Зміст
Добірка наукової літератури з теми "Control surface nano-functionalization"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Control surface nano-functionalization".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Control surface nano-functionalization"
Novotny, Jakub, Petra Juskova, Rudolf Kupcik, Zuzana Bilkova, and Frantisek Foret. "Simple Fabrication of Structured Magnetic Metallic Nano-Platelets for Bio-Analytical Applications." Micromachines 10, no. 2 (February 3, 2019): 106. http://dx.doi.org/10.3390/mi10020106.
Повний текст джерелаTSOI, SHUFEN, ENRICO FOK, JONATHAN G. C. VEINOT, and JEREMY C. SIT. "VAPOR-PHASE CHEMICAL FUNCTIONALIZATION OF HIGH POROSITY, NANOSTRUCTURED THIN FILMS." International Journal of Nanoscience 06, no. 02 (April 2007): 103–7. http://dx.doi.org/10.1142/s0219581x07004456.
Повний текст джерелаWang, Shuo, Jingan Li, Zixiao Zhou, Sheng Zhou, and Zhenqing Hu. "Micro-/Nano-Scales Direct Cell Behavior on Biomaterial Surfaces." Molecules 24, no. 1 (December 26, 2018): 75. http://dx.doi.org/10.3390/molecules24010075.
Повний текст джерелаGrzedowski, Adrian, and Tianxiao Ma. "Controlling DNA Spacing in a Monolayer, Using DNA Nano-Cubes." ECS Meeting Abstracts MA2022-01, no. 50 (July 7, 2022): 2121. http://dx.doi.org/10.1149/ma2022-01502121mtgabs.
Повний текст джерелаBrock, Larry, and Jian Sheng. "Robust Fabrication of Polymeric Nanowire with Anodic Aluminum Oxide Templates." Micromachines 11, no. 1 (December 30, 2019): 46. http://dx.doi.org/10.3390/mi11010046.
Повний текст джерелаYi, Dong Kee. "Control of Wettability Using Regularly Ordered Two-Dimensional Polymeric Wavy Substrates." Nano 13, no. 10 (October 2018): 1850120. http://dx.doi.org/10.1142/s1793292018501205.
Повний текст джерелаGao, Peng, Ian MacKay, Andrea Gruber, Joshua Krantz, Leonardo Piccolo, Giovanni Lucchetta, Riccardo Pelaccia, Leonardo Orazi, and Davide Masato. "Wetting Characteristics of Laser-Ablated Hierarchical Textures Replicated by Micro Injection Molding." Micromachines 14, no. 4 (April 16, 2023): 863. http://dx.doi.org/10.3390/mi14040863.
Повний текст джерелаGupta, Ankita, Shaifali Dubey, and Mayuri Mishra. "Unique Structures, Properties and Applications of Dendrimers." Journal of Drug Delivery and Therapeutics 8, no. 6-s (December 15, 2018): 328–39. http://dx.doi.org/10.22270/jddt.v8i6-s.2083.
Повний текст джерелаCha, Judy J. "Intercalation and Functionalization in 2D Materials." ECS Meeting Abstracts MA2023-01, no. 13 (August 28, 2023): 1306. http://dx.doi.org/10.1149/ma2023-01131306mtgabs.
Повний текст джерелаRehman, Asad Ur, Mayeul Collot, Andrey S. Klymchenko, Salman Akram, Bilal Mustafa, Thierry Vandamme, and Nicolas Anton. "Spontaneous nano-emulsification with tailor-made amphiphilic polymers and related monomers." European Journal of Pharmaceutical Research 1, no. 1 (March 13, 2019): 27–36. http://dx.doi.org/10.34154/2019-ejpr.01(01).pp-27-36/euraass.
Повний текст джерелаДисертації з теми "Control surface nano-functionalization"
Geronimi-Jourdain, Théo. "New breakthrough in plasmon-mediated surface functionalization." Electronic Thesis or Diss., Université Paris Cité, 2023. http://www.theses.fr/2023UNIP7076.
Повний текст джерелаThe assembly of coupled nanoparticles (NPs) has aroused great interest in recent years, with a view to applications in the detection of chemical compounds (molecules, explosives, drugs,...) belonging to the field of surface exalted Raman spectroscopy (SERS) for example. Recently, the coupling of periodic structures of metallic nanoparticles NPs has allowed to highlight resonances called surface collective resonances (SLR) resulting from the coupling between localized surface plasmon modes and diffraction modes. These resonances are characterized by a very fine spectral width implying a strong exaltation of the electric field in the vicinity of the nanoparticles. In this thesis, we propose an experimental study verified by means of Finite Difference Time Domain (FDTD) modeling, of individual and collective plasmonic resonances of surfaces supported by periodic arrays of metallic NPs elaborated by the electron lithography technique. The first part of this thesis, highlights the main optical characteristics, from the single NP to the assembly of NPs in periodic array. This chapter is illustrated with some examples from the literature on the excitation of these surface plasmons, to generate a localized surface functionalization. In a second step, an in-depth study on the improvement of the morphology conditions of the plasmonic substrates, in order to improve the molecular grafting at the level of the NPs, is presented. Then, we present the results obtained for a chemical grafting method, implemented in the laboratory, which allows the direct visualization of lattice modes, by grafting organic molecular films derived from diazonium salts, by exciting SLRs modes. Finally, the last part deals with the study of binary arrays of nanoparticles which revealed the emergence of two hybrid plasmonic modes, originating from the asymmetry of the elementary pattern. We then carried out, with the help of our grafting strategy, a study on the attachment of molecules only in the regions of maximum exaltions of the electric fields by exciting sometimes in the symmetric mode, sometimes in the anti-symmetric mode. During this PhD, these research works have allowed a clear improvement of the understanding and control of the deposition localization at the nanoparticle scale. It is on this solid basis that it is possible to associate materials already known for their remarkable optical properties (metallic NPs, quantum dots -QDs), with a thermosensitive polymer (pNIPAM), allowing an active and reversible control of the exaltation (or inhibition) of light emission by QDs, at the scale of the metallic NP. Such a control would allow a major advance in the optical performances of QDs incorporated in optical components