Добірка наукової літератури з теми "Continuum micromorphe de Cosserat"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Continuum micromorphe de Cosserat".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Continuum micromorphe de Cosserat"
Forest, S. "Homogenization methods and mechanics of generalized continua - part 2." Theoretical and Applied Mechanics, no. 28-29 (2002): 113–44. http://dx.doi.org/10.2298/tam0229113f.
Повний текст джерелаSTEFANOU, IOANNIS, and JEAN SULEM. "THREE-DIMENSIONAL COSSERAT CONTINUUM MODELING OF FRACTURED ROCK MASSES." Journal of Multiscale Modelling 02, no. 03n04 (September 2010): 217–34. http://dx.doi.org/10.1142/s1756973710000424.
Повний текст джерелаTrinh, Duy Khanh, and Samuel Forest. "Generalized continuum overall modelling of periodic composite structures." Vietnam Journal of Mechanics 33, no. 4 (December 12, 2011): 245–58. http://dx.doi.org/10.15625/0866-7136/33/4/258.
Повний текст джерелаNejadsadeghi, Nima, and Anil Misra. "Extended granular micromechanics approach: a micromorphic theory of degree n." Mathematics and Mechanics of Solids 25, no. 2 (October 16, 2019): 407–29. http://dx.doi.org/10.1177/1081286519879479.
Повний текст джерелаTordesillas, Antoinette, Jingyu Shi, and John F. Peters. "Isostaticity in Cosserat continuum." Granular Matter 14, no. 2 (March 16, 2012): 295–301. http://dx.doi.org/10.1007/s10035-012-0341-4.
Повний текст джерелаGomez, Juan, and Cemal Basaran. "Computational implementation of Cosserat continuum." International Journal of Materials and Product Technology 34, no. 1/2 (2009): 3. http://dx.doi.org/10.1504/ijmpt.2009.022401.
Повний текст джерелаTang, Hong Xiang, and Chun Hong Song. "Finite Element Analysis of Strain Localization under Static and Dynamic Loading Conditions Based on Cosserat Continuum Model." Advanced Materials Research 250-253 (May 2011): 2510–14. http://dx.doi.org/10.4028/www.scientific.net/amr.250-253.2510.
Повний текст джерелаLalin, Vladimir, and Elizaveta Zdanchuk. "The Initial Boundary-Value Problem for a Mathematical Model for Granular Medium." Applied Mechanics and Materials 725-726 (January 2015): 863–68. http://dx.doi.org/10.4028/www.scientific.net/amm.725-726.863.
Повний текст джерелаPopov, V. L. "Coupling of an elastoplastic continuum and a Cosserat continuum." Russian Physics Journal 37, no. 4 (April 1994): 337–42. http://dx.doi.org/10.1007/bf00560216.
Повний текст джерелаTang, Hong Xiang, and Yu Hui Guan. "Finite Element Analysis of Stress Concentration Problems Based on Cosserat Continuum Model." Applied Mechanics and Materials 99-100 (September 2011): 939–43. http://dx.doi.org/10.4028/www.scientific.net/amm.99-100.939.
Повний текст джерелаДисертації з теми "Continuum micromorphe de Cosserat"
Stathas, Alexandros. "Numerical modeling of earthquake faults." Thesis, Ecole centrale de Nantes, 2021. http://www.theses.fr/2021ECDN0053.
Повний текст джерелаDuring coseismic slip, the energy released by the elastic unloading of the adjacent earth blocks can be separated in three main parts: The energy that is radiated to the earth’s surface (_ 5% of the whole energy budget), the fracture energy for the creation of new fault surfaces and finally, the energy dissipated inside a region of the fault, with finite thickness, which is called the fault gauge. This region accumulates the majority of the seismic slip. Estimating correctly the width of the fault gauge is of paramount importance in calculating the energy dissipated during the earthquake, the fault’s frictional response, and the conditions for nucleation of the fault in the form of seismic or aseismic slip.In this thesis different regularization approaches were explored for the estimation of the localization width of the fault’s principal slip zone during coseismic slip. These include the application of viscosity and multiphysical couplings in the classical Cauchy continuum, and the introduction of a first order micromorphic Cosserat continuum. First, we focus on the role of viscous regularization in the context of dynamical analyses, as a method for regularizing strain localization. We study the dynamic case for a strain softening strain-rate hardening classical Cauchy continuum, and by applying the Lyapunov stability analysis we show that introduction of viscosity is unable to prevent strain localization on a mathematical plane and mesh dependence.We perform fully non linear analyses using the Cosserat continuum under large seismic slip displacements of the fault gouge in comparison to its width. Cosserat continuum provides us with a proper account of the energy dissipated during an earthquake and the role of the microstructure in the evolution of the fault’s friction. We focus on the influence of the seismic slip velocity to the weakening mechanism of thermal pressurization. We notice that the influence of the boundary conditions in the diffusion of the pore fluid inside the fault gouge, leads to frictional strength regain after initial weakening. Furthermore, a traveling strain localization mode is present during shearing of the layer introducing oscillations in the frictional response. Such oscillations increase the spectral content of the earthquake. Introduction of viscosity in the above mode, leads to a rate and state behavior without the introduction of a specific internal state variable. Our conclusions about the role of thermal pressurization during shearing of the fault gouge, agree qualitatively with newly available experimental results.Finally, based on the numerical findings we investigate the assumptions of the current model of a slip on a mathematical plane, in particular the role of the boundary conditions and strain localization mode in the evolution of the fault’s friction during coseismic slip. The case of a bounded domain and a traveling strain localization mode are examined in the context of slip on a mathematical plane under thermal pressurization. Our results expand the original model in a more general context
ALAMO, FREDY JONEL CORAL. "DYNAMICS OF SLENDER ONE-DIMENSIONAL STRUCTURES USING COSSERAT CONTINUUM." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2006. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=9631@1.
Повний текст джерелаCOORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO
FUNDAÇÃO DE APOIO À PESQUISA DO ESTADO DO RIO DE JANEIRO
Neste trabalho é formulado e analisado o equilíbrio estático e a dinâmica de uma viga elástica tridimensional. A teoria tridimensional empregada, que pode ser chamada de teoria de Cosserat para vigas, é exata geometricamente, ou seja, não está baseada em aproximações geométricas ou suposições mecânicas. Para a deformação da viga, assume-se a hipótese de Bernoulli e por simplicidade consideram-se relações constitutivas lineares para o material. A configuração deformada da viga é descrita através do vetor de deslocamento da curva de centróides, e uma base móvel, rigidamente unido à secção transversal da viga. A orientação da base móvel, relativo a um sistema inercial, é parametrizada usando três rotações elementares consecutivas. Na teoria de Cosserat para vigas, as equações do movimento são equações diferenciais parciais não-lineares em função do tempo e uma variável espacial. No entanto, para o equilíbrio estático, as equações tornam- se equações diferenciais ordinárias não-lineares com uma variável espacial que são resolvidas usando o método de perturbação. Da solução do equilíbrio estático, obtêm-se as funções de deslocamento da viga, em função dos deslocamentos e rotações nodais, as quais são usadas para a análise dinâmica. Para obter a dinâmica da viga usa-se a equação de Lagrange, que é formada pelas expressões da energia cinética e da energia potencial de deformação. Além disso, usa-se o método de Newmark para resolver as equações do movimento. Como aplicação, estuda-se numérica e experimentalmente, a dinâmica de uma viga rotativa curva contida numa cavidade uniforme. Quando se usa a teoria de Cosserat para vigas, que leva em conta as não linearidades geométricas, a alta precisão da resposta dinâmica é obtida dividindo o sistema em poucos elementos, as quais são bem menores que o tradicional MEF, essa é a principal vantagem da teoria desenvolvida.
In this work, it is formulated and analyzed the static equilibrium and the dynamics for three dimensional deformation of elastic rods. The intrinsically one-dimensional theory that is employed, which may be called the special Cosserat theory of rods, is geometrically exact, namely, it is not based upon geometrical approximations or mechanical assumptions. For the rod deformation, it is adopted the Bernoulli hypotheses and for simplicity, the linear constitutive relations are employed. The deformed configuration of the rod is described by the displacement vector of the deformed centroid curve and an orthonormal moving frame, rigidly attached to the cross-section of the rod. The orientation of the moving frame, relative to the inertial one, is related by the rotation matrix, parameterized by three elemental rotations. In the sense of Cosserat theory, the equations of motion are nonlinear partial dfferential equations, which are functions of time and one space variable. For the static equilibrium, however, the equations become nonlinear ordinary differential equations with one space variable, which can be solved approximately using standard techniques like the perturbation method. After the static equilibrium equation are solved, the displacement functions are obtained. These nonlinear displacement functions, which are functions of generic nodal displacements and rotations, are used for dynamical analysis. To obtain the dynamics of the Cosserat rod, it is used the Lagrangian approach, formed from the kinetic and strain energy expressions. Furthermore, the equations of motion, which are nonlinear ordinary dfferential equations, are solved numerically using the Newmark method. As an application, a curved rod, constrained to rotate inside a hole, is investigated numerically and experimentally. When using the Cosserat rod approach, that take into account all the geometric nonlinearities in the rod, the higher accuracy of the dynamic responses is achieved by dividing the system into a few elements, which is much less than in the traditional FEM
Zaccaria, Federico. "Geometrico-static modelling of continuum parallel robots." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020.
Знайти повний текст джерелаBranke, Dominik. "Homogenisierungsmethode für den Übergang vom Cauchy- zum Cosserat-Kontinuum." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2013. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-106300.
Повний текст джерелаThis contribution provides a threedimensional homogenization approach which includes the switch of the continuum theory during the scale transition. Whereas the microscopic scale is described in the framework of the classical Cauchy theory, the macroscopic scale is based on the generalized Cosserat continuum. In order to use the obtained homogeneous Cosserat material, suitable finite elements are implemented in the commercial program system Abaqus followed by an appropriate verification. Beside the discussion of the arising effects the advantages of this approach compared to the classical procedure are shown by means of an idealized model of a biaxial woven fabric
Gulib, Fahad. "Constitutive models and finite elements for plasticity in generalised continuum theories." Thesis, University of Edinburgh, 2018. http://hdl.handle.net/1842/33277.
Повний текст джерелаMENDONZA, ANGELA ROCIO BAYONA. "ANALYSIS OF INSTABILITY OF OIL WELLS ASSOCIATED WITH THE SAND PRODUCTION THROUGH A MODEL OF THE COSSERAT CONTINUUM." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2003. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=4631@1.
Повний текст джерелаA produção de areia é um dos mais freqüentes e graves problemas observados durante a produção de um poço de petróleo, completado em arenitos mal consolidados. Este fenômeno pode causar obstrução do poço, abrasão dos equipamentos de elevação e de superfície, colapso do revestimento e problemas ambientais derivados da disposição em superfície das areias contaminadas. Por outro lado, em reservatórios de baixa produtividade que produzem óleo de alta viscosidade, uma limitada produção de areia incrementa a produtividade do poço. Nos estudos para previsão da produção de areia é de fundamental importância definir-se um modelo constitutivo capaz de reproduzir o comportamento tensão-deformação do arenito e os mecanismos de ruptura que provocam instabilidade do poço. Este é o tema central desta tese. Em especial, o trabalho procurou explorar modelos constitutivos baseados em meios contínuos de Cosserat. Uma justificativa para isto está relacionada ao fato de experimentos demonstrarem a influência da microestrutura nos processos de ruptura que ocorrem na vizinhança do poço. O modelo utilizado foi o elastoplástico de Bogdanova-Bontcheva & Lippmann (1975) incorporando as leis de fluxo associada e não associada. Inicialmente são definidos alguns conceitos básicos relevantes ao entendimento do fenômeno de produção de sólidos. Uma revisão da teoria dos meios contínuos generalizados de Cosserat é apresentada e em seguida é discutido o modelo elastoplástico de Bogdanova- Bontcheva e Lippmann com detalhes das implementações computacionais necessárias. Finalmente, são feitas análises de geometrias de poços, procurando-se identificar os mecanismos de ruptura que provocam instabilidade e que são uma potencial fonte de produção de areia.
Sand production is one of the most frequent and serious problems observed during the production of an oil well completed in weak sandstones. This phenomenon can cause wellbore plugging, surface and rise equipment abrasion, casing collapse and environmental problems derived from the disposal in surface of contaminated sands. On the other hand, for reservoirs of low productivity, that produce oil of high viscosity, a limited sand production increase the productivity of the well. In the studies for sand production prediction, it is of basic importance to define a consitutive model capable of reproducing the stress-strain behaviour of the sandstones and the failure mechanisms that causes wellbore instability. This is the central focus of the present work. In order to represent the behaviour of the rock masses, models based in Cosserat continuum were used. Elastoplastic models (associated/not associated) under that theory (Bogdanova-Bontcheva & Lippmann) were implemented. Initially, basic concepts related to the understanding of the phenomenon of solid production are presented. A review of the theory of generalized Cosserat continuum is presented, the elastoplastic model of Bogdanova-Bontcheva and Lippmann is described, together with details of the computational implementations. Finally, analyses of well geometries with the implemented Cosserat based elastoplastic models are shown,identifying the failure mechanisms.
Rattez, Hadrien. "Couplages thermo-hydro-mécanique et localisation dans les milieux de Cosserat : application à l'analyse de stabilité du cisaillement rapide des failles." Thesis, Paris Est, 2017. http://www.theses.fr/2017PESC1181/document.
Повний текст джерелаWhen materials are subjected to large deformations, most of them experience inelastic deformations. It is often accompanied by a localization of these deformations into a narrow zone leading to failure. One particular case of strain localization is the formation of shear bands which are the most common patterns observed in geomaterials. In geological structures, they appear at very different scales, from kilometer scale for subduction zones, to micrometric scale inside fault cores. Studying their occurrence and evolution is of key importance to describe the failure of geomaterials and model seismic slip for mature crustal faults. The pressure and temperature conditions in these faults and the interaction with the pore water inside a highly fractured materials highlight the importance of different physical processes involved in the nucleation of earthquakes. In this thesis, we study the occurrence and evolution of shear bands inside fault gouges taking into account the material microstructure by resorting to elastoplastic Cosserat continua and also the effect of thermo-hydro mechanical couplings. The use of Cosserat theory introduces information about the gouge microstructure, namely the grain size, and permits to regularize the mathematical problem of in the post-localization regime by introducing an internal length into the constitutive equations. Two approaches are used to study the coupled non-linear partial differential set of equations: linear stability analysis and finite element simulations. Linear stability analysis allows to study the occurrence of localized deformation in a mechanical system with multi-physical couplings. Considerations on the dominant wave length of the perturbations permit also to determine the width of the localized zone. This shear band thickness is confirmed by numerical integration in the post-localization regime for a certain range of deformation. The obtained widths of the localized zone are key parameters for understanding fault behavior, are in agreement with experimental and field observations. Moreover, numerical finite element computations enable to model the mechanical response of a fault gouge during seismic slip and give insights into the influence of various physical couplings on the energy budget
Grbčić, Sara. "Linked interpolation and strain invariance in finite-element modelling of micropolar continuum." Thesis, Compiègne, 2018. http://www.theses.fr/2018COMP2454.
Повний текст джерелаAt the core of this thesis is an alternative continuum theory called the micropolar (Cosserat) continuum theory, developed in order to describe the phenomena which the classical continuum theory is not able to describe. In this theory, in addition to the displacement field, there also exists an independent microrotation field and, in order to completely describe such a material, six material parameters are needed. In the framework of the finite-element method, new finite elements based on the micropolar continuum theory in both linear and geometrically non-linear analysis are developed using the displacement-based approach. In the linear analysis, both two- and three-dimensional set-ups are analysed. In 2D new families of triangular and quadrilateral finite elements with linked interpolation of the kinematic fields are derived. In order to assure convergence of the derived finite elements, they are modified using the Petrov-Galerkin approximation. Their performance is compared against existing conventional micropolar finite elements on a number of micropolar benchmark problems. It is observed that the linked interpolation shows enhanced accuracy in the bending test when compared against the conventional Lagrange micropolar finite element. Next, the weak formulation is extended to 3D and a first-order hexahedral finite element enhanced with the incompatible modes is derived. The element performance is assessed by comparing the numerical results against the available analytical solutions for various boundary value problems, which are shown to be significant for the experimental verification of the micropolar material parameters. It is concluded that the proposed element is highly suitable for the validation of the methodology to determine the micropolar material parameters. In the non-linear part, first- and second-order geometrically nonlinear hexahedral finite elements with Lagrange interpolation are derived. In order to test the performance of the presented finite elements, a pure-bending non-linear micropolar analytical solution is derived. It is observed that the elements converge to the derived solution. The elements are tested on three additional examples where the path-dependence and strain non-invariance phenomena are detected and assessed in the present context. A procedure to overcome the non-invariance anomaly is outlined
Lasota, Tomáš. "Computational Modelling of Mechanical Behaviour of "Elastomer-Steel Fibre" Composite." Doctoral thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2013. http://www.nusl.cz/ntk/nusl-234188.
Повний текст джерелаRiahi, Dehkordi Azadeh. "3D Finite Element Cosserat Continuum Simulation of Layered Geomaterials." Thesis, 2008. http://hdl.handle.net/1807/17250.
Повний текст джерелаКниги з теми "Continuum micromorphe de Cosserat"
Vardoulakis, Ioannis. Cosserat Continuum Mechanics. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-95156-0.
Повний текст джерелаRubin, M. B. Cosserat theories: Shells, rods, and points. Dordrecht: Kluwer Academic Publishers, 2000.
Знайти повний текст джерелаW. L. A. H. Van den Broek. Numerical modelling of plane strain compression tests using a classical and cosserat continuum. Manchester: UMIST, 1996.
Знайти повний текст джерела(Deceased), Ioannis Vardoulakis. Cosserat Continuum Mechanics: With Applications to Granular Media. Springer, 2018.
Знайти повний текст джерела(Deceased), Ioannis Vardoulakis. Cosserat Continuum Mechanics: With Applications to Granular Media. Springer, 2019.
Знайти повний текст джерелаMechanics of Generalized Continua: Proceedings of the IUTAM-Symposium on The Generalized Cosserat Continuum and the Continuum Theory of Dislocations. . . and Stuttgart 1967. Springer, 2014.
Знайти повний текст джерелаЧастини книг з теми "Continuum micromorphe de Cosserat"
Vardoulakis, Ioannis. "Cosserat Fluids." In Cosserat Continuum Mechanics, 121–50. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-95156-0_8.
Повний текст джерелаVardoulakis, Ioannis. "Cosserat Continuum Kinematics." In Cosserat Continuum Mechanics, 33–57. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-95156-0_3.
Повний текст джерелаVardoulakis, Ioannis. "Cosserat Continuum Statics." In Cosserat Continuum Mechanics, 59–73. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-95156-0_4.
Повний текст джерелаVardoulakis, Ioannis. "Cosserat Continuum Dynamics." In Cosserat Continuum Mechanics, 75–87. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-95156-0_5.
Повний текст джерелаVardoulakis, Ioannis. "Cosserat Continuum Energetics." In Cosserat Continuum Mechanics, 89–97. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-95156-0_6.
Повний текст джерелаEhlers, Wolfgang, and Sami Bidier. "Cosserat Media." In Encyclopedia of Continuum Mechanics, 436–46. Berlin, Heidelberg: Springer Berlin Heidelberg, 2020. http://dx.doi.org/10.1007/978-3-662-55771-6_149.
Повний текст джерелаEhlers, Wolfgang, and Sami Bidier. "Cosserat Media." In Encyclopedia of Continuum Mechanics, 1–12. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-53605-6_149-1.
Повний текст джерелаVardoulakis, Ioannis. "Cosserat-Elastic Bodies." In Cosserat Continuum Mechanics, 99–119. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-95156-0_7.
Повний текст джерелаVardoulakis, Ioannis. "Rigid-Body Mechanics and Motors." In Cosserat Continuum Mechanics, 5–32. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-95156-0_2.
Повний текст джерелаVardoulakis, Ioannis. "Mechanics of Discrete Granular Media." In Cosserat Continuum Mechanics, 151–79. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-95156-0_9.
Повний текст джерелаТези доповідей конференцій з теми "Continuum micromorphe de Cosserat"
PASTERNAK, E., and H. B. MÜHLHAUS. "LARGE DEFORMATION COSSERAT CONTINUUM MODELLING OF GRANULATE MATERIALS." In Proceedings of the Third Australasian Congress on Applied Mechanics. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812777973_0063.
Повний текст джерелаGrekova, E. F., and G. C. Herman. "Wave Propagation in Rocks Modeled as Reduced Cosserat Continuum." In 66th EAGE Conference & Exhibition. European Association of Geoscientists & Engineers, 2004. http://dx.doi.org/10.3997/2214-4609-pdb.3.p098.
Повний текст джерелаCOURTEAU-GODMAIRE, HUBERT, ANOUSH POURSARTIP, and REZA VAZIRI. "BENDING SIMULATION OF PRE-GELLED COMPOSITES USING AN EXPLICIT COSSERAT CONTINUUM MODEL." In Thirty-sixth Technical Conference. Destech Publications, Inc., 2021. http://dx.doi.org/10.12783/asc36/35844.
Повний текст джерелаHu, Zhaolong, and Hongxiang Tang. "A Transversely Isotropic Cosserat Continuum Model and Its Numerical Application." In Second International Conference on Geotechnical and Earthquake Engineering. Reston, VA: American Society of Civil Engineers, 2013. http://dx.doi.org/10.1061/9780784413128.064.
Повний текст джерелаLalin, Vladimir, and Elizaveta Zdanchuk. "Reduced cosserat continuum as a possible model for granular medium." In Proceedings of the International Conference „Innovative Materials, Structures and Technologies”. Riga: Riga Technical University, 2014. http://dx.doi.org/10.7250/iscconstrs.2014.15.
Повний текст джерелаSharbati, Ehsan, and Reza Naghdabadi. "Large Deformation Analysis of Elastic Cosserat Continua by FEM." In ASME 8th Biennial Conference on Engineering Systems Design and Analysis. ASMEDC, 2006. http://dx.doi.org/10.1115/esda2006-95288.
Повний текст джерелаGhasvari Jahromi, H., G. Atefi, A. Moosaie, S. Hormozi, and H. Afshin. "Analytical Solution of Turbulent Couette Flow by Cosserat Continuum Model and Gradient Theory." In ASME 2006 2nd Joint U.S.-European Fluids Engineering Summer Meeting Collocated With the 14th International Conference on Nuclear Engineering. ASMEDC, 2006. http://dx.doi.org/10.1115/fedsm2006-98431.
Повний текст джерелаGrekova, E. F., and G. C. Herman. "Wave Propagation in Rocks Modeled as Reduced Cosserat Continuum with Weak Anisotropy." In 67th EAGE Conference & Exhibition. European Association of Geoscientists & Engineers, 2005. http://dx.doi.org/10.3997/2214-4609-pdb.1.p164.
Повний текст джерелаCongwen Peng, Xiangguo Kong, and Chengxiang Xu. "Numerical implementation of pressure-dependent elasto-plastic cosserat continuum model in ABAQUS." In 2011 Second International Conference on Mechanic Automation and Control Engineering (MACE). IEEE, 2011. http://dx.doi.org/10.1109/mace.2011.5988563.
Повний текст джерелаGhasvari-Jahromi, H., Gh Atefi, A. Moosaie, and S. Hormozi. "Analytical Solution of Turbulent Problems Using Governing Equation of Cosserat Continuum Model." In ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-15837.
Повний текст джерела