Статті в журналах з теми "Contrastive loss"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Contrastive loss".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.
Vito, Valentino, and Lim Yohanes Stefanus. "An Asymmetric Contrastive Loss for Handling Imbalanced Datasets." Entropy 24, no. 9 (September 15, 2022): 1303. http://dx.doi.org/10.3390/e24091303.
Повний текст джерелаHoffmann, David T., Nadine Behrmann, Juergen Gall, Thomas Brox, and Mehdi Noroozi. "Ranking Info Noise Contrastive Estimation: Boosting Contrastive Learning via Ranked Positives." Proceedings of the AAAI Conference on Artificial Intelligence 36, no. 1 (June 28, 2022): 897–905. http://dx.doi.org/10.1609/aaai.v36i1.19972.
Повний текст джерелаAkash, Aditya Kumar, Vishnu Suresh Lokhande, Sathya N. Ravi, and Vikas Singh. "Learning Invariant Representations using Inverse Contrastive Loss." Proceedings of the AAAI Conference on Artificial Intelligence 35, no. 8 (May 18, 2021): 6582–91. http://dx.doi.org/10.1609/aaai.v35i8.16815.
Повний текст джерелаAhmad, Sajjad, Zahoor Ahmad, and Jong-Myon Kim. "A Centrifugal Pump Fault Diagnosis Framework Based on Supervised Contrastive Learning." Sensors 22, no. 17 (August 26, 2022): 6448. http://dx.doi.org/10.3390/s22176448.
Повний текст джерелаAnderson, John. "A major restructuring in the English consonant system: the de-linearization of [h] and the de-consonantization of [w] and [j]." English Language and Linguistics 5, no. 2 (September 25, 2001): 199–212. http://dx.doi.org/10.1017/s1360674301000211.
Повний текст джерелаCheng, Yixian, and Haiyang Wang. "A modified contrastive loss method for face recognition." Pattern Recognition Letters 125 (July 2019): 785–90. http://dx.doi.org/10.1016/j.patrec.2019.07.025.
Повний текст джерелаLi, Yunfan, Peng Hu, Zitao Liu, Dezhong Peng, Joey Tianyi Zhou, and Xi Peng. "Contrastive Clustering." Proceedings of the AAAI Conference on Artificial Intelligence 35, no. 10 (May 18, 2021): 8547–55. http://dx.doi.org/10.1609/aaai.v35i10.17037.
Повний текст джерелаCiortan, Madalina, Romain Dupuis, and Thomas Peel. "A Framework Using Contrastive Learning for Classification with Noisy Labels." Data 6, no. 6 (June 9, 2021): 61. http://dx.doi.org/10.3390/data6060061.
Повний текст джерелаTanveer, Muhammad, Hung-Khoon Tan, Hui-Fuang Ng, Maylor Karhang Leung, and Joon Huang Chuah. "Regularization of Deep Neural Network With Batch Contrastive Loss." IEEE Access 9 (2021): 124409–18. http://dx.doi.org/10.1109/access.2021.3110286.
Повний текст джерелаDuan, Jiayi. "Reformatted contrastive learning for image classification via attention mechanism and self-distillation." Journal of Physics: Conference Series 2284, no. 1 (June 1, 2022): 012013. http://dx.doi.org/10.1088/1742-6596/2284/1/012013.
Повний текст джерелаFang, Hongchao, and Pengtao Xie. "An End-to-End Contrastive Self-Supervised Learning Framework for Language Understanding." Transactions of the Association for Computational Linguistics 10 (2022): 1324–40. http://dx.doi.org/10.1162/tacl_a_00521.
Повний текст джерелаGómez-Silva, María J., Arturo de la Escalera, and José M. Armingol. "Deep Learning of Appearance Affinity for Multi-Object Tracking and Re-Identification: A Comparative View." Electronics 9, no. 11 (October 22, 2020): 1757. http://dx.doi.org/10.3390/electronics9111757.
Повний текст джерелаRezaeifar, Shideh, Slava Voloshynovskiy, Meisam Asgari Asgari Jirhandeh, and Vitality Kinakh. "Privacy-Preserving Image Template Sharing Using Contrastive Learning." Entropy 24, no. 5 (May 3, 2022): 643. http://dx.doi.org/10.3390/e24050643.
Повний текст джерелаZhu, He, Yang Chen, Guyue Hu, and Shan Yu. "Contrastive Learning via Local Activity." Electronics 12, no. 1 (December 29, 2022): 147. http://dx.doi.org/10.3390/electronics12010147.
Повний текст джерелаPang, Bo, Deming Zhai, Junjun Jiang, and Xianming Liu. "Fully Unsupervised Person Re-Identification via Selective Contrastive Learning." ACM Transactions on Multimedia Computing, Communications, and Applications 18, no. 2 (May 31, 2022): 1–15. http://dx.doi.org/10.1145/3485061.
Повний текст джерелаZOU, Yuanhao, Yufei ZHANG, and Xiaodong ZHAO. "Self-Supervised Time Series Classification Based on LSTM and Contrastive Transformer." Wuhan University Journal of Natural Sciences 27, no. 6 (December 2022): 521–30. http://dx.doi.org/10.1051/wujns/2022276521.
Повний текст джерелаLiu, Mengxin, Wenyuan Tao, Xiao Zhang, Yi Chen, Jie Li, and Chung-Ming Own. "GO Loss: A Gaussian Distribution-Based Orthogonal Decomposition Loss for Classification." Complexity 2019 (December 12, 2019): 1–10. http://dx.doi.org/10.1155/2019/9206053.
Повний текст джерелаZhu, Jiaqi, Shuaishi Liu, Siyang Yu, and Yihu Song. "An Extra-Contrast Affinity Network for Facial Expression Recognition in the Wild." Electronics 11, no. 15 (July 22, 2022): 2288. http://dx.doi.org/10.3390/electronics11152288.
Повний текст джерелаJain, Yash, Chi Ian Tang, Chulhong Min, Fahim Kawsar, and Akhil Mathur. "ColloSSL." Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 6, no. 1 (March 29, 2022): 1–28. http://dx.doi.org/10.1145/3517246.
Повний текст джерелаQiao, Hezhe, Lin Chen, Zi Ye, and Fan Zhu. "Early Alzheimer’s disease diagnosis with the contrastive loss using paired structural MRIs." Computer Methods and Programs in Biomedicine 208 (September 2021): 106282. http://dx.doi.org/10.1016/j.cmpb.2021.106282.
Повний текст джерелаZheng, Kecheng, Cuiling Lan, Wenjun Zeng, Zhizheng Zhang, and Zheng-Jun Zha. "Exploiting Sample Uncertainty for Domain Adaptive Person Re-Identification." Proceedings of the AAAI Conference on Artificial Intelligence 35, no. 4 (May 18, 2021): 3538–46. http://dx.doi.org/10.1609/aaai.v35i4.16468.
Повний текст джерелаZhang, Jiayi, Xingzhi Wang, Dong Zhang, and Dah-Jye Lee. "Semi-Supervised Group Emotion Recognition Based on Contrastive Learning." Electronics 11, no. 23 (December 1, 2022): 3990. http://dx.doi.org/10.3390/electronics11233990.
Повний текст джерелаTan, Xiaoyan, Yun Zou, Ziyang Guo, Ke Zhou, and Qiangqiang Yuan. "Deep Contrastive Self-Supervised Hashing for Remote Sensing Image Retrieval." Remote Sensing 14, no. 15 (July 29, 2022): 3643. http://dx.doi.org/10.3390/rs14153643.
Повний текст джерелаHu, Shengze, Weixin Zeng, Pengfei Zhang, and Jiuyang Tang. "Neural Graph Similarity Computation with Contrastive Learning." Applied Sciences 12, no. 15 (July 29, 2022): 7668. http://dx.doi.org/10.3390/app12157668.
Повний текст джерелаMo, Yujie, Liang Peng, Jie Xu, Xiaoshuang Shi, and Xiaofeng Zhu. "Simple Unsupervised Graph Representation Learning." Proceedings of the AAAI Conference on Artificial Intelligence 36, no. 7 (June 28, 2022): 7797–805. http://dx.doi.org/10.1609/aaai.v36i7.20748.
Повний текст джерелаVirmani, D., P. Girdhar, P. Jain, and P. Bamdev. "FDREnet: Face Detection and Recognition Pipeline." Engineering, Technology & Applied Science Research 9, no. 2 (April 10, 2019): 3933–38. http://dx.doi.org/10.48084/etasr.2492.
Повний текст джерелаSun, Ke, Taiping Yao, Shen Chen, Shouhong Ding, Jilin Li, and Rongrong Ji. "Dual Contrastive Learning for General Face Forgery Detection." Proceedings of the AAAI Conference on Artificial Intelligence 36, no. 2 (June 28, 2022): 2316–24. http://dx.doi.org/10.1609/aaai.v36i2.20130.
Повний текст джерелаZeng, Jiaqi, and Pengtao Xie. "Contrastive Self-supervised Learning for Graph Classification." Proceedings of the AAAI Conference on Artificial Intelligence 35, no. 12 (May 18, 2021): 10824–32. http://dx.doi.org/10.1609/aaai.v35i12.17293.
Повний текст джерелаEtebari, Zahra, Ali Alizadeh, Mehrdad Naghzguy-Kohan, and Maria Koptjevskaja Tamm. "Development of contrastive-partitive in colloquial Persian." STUF - Language Typology and Universals 73, no. 4 (November 26, 2020): 575–604. http://dx.doi.org/10.1515/stuf-2020-1019.
Повний текст джерелаGuo, Tianyu, Hong Liu, Zhan Chen, Mengyuan Liu, Tao Wang, and Runwei Ding. "Contrastive Learning from Extremely Augmented Skeleton Sequences for Self-Supervised Action Recognition." Proceedings of the AAAI Conference on Artificial Intelligence 36, no. 1 (June 28, 2022): 762–70. http://dx.doi.org/10.1609/aaai.v36i1.19957.
Повний текст джерелаMaheshwari, Paridhi, Ritwick Chaudhry, and Vishwa Vinay. "Scene Graph Embeddings Using Relative Similarity Supervision." Proceedings of the AAAI Conference on Artificial Intelligence 35, no. 3 (May 18, 2021): 2328–36. http://dx.doi.org/10.1609/aaai.v35i3.16333.
Повний текст джерелаLi, Shimin, Hang Yan, and Xipeng Qiu. "Contrast and Generation Make BART a Good Dialogue Emotion Recognizer." Proceedings of the AAAI Conference on Artificial Intelligence 36, no. 10 (June 28, 2022): 11002–10. http://dx.doi.org/10.1609/aaai.v36i10.21348.
Повний текст джерелаJu, Jeongwoo, Heechul Jung, and Junmo Kim. "Extending Contrastive Learning to Unsupervised Redundancy Identification." Applied Sciences 12, no. 4 (February 20, 2022): 2201. http://dx.doi.org/10.3390/app12042201.
Повний текст джерелаGupta, Devansh, Drishti Bhasin, Sarthak Bhagat, Shagun Uppal, Ponnurangam Kumaraguru, and Rajiv Ratn Shah. "Contrastive Personalization Approach to Suspect Identification (Student Abstract)." Proceedings of the AAAI Conference on Artificial Intelligence 36, no. 11 (June 28, 2022): 12961–62. http://dx.doi.org/10.1609/aaai.v36i11.21617.
Повний текст джерелаParaskevopoulos, Georgios, Petros Pistofidis, Georgios Banoutsos, Efthymios Georgiou, and Vassilis Katsouros. "Multimodal Classification of Safety-Report Observations." Applied Sciences 12, no. 12 (June 7, 2022): 5781. http://dx.doi.org/10.3390/app12125781.
Повний текст джерелаPan, Zhiqiang, and Honghui Chen. "Efficient Graph Collaborative Filtering via Contrastive Learning." Sensors 21, no. 14 (July 7, 2021): 4666. http://dx.doi.org/10.3390/s21144666.
Повний текст джерелаZhou, Fan, Pengyu Wang, Xovee Xu, Wenxin Tai, and Goce Trajcevski. "Contrastive Trajectory Learning for Tour Recommendation." ACM Transactions on Intelligent Systems and Technology 13, no. 1 (February 28, 2022): 1–25. http://dx.doi.org/10.1145/3462331.
Повний текст джерелаTang, Shixiang, Peng Su, Dapeng Chen, and Wanli Ouyang. "Gradient Regularized Contrastive Learning for Continual Domain Adaptation." Proceedings of the AAAI Conference on Artificial Intelligence 35, no. 3 (May 18, 2021): 2665–73. http://dx.doi.org/10.1609/aaai.v35i3.16370.
Повний текст джерелаWang, Hao, Euijoon Ahn, and Jinman Kim. "Self-Supervised Representation Learning Framework for Remote Physiological Measurement Using Spatiotemporal Augmentation Loss." Proceedings of the AAAI Conference on Artificial Intelligence 36, no. 2 (June 28, 2022): 2431–39. http://dx.doi.org/10.1609/aaai.v36i2.20143.
Повний текст джерелаLi, Hang, Li Li, and Hongbing Wang. "Defect Detection for Wear Debris Based on Few-Shot Contrastive Learning." Applied Sciences 12, no. 23 (November 22, 2022): 11893. http://dx.doi.org/10.3390/app122311893.
Повний текст джерелаChen, Qiang, and Yinong Chen. "Multi-view 3D model retrieval based on enhanced detail features with contrastive center loss." Multimedia Tools and Applications 81, no. 8 (February 15, 2022): 10407–26. http://dx.doi.org/10.1007/s11042-022-12281-9.
Повний текст джерелаDeepak, S., and P. M. Ameer. "Retrieval of brain MRI with tumor using contrastive loss based similarity on GoogLeNet encodings." Computers in Biology and Medicine 125 (October 2020): 103993. http://dx.doi.org/10.1016/j.compbiomed.2020.103993.
Повний текст джерелаZhang, Xinyun, Binwu Zhu, Xufeng Yao, Qi Sun, Ruiyu Li, and Bei Yu. "Context-Based Contrastive Learning for Scene Text Recognition." Proceedings of the AAAI Conference on Artificial Intelligence 36, no. 3 (June 28, 2022): 3353–61. http://dx.doi.org/10.1609/aaai.v36i3.20245.
Повний текст джерелаKim, Daeha, and Byung Cheol Song. "Contrastive Adversarial Learning for Person Independent Facial Emotion Recognition." Proceedings of the AAAI Conference on Artificial Intelligence 35, no. 7 (May 18, 2021): 5948–56. http://dx.doi.org/10.1609/aaai.v35i7.16743.
Повний текст джерелаMa, Ziping, Dongxiu Feng, Jingyu Wang, and Hu Ma. "Retinal OCTA Image Segmentation Based on Global Contrastive Learning." Sensors 22, no. 24 (December 14, 2022): 9847. http://dx.doi.org/10.3390/s22249847.
Повний текст джерелаChen, Liang, Yihang Lou, Jianzhong He, Tao Bai, and Minghua Deng. "Evidential Neighborhood Contrastive Learning for Universal Domain Adaptation." Proceedings of the AAAI Conference on Artificial Intelligence 36, no. 6 (June 28, 2022): 6258–67. http://dx.doi.org/10.1609/aaai.v36i6.20575.
Повний текст джерелаChen, Haoyu, Hao Tang, Zitong Yu, Nicu Sebe, and Guoying Zhao. "Geometry-Contrastive Transformer for Generalized 3D Pose Transfer." Proceedings of the AAAI Conference on Artificial Intelligence 36, no. 1 (June 28, 2022): 258–66. http://dx.doi.org/10.1609/aaai.v36i1.19901.
Повний текст джерелаCho, Jungchan. "Synthetic Source Universal Domain Adaptation through Contrastive Learning." Sensors 21, no. 22 (November 12, 2021): 7539. http://dx.doi.org/10.3390/s21227539.
Повний текст джерелаLiu, Pingping, Lida Shi, Zhuang Miao, Baixin Jin, and Qiuzhan Zhou. "Relative Distribution Entropy Loss Function in CNN Image Retrieval." Entropy 22, no. 3 (March 11, 2020): 321. http://dx.doi.org/10.3390/e22030321.
Повний текст джерелаZhao, Xusheng, and Jinglei Liu. "Leveraging Deep Features Enhance and Semantic-Preserving Hashing for Image Retrieval." Electronics 11, no. 15 (July 30, 2022): 2391. http://dx.doi.org/10.3390/electronics11152391.
Повний текст джерела