Silver Nanoparticles for Non-Enzymatic Paraoxon Residuals Detection." Micromachines 14, no. 8 (August 16, 2023): 1613. http://dx.doi.org/10.3390/mi14081613.

Повний текст джерела
Анотація:
The ongoing advancement in the synthesis of new nanomaterials has accelerated the rapid development of non-enzymatic pesticide sensors based on electrochemical platforms. This study aims to develop and characterize Nano-ink for applying organophosphorus pesticides using paraoxon residue detection. Multi-walled carbon nanotubes, silicon carbide, and silver nanoparticles were used to create Nano-ink using a green synthesis process in 1:1:0, 1:1:0.5, and 1:1:1 ratios, respectively. These composites were combined with chitosan of varying molecular weights, which served as a stabilizing glue to keep the Nano-ink employed in a functioning electrode stable. By using X-ray powder diffraction, Raman spectroscopy, energy dispersive X-ray spectroscopy, and a field emission scanning electron microscope, researchers were able to examine the crystallinity, element composition, and surface morphology of Nano-ink. The performance of the proposed imprinted working electrode Nano-ink was investigated using cyclic voltammetry and differential pulse voltammetry techniques. The Cyclic voltammogram of Ag NPs/chitosan (medium, 50 mg) illustrated high current responses and favorable conditions of the Nano-ink modified electrode. Under the optimized conditions, the reduction currents of paraoxon using the DPV techniques demonstrated a linear reaction ranging between 0.001 and 1.0 µg/mL (R2 = 0.9959) with a limit of detection of 0.0038 µg/mL and a limit of quantitation of 0.011 µg/mL. It was concluded that the fabricated Nano-ink showed good electrochemical activity for non-enzymatic paraoxon sensing.
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Tian, Porui, and Yifan Li. "Effect of pH on Effective Slip Length and Surface Charge at Solid–Oil Interfaces of Roughness-Induced Surfaces." Micromachines 12, no. 7 (June 26, 2021): 752. http://dx.doi.org/10.3390/mi12070752.

Повний текст джерела
Анотація:
In the development of micro/nano fluid control systems, fluid resistance has always been one of the key factors restricting its development. According to previous studies, it is found that the boundary slip effect of the solid-liquid interface can effectively reduce the resistance of the microfluid and improve the transport efficiency of the microfluid. The boundary slip length is mainly affected by surface wettability, roughness, and surface charge density. Among them, the influence mechanism of surface charge density on the boundary slip is the most complicated, and there is a lack of relevant research, and further investigation is needed. In this paper, we present research on quantification of effective slip length and surface charge density, where the roughness effect is considered. The electrostatic and hydrodynamic force data obtained from atomic force microscopy (AFM) measurements were fitted and processed for comparative analysis. We obtained the variation of surface charge density and effective slip length when different oleophobic surface samples were immersed in ethylene glycol with different pH values. The effect of pH on the surface charge density and effective slip length was investigated by their variations. The mechanism of the effect of pH on the surface charge density was discussed. The experimental results show that in the ethylene glycol solution, no matter whether the pH value of the solution increases or decreases, the charge density of the surface with the same properties decreases, and the effective boundary slip length also shows a downward trend. In deionized water, the surface charge density and effective boundary slip length decreases with the decrease of PH value.
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Muangpratoom, Pichai, Issaraporn Khonchaiyaphum, and Wanwilai Vittayakorn. "Improvement of the Electrical Performance of Outdoor Porcelain Insulators by Utilization of a Novel Nano-TiO2 Coating for Application in Railway Electrification Systems." Energies 16, no. 1 (January 3, 2023): 561. http://dx.doi.org/10.3390/en16010561.

Повний текст джерела
Анотація:
The present study aimed to develop the electrical performance of outdoor insulators using a nano-TiO2 coating for railway electrification systems. The prototype design of porcelain insulators with normal coatings and using a nano-TiO2 coating is based on IEC 60815-1. The first test was performed to measure the low-frequency flashover AC voltage under both dry and wet conditions. In addition, the other test was conducted to measure the lightning impulse critical-flashover voltage at positive and negative polarity under dry-normal and wet-contaminated conditions. X-ray diffraction (X-RD) and Scanning electron microscopy (SEM) were used to examine the micro surface and show that the nano-TiO2 coating was adhered to the surface of the outdoor porcelain insulator and exists in an amorphous state. Additionally, it was observed and discovered that scattered nano-TiO2 strengthens the glassy matrix and creates a sturdy barrier that causes flashover voltage to be reduced under conditions of high dielectric strength. Nanostructured ceramic formulations outperform ordinary porcelain in terms of breakdown voltage strength, particularly for the insulators’ low-frequency flashover performances under dry and wet test conditions. However, a significant change in the lightning impulse critical-flashover voltage characteristics is observed and is not much better when adding the nano-TiO2 coating to the porcelain insulators.
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Selimefendigil, Fatih, Hakan F. Oztop, and Mikhail A. Sheremet. "Thermoelectric Generation with Impinging Nano-Jets." Energies 14, no. 2 (January 18, 2021): 492. http://dx.doi.org/10.3390/en14020492.

Повний текст джерела
Анотація:
In this study, thermoelectric generation with impinging hot and cold nanofluid jets is considered with computational fluid dynamics by using the finite element method. Highly conductive CNT particles are used in the water jets. Impacts of the Reynolds number of nanojet stream combinations (between (Re1, Re2) = (250, 250) to (1000, 1000)), horizontal distance of the jet inlet from the thermoelectric device (between (r1, r2) = (−0.25, −0.25) to (1.5, 1.5)), impinging jet inlet to target surfaces (between w2 and 4w2) and solid nanoparticle volume fraction (between 0 and 2%) on the interface temperature variations, thermoelectric output power generation and conversion efficiencies are numerically assessed. Higher powers and efficiencies are achieved when the jet stream Reynolds numbers and nanoparticle volume fractions are increased. Generated power and efficiency enhancements 81.5% and 23.8% when lowest and highest Reynolds number combinations are compared. However, the power enhancement with nanojets using highly conductive CNT particles is 14% at the highest solid volume fractions as compared to pure water jet. Impacts of horizontal location of jet inlets affect the power generation and conversion efficiency and 43% variation in the generated power is achieved. Lower values of distances between the jet inlets to the target surface resulted in higher power generation while an optimum value for the highest efficiency is obtained at location zh = 2.5ws. There is 18% enhancement in the conversion efficiency when distances at zh = ws and zh = 2.5ws are compared. Finally, polynomial type regression models are obtained for estimation of generated power and conversion efficiencies for water-jets and nanojets considering various values of jet Reynolds numbers. Accurate predictions are obtained with this modeling approach and it is helpful in assisting the high fidelity computational fluid dynamics simulations results.
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Lou, Rui, Guangying Li, Xu Wang, Wenfu Zhang, Yishan Wang, Guodong Zhang, Jiang Wang, and Guanghua Cheng. "Antireflective and Superhydrophilic Structure on Graphite Written by Femtosecond Laser." Micromachines 12, no. 3 (February 26, 2021): 236. http://dx.doi.org/10.3390/mi12030236.

Повний текст джерела
Анотація:
Antireflection and superhydrophilicity performance are desirable for improving the properties of electronic devices. Here, we experimentally provide a strategy of femtosecond laser preparation to create micro-nanostructures on the graphite surface in an air environment. The modified graphite surface is covered with abundant micro-nano structures, and its average reflectance is measured to be 2.7% in the ultraviolet, visible and near-infrared regions (250 to 2250 nm). The wettability transformation of the surface from hydrophilicity to superhydrophilicity is realized. Besides, graphene oxide (GO) and graphene are proved to be formed on the sample surface. This micro-nanostructuring method, which demonstrates features of high efficiency, high controllability, and hazardous substances zero discharge, exhibits the application for functional surface.
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Princess Okokpujie, Imhade, and Lagouge Kwanda Tartibu. "Comparative study of surface roughness prediction using neural-network and quadratic-rotatable-central-composite-design." IAES International Journal of Artificial Intelligence (IJ-AI) 12, no. 3 (September 1, 2023): 1178. http://dx.doi.org/10.11591/ijai.v12.i3.pp1178-1190.

Повний текст джерела
Анотація:
The act of sustainable manufacturing lies in the response's prediction analysis, such as surface roughness during machining operations with nano-lubricant. This research focuses on developing a mathematical model to predict the experimental results of surface roughness of AA8112 alloys obtained during the end-milling process with an eco-friendly nano-lubricant. The study employed vegetable oil as the base cutting fluid (copra oil) and Titanium-dioxide (TiO2) nanoparticles as an additive. The end-milling machining was carried out with five machining parameters. The prediction analysis was done with a backpropagation feed-forward neural network (BPNN) and quadratic rotatable central composite design (QRCCD). The results show that the BPNN predicted the experimental results with 99.85%, and the QRCCD predicted 91.1%. The error percentage from both prediction analyses is 0.2% from the BPNN and 0.9% from the QRCCD. Therefore, the application of BPNN has proven viable in predicting surface roughness in machining operations. It will also improve the manufacturing industry's productivity and eliminate the high rate of waste materials during machining.
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Qin, Liguo, Mahshid Hafezi, Hao Yang, Guangneng Dong, and Yali Zhang. "Constructing a Dual-Function Surface by Microcasting and Nanospraying for Efficient Drag Reduction and Potential Antifouling Capabilities." Micromachines 10, no. 7 (July 23, 2019): 490. http://dx.doi.org/10.3390/mi10070490.

Повний текст джерела
Анотація:
To improve the drag-reducing and antifouling performance of marine equipment, it is indispensable to learn from structures and materials that are found in nature. This is due to their excellent properties, such as intelligence, microminiaturization, hierarchical assembly, and adaptability. Considerable interest has arisen in fabricating surfaces with various types of biomimetic structures, which exhibit promising and synergistic performances similar to living organisms. In this study, a dual bio-inspired shark-skin and lotus-structure (BSLS) surface was developed for fabrication on commercial polyurethane (PU) polymer. Firstly, the shark-skin pattern was transferred on the PU by microcasting. Secondly, hierarchical micro- and nanostructures were introduced by spraying mesoporous silica nanospheres (MSNs). The dual biomimetic substrates were characterized by scanning electron microscopy, water contact angle characterization, antifouling, self-cleaning, and water flow impacting experiments. The results revealed that the BSLS surface exhibited dual biomimetic features. The micro- and nano-lotus-like structures were localized on a replicated shark dermal denticle. A contact angle of 147° was observed on the dual-treated surface and the contact angle hysteresis was decreased by 20% compared with that of the nontreated surface. Fluid drag was determined with shear stress measurements and a drag reduction of 36.7% was found for the biomimetic surface. With continuous impacting of high-speed water for up to 10 h, the biomimetic surface stayed superhydrophobic. Material properties such as inhibition of protein adsorption, mechanical robustness, and self-cleaning performances were evaluated, and the data indicated these behaviors were significantly improved. The mechanisms of drag reduction and self-cleaning are discussed. Our results indicate that this method is a potential strategy for efficient drag reduction and antifouling capabilities.
Стилі APA, Harvard, Vancouver, ISO та ін.
46

She, Na, Tao Gong, Bingsan Chen, Minrui Lu, Yongchao Xu, and Xiaodong Peng. "Surface quality improvement for 316L additive manufactured prototype based on magnetorheological polishing." Mechanical Sciences 14, no. 1 (April 12, 2023): 179–91. http://dx.doi.org/10.5194/ms-14-179-2023.

Повний текст джерела
Анотація:
Abstract. Additive manufacturing has attracted increasing attention in recent years due to its flexibility and near-net shaping advantages. Although recent advancements in metal additive manufacturing accuracy have met the post-processing requirement for dimensional tolerance, the finishing post-processing of functional surfaces must be further investigated in conjunction with material characteristics. This research aims to investigate the use of a flexible process in the polishing of additive molding samples. As an example, the surface of a 316L stainless steel sample formed by powder bed laser melting was polished using magnetorheological polishing technology. Magnetic field simulation was used to create a longitudinally staggered magnetorheological polishing tool. Surface roughness and residual stress were studied with process parameters such as abrasive content, magnetic particle content, machining gap, and spindle speed. Results show that the polishing effect is better at 4 % and 40 % abrasive and magnetic particles, respectively. The surface roughness Ra is 99 nm when the working gap is 0.6 mm, the surface roughness Ra value is the lowest when the spindle speed is 600 r min−1. The surface roughness was reduced to 61.43 nm after polishing the sample under improved processing conditions (4 % abrasive, 40 % magnetic, 0.6 mm working clearance, 600 r min−1 spindle speed). A nano-scale smooth surface can be obtained by powder bed laser melting and magnetorheological polishing of 316L stainless steel.
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Zhang, Yaxin, Chenying Wang, Weixuan Jing, Song Wang, Yujing Zhang, Liangliang Zhang, Yijun Zhang, et al. "High-Precision Regulation of Nano-Grating Linewidth Based on ALD." Micromachines 13, no. 7 (June 24, 2022): 995. http://dx.doi.org/10.3390/mi13070995.

Повний текст джерела
Анотація:
A nano-grating standard with accurate linewidth can not only calibrate the magnification of nano-measurement instruments, but can also enable comparison of linewidths. Unfortunately, it is still a challenging task to control the linewidth of nano-grating standards. Accordingly, in this paper, atomic layer deposition (ALD) was used to regulate the linewidth of the one-dimensional grating standards with a pitch of 1000 nm, fabricated by electron beam lithography (EBL). The standards were measured using an atomic force microscope (AFM) before and after ALD, and the linewidth and pitch of the grating were calculated through the gravity center method. The obtained results prove that the width of a single grating line in the standard can be regulated with great uniformity by precisely utilizing ALD. Meanwhile, the proposed method does not affect the pitch of grating, and the measurement uncertainty of standards is less than 0.16% of the pitch, thereby demonstrating a high surface quality and calibration reliability of the standards, and realizing the integration of linewidth and pitch calibration functions. Moreover, the precise and controllable fabrication method of the micro-nano periodic structure based on ALD technology has many potential applications in the fields of optoelectronic devices and biosensors.
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Yan, Shubin, Pengwei Liu, Zhanbo Chen, Jilai Liu, Lifang Shen, Xiaoyu Zhang, Jiaming Cui, Tingsong Li, Yang Cui, and Yifeng Ren. "High-Property Refractive Index and Bio-Sensing Dual-Purpose Sensor Based on SPPs." Micromachines 13, no. 6 (May 29, 2022): 846. http://dx.doi.org/10.3390/mi13060846.

Повний текст джерела
Анотація:
A high-property plasma resonance-sensor structure consisting of two metal-insulator-metal (MIM) waveguides coupled with a transverse ladder-shaped nano-cavity (TLSNC) is designed based on surface plasmon polaritons. Its transmission characteristics are analyzed using multimode interference coupling mode theory (MICMT), and are simulated using finite element analysis (FEA). Meanwhile, the influence of different structural arguments on the performance of the structure is investigated. This study shows that the system presents four high-quality formants in the transmission spectrum. The highest sensitivity is 3000 nm/RIU with a high FOM* of 9.7 × 105. In addition, the proposed structure could act as a biosensor to detect the concentrations of sodium ions (Na+), potassium ions (K+), and the glucose solution with maximum sensitivities of 0.45, 0.625 and 5.5 nm/mgdL−1, respectively. Compared with other structures, the designed system has the advantages of a simple construction, a wide working band range, high reliability and easy nano-scale integration, providing a high-performance cavity choice for refractive index sensing and biosensing devices based on surface plasmons.
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Kim, J., G. L. Liu, Y. Lu, and L. P. Lee. "Spectral tuning of localised surface plasmon-polariton resonance in metallic nano-crescents." IEE Proceedings - Nanobiotechnology 153, no. 3 (2006): 42. http://dx.doi.org/10.1049/ip-nbt:20050016.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Singla, Shivali, Amardeep Singh Kang, and TS Sidhu. "Development and characterization of WE43/nano-TiC surface composite by friction stir processing technique." Measurement and Control 53, no. 3-4 (January 31, 2020): 730–41. http://dx.doi.org/10.1177/0020294019895302.

Повний текст джерела
Анотація:
In present research work, an attempt has been made on the development of titanium carbide–reinforced magnesium-based surface composites through friction stir processing technique. Particularly, attempt has been made to observe the influence of input processing conditions, namely tools-pin geometry, travel speed, and rotational speed for the mechanical importance (surface hardness and elastic modulus) of the developed composites. Further, the, incurred modifications in the metallurgical characteristics and corrosion behaviour of the developed composites have also been analysed through microscopic and scanning electron microscopy, and immersion fluid test, respectively. It has been found that the quality characteristics of the composites have been greatly influenced by the selected range of input variables. As noticed, the grain size of the magnesium alloy has been significantly reduced from 22.42 to 6.6 µm. Furthermore, the maximum level of the micro-hardness (180 HV0.3) of the processed composite with square-shaped tool-pin geometry. Moreover, the degradation rate of the processed composite is found to be 45% lesser than the unprocessed magnesium alloy.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії