Добірка наукової літератури з теми "Continuum Elasticity"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Continuum Elasticity".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Continuum Elasticity"
Charlotte, M., and L. Truskinovsky. "Towards multi-scale continuum elasticity theory." Continuum Mechanics and Thermodynamics 20, no. 3 (June 17, 2008): 133–61. http://dx.doi.org/10.1007/s00161-008-0075-z.
Повний текст джерелаTarasov, Vasily E. "Fractional Gradient Elasticity from Spatial Dispersion Law." ISRN Condensed Matter Physics 2014 (April 3, 2014): 1–13. http://dx.doi.org/10.1155/2014/794097.
Повний текст джерелаHaq, Omer, and Sergei Shabanov. "Bound States in the Continuum in Elasticity." Wave Motion 103 (June 2021): 102718. http://dx.doi.org/10.1016/j.wavemoti.2021.102718.
Повний текст джерелаOKAMOTO, Hirosuke. "Dispersion and continuum models of powder elasticity." Journal of the Society of Powder Technology, Japan 27, no. 3 (1990): 146–52. http://dx.doi.org/10.4164/sptj.27.146.
Повний текст джерелаLerner, Edan, Eric DeGiuli, Gustavo Düring, and Matthieu Wyart. "Breakdown of continuum elasticity in amorphous solids." Soft Matter 10, no. 28 (2014): 5085. http://dx.doi.org/10.1039/c4sm00311j.
Повний текст джерелаOkamoto, Hirosuke. "Dispersion and Continuum Models of powder Elasticity [Translated]†." KONA Powder and Particle Journal 9 (1991): 28–35. http://dx.doi.org/10.14356/kona.1991008.
Повний текст джерелаWang, Jing. "Effect of Temperature on Elasticity of Silicon Nanowires." Key Engineering Materials 483 (June 2011): 526–31. http://dx.doi.org/10.4028/www.scientific.net/kem.483.526.
Повний текст джерелаLakes, R. "Experimental Micro Mechanics Methods for Conventional and Negative Poisson’s Ratio Cellular Solids as Cosserat Continua." Journal of Engineering Materials and Technology 113, no. 1 (January 1, 1991): 148–55. http://dx.doi.org/10.1115/1.2903371.
Повний текст джерелаGao, Bin, Yu Zhou Sun, and Shen Li. "Higher-Order Elasticity Constants of Carbon Nanotubes." Advanced Materials Research 815 (October 2013): 516–19. http://dx.doi.org/10.4028/www.scientific.net/amr.815.516.
Повний текст джерелаWang, Jing. "Size-Dependence of Elasticity of Phosphorus-Doped Silicon Nano-Plates." Advanced Materials Research 486 (March 2012): 80–83. http://dx.doi.org/10.4028/www.scientific.net/amr.486.80.
Повний текст джерелаДисертації з теми "Continuum Elasticity"
Segall, Darren Eric 1970. "Coarse-graining electronic behavior in condensed matter systems : from electrons to continuum elasticity." Thesis, Massachusetts Institute of Technology, 2002. http://hdl.handle.net/1721.1/29307.
Повний текст джерелаIncludes bibliographical references (leaves 131-137).
In this thesis properties of various condensed matter systems are studied, whose dependency on electronic behavior is incorporated through coarse-grained interactions. Three specific systems are considered. In the first system of study, high momentum, plane wave states of the electronic wave function are coarse-grained, while the low momentum states are fully resolved. Moreover, the coarse-graining procedure incorporates the response of the high momentum states to environmental changes and its couplings to changes in the low momentum states. Within density functional theory this allows the representation of the electronic wave function, when using a plane wave basis, to be computationally feasible without having to make the pseudopotential approximation. This coarse-graining procedure is beneficial for the study of high pressure systems, where the response of the core region is important. With this method we study a number of solid phases of boron and reveal a number of important structural and electronic properties on its high pressure and superconducting phase. The second system of study focuses on a slightly coarser scale, where a theory for the elasticity of nanometer sized objects is developed. This theory provides a powerful way of understanding nanoscale elasticity in terms of local group contributions and acts as a bridge between the atomic and the continuum regimes. This theory properly describes elastic fluctuations on length scales on the order of the decay length of the force constant matrix; allowing for straightforward development of new relations between the bending and stretching properties of nanomechanical resonators, which prove to be much more accurate than the continuum-based relations currently employed in experimental analysis.
(cont.) This theory is then used to link features of the underlining electronic structure to the local elastic response in silicon nanoresonators, emphasizing the importance of electronic structure on the local and overall elastic response. Our final system of study focuses on the longest length scales, the continuum. It is shown that the inclusion of electronic structure is crucial in the study of the role of dislocations on the macroscopic property of slip. This thesis explores the discrepancy between experimental data and theoretical calculations of the lattice resistance in bcc metals. This thesis presents results for the temperature dependence of the Peierls stress and the first ab initio calculation of the zero-temperature Peierls stress which employ periodic boundary conditions. The ab initio value for the Peierls stress is over five times larger than current extrapolations of experimental lattice resistance to zero-temperature. Although it is found that the common techniques for such extrapolation indeed tend to underestimate the zero-temperature limit, in this work it is shown that other mechanisms other than the simple Peierls mechanism are important in controlling the process of low temperature slip.
by Darren Eric Segall.
Ph.D.
CADELANO, EMILIANO. "Graphene under strain. A combined continuum-atomistic approach." Doctoral thesis, Università degli Studi di Cagliari, 2011. http://hdl.handle.net/11584/265920.
Повний текст джерелаAyoub, Sherif Fathy. "Analysis of elastic-plastic continuum at large deformation using hybrid descriptions and finite element method /." The Ohio State University, 1986. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487265555439612.
Повний текст джерелаSALVALAGLIO, MARCO. "Continuum modeling of vertical heterostructures: elastic properties and morphological evolution." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2016. http://hdl.handle.net/10281/100682.
Повний текст джерелаMühlich, Uwe. "Generalised continuum approach for modelling quasi-brittle failure." Doctoral thesis, Technische Universitaet Bergakademie Freiberg Universitaetsbibliothek "Georgius Agricola", 2014. http://nbn-resolving.de/urn:nbn:de:bsz:105-qucosa-137217.
Повний текст джерелаEine geeignete, kontinuumsmechanische Beschreibung quasi-spröden Versagens ist nur unter Verwendung verallgemeinerter Kontinuumstheorien möglich. In dieser Habilitationsschrift stehen sogenannte Gradientenkontinua im Vordergrund. Für diese wird eine Methodik vorgeschlagen, welche die Herleitung von Modellen erlaubt, die in der Lage sind, quasi-sprödes Versagen adäquat abzubilden. Diese Methodik wird anhand von vier Publikationen dargestellt und diskutiert. Ein umfangreicher Überblick über den Stand der Forschung auf dem Gebiet der veralgemeinerten Kontinuumstheorien wird am Anfang der Habilitationschrift gegeben. Dabei werden neben phänomenologischen Ansätzen zur Ableitung verallgemeinerter Kontinuumstheorien auch die entsprechenden Homogenisierungskonzepte dargestellt. Letztere werden für Materialien mit periodischer Mikrostruktur und für Materialien mit zufälliger Mikrostruktur diskutiert
Ortigosa, Martinez Rogelio. "On a new variational and computational framework for polyconvex nonlinear continuum mechanics and convex multi-variable nonlinear electro-elasticity." Thesis, Swansea University, 2016. https://cronfa.swan.ac.uk/Record/cronfa34893.
Повний текст джерелаDingreville, Remi. "Modeling and Characterization of the Elastic Behavior of Interfaces in Nanostructured Materials: From an Atomistic Description to a Continuum Approach." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2007. http://hdl.handle.net/1853/19776.
Повний текст джерелаCommittee Chair: Jianmin Qu; Committee Member: David McDowell; Committee Member: Elisa Riedo; Committee Member: Min Zhou; Committee Member: Mo Li.
Quignon-Tosoni, Justine. "Rhéologie des matériaux pâteux : vers un continuum des régimes solide et liquide. Application aux boues résiduaires." Thesis, Clermont-Ferrand 2, 2015. http://www.theses.fr/2015CLF22629/document.
Повний текст джерелаIn a context of constant increasing volumes of wastewater treatment sludge, optimizing the treatment of sludge appears to be crucial. Each step of treatment and transportation involves flows. It appears necessary to understand and predict these flows in order, for example, to estimate pressure drops in pipes or to size properly pumping facilities. In a physical point of view, sludge can be considered as a suspension of particles in a gel. Thus, its rheological behaviour presents significant similarities to that of colloidal suspensions of polymeric gels. These three types of materials, i.e. wastewater treatment sludge, colloidal suspensions and polymeric gels, present a complex rheological behaviour which depend on both time and the applied solicitation. They exhibit a dual behaviour, solid at low shear stresses, and liquid when the applied shear stress is high. The solid-liquid behaviour is generally modelled by defining a critical shear stress or a critical strain, supposed to be the limit between the solid and liquid regimes. Nevertheless, this concept implies an abrupt transition, unlike experimental observations showing a continuous and progressive transition. The study of the literature permitted to highlight the need to improve the understanding and modelling of the solid-liquid transition. Moreover, it appears necessary to unify the description of the solid and liquid regime in a unique model, in order to link a mathematical continuity with thecontinuous and progressive nature of the physical phenomenon to model. The study of the results available in the literature permited us to build a unique mathematical model to describe both the solid behaviour and the liquid behaviour of the studied materials. The assumptions made from the literature results have thus been experimentally validated. The proposed model is based on the decomposition of the compliance of the material in the sum of a solid contribution and a liquid contribution, depending on time, the applied solicitation and the story of the material. This model permits a unique description of solide and liquid regimes of the material, taking into account the existence of a residual elasticity at high shear stresses, and a viscous dissipation for low shear stresses, in accordance with experimental results. This work permitted to highlight the fact that the solid-liquid transition mecanism is controlled by the compliance of the material, and not the shear stress or the strain. Moreover, it opened the way to a new way of understanding the thixotropy and the solid-liquid transition of pasty materials. Thus, the behaviour of a pasty material is controlled by two parameters : a plateau elastic modulus corresponding to a totally structured state, and an infinite viscosity corresponding to a totally destructured state. These parameters intrinsic to the material are pondered by the evolutions of the microstructure, leading to a competition between elastic and viscous effects. Thus, the difference between the power law behaviour and the Herschel-Bulkley behaviour can be simply explained by the apparition of elastic effects that can’t be neglected
Beauregard, Matthew Alan. "Nonlinear Dynamics of Elastic Filaments Conveying a Fluid and Numerical Applications to the Static Kirchhoff Equations." Diss., The University of Arizona, 2008. http://hdl.handle.net/10150/194164.
Повний текст джерелаLloyd, Jeffrey T. "Microstructure-sensitive simulation of shock loading in metals." Diss., Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/51853.
Повний текст джерелаКниги з теми "Continuum Elasticity"
Alexander, Belyaev, ed. Theory of elasticity. Berlin: Springer, 2005.
Знайти повний текст джерелаComan, Ciprian D. Continuum Mechanics and Linear Elasticity. Dordrecht: Springer Netherlands, 2020. http://dx.doi.org/10.1007/978-94-024-1771-5.
Повний текст джерелаContinuum mechanics: Elasticity, plasticity, viscoelasticity. Boca Raton, FL: CRC/Taylor & Francis, 2007.
Знайти повний текст джерелаChandrasekharaiah, D. S. Continuum mechanics. San Diego (Calif.): Academic P., 1994.
Знайти повний текст джерелаConstantinescu, Andrei. Elasticity with mathematica: An introduction to continuum mechanics and linear elasticity. Cambridge : New York, N.Y: Cambridge University Press, 2007.
Знайти повний текст джерелаJit, Singh Sarva, ed. Deformation of elastic solids. Englewood Cliffs, N.J: Prentice Hall, 1991.
Знайти повний текст джерелаGould, Phillip L. Introduction to Linear Elasticity. 3rd ed. New York, NY: Springer New York, 2013.
Знайти повний текст джерелаLattice dynamical foundations of continuum theories: Elasticity, piezoelectricity, viscoelasticity, plasticity. Singapore: World Scientific, 1986.
Знайти повний текст джерелаPrestressed bodies. Harlow, Essex, England: Longman Scientific, 1989.
Знайти повний текст джерелаM, Carroll Michael, and Hayes M. A, eds. Nonlinear effects in fluids and solids. New York: Plenum Press, 1996.
Знайти повний текст джерелаЧастини книг з теми "Continuum Elasticity"
Romano, Antonio, and Addolorata Marasco. "Nonlinear Elasticity." In Continuum Mechanics, 1–66. Boston: Birkhäuser Boston, 2010. http://dx.doi.org/10.1007/978-0-8176-4870-1_1.
Повний текст джерелаRomano, Antonio, and Addolorata Marasco. "Micropolar Elasticity." In Continuum Mechanics, 67–90. Boston: Birkhäuser Boston, 2010. http://dx.doi.org/10.1007/978-0-8176-4870-1_2.
Повний текст джерелаNayak, Prasun Kumar, and Mijanur Rahaman Seikh. "Linear Elasticity." In Continuum Mechanics, 243–94. London: CRC Press, 2022. http://dx.doi.org/10.1201/9781003299776-5.
Повний текст джерелаAthanasiou, Kyriacos A., and Roman M. Natoli. "Elasticity." In Introduction to Continuum Biomechanics, 67–100. Cham: Springer International Publishing, 2008. http://dx.doi.org/10.1007/978-3-031-01626-4_4.
Повний текст джерелаSteinmann, Paul. "Elasticity." In Geometrical Foundations of Continuum Mechanics, 283–359. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-46460-1_7.
Повний текст джерелаTalpaert, Yves R. "Linear Elasticity." In Tensor Analysis and Continuum Mechanics, 455–540. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-015-9988-7_6.
Повний текст джерелаRomano, Antonio, and Addolorata Marasco. "Linear Elasticity." In Continuum Mechanics using Mathematica®, 323–72. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-1604-7_10.
Повний текст джерелаToupin, R. A. "Elasticity and Electro-Magnetism." In Non-linear Continuum Theories, 203–342. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-11033-7_6.
Повний текст джерелаAntman, Stuart S. "Three-Dimensional Continuum Mechanics." In Nonlinear Problems of Elasticity, 385–455. New York, NY: Springer New York, 1995. http://dx.doi.org/10.1007/978-1-4757-4147-6_12.
Повний текст джерелаMüller, Wolfgang H. "Problems of Linear Elasticity." In An Expedition to Continuum Theory, 215–50. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-007-7799-6_9.
Повний текст джерелаТези доповідей конференцій з теми "Continuum Elasticity"
Alavinasab, Ali, Goodarz Ahmadi, and Ratneshwar Jha. "Nonlocal Continuum Theory Based Modeling of Carbon Nanotube Composites." In ASME 2008 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. ASMEDC, 2008. http://dx.doi.org/10.1115/smasis2008-595.
Повний текст джерелаAmar, El Hadji Bouya, Didier Clamond, Nathalie Fraysse, Jean Rajchenbach, Masami Nakagawa, and Stefan Luding. "Mechanichal Behavior of a Noncohesive Packing at Small Deformations: Deviation From Continuum Elasticity." In POWDERS AND GRAINS 2009: PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON MICROMECHANICS OF GRANULAR MEDIA. AIP, 2009. http://dx.doi.org/10.1063/1.3179903.
Повний текст джерелаGao, A., N. Liu, and Guang-Zhong Yang. "Toward Endobronchial Intervention: A Pre-Curved Continuum Robot with Large Deflection and Linear Elasticity." In The Hamlyn Symposium. The Hamlyn Centre, Faculty of Engineering, Imperial College London, 2018. http://dx.doi.org/10.31256/hsmr2018.7.
Повний текст джерелаRegueiro, Richard A. "Coupling Particle to Continuum Regions of Particulate Materials." In ASME 2007 International Mechanical Engineering Congress and Exposition. ASMEDC, 2007. http://dx.doi.org/10.1115/imece2007-42717.
Повний текст джерелаBarber, J. R., and P. Hild. "Non-Uniqueness, Eigenvalue Solutions and Wedged Configurations Involving Coulomb Friction." In ASME/STLE 2004 International Joint Tribology Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/trib2004-64368.
Повний текст джерелаMarquardt, Oliver, Stefan Schulz, Eoin P. O'Reilly, Christoph Freysoldt, Sixten Boeck, Tilmann Hickel, and Jorg Neugebauer. "A flexible, plane-wave-based formulation of continuum elasticity and multiband k·p models." In 2011 11th International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD). IEEE, 2011. http://dx.doi.org/10.1109/nusod.2011.6041165.
Повний текст джерелаPapusha, Alexander N. "Mathematica Implementation in the Training Courses on Continuum Mechanics: Elasticity Theory, Hydromechanics, Theory of Filtration." In Proceedings of the Fifth International Mathematica Symposium. PUBLISHED BY IMPERIAL COLLEGE PRESS AND DISTRIBUTED BY WORLD SCIENTIFIC PUBLISHING CO., 2003. http://dx.doi.org/10.1142/9781848161313_0013.
Повний текст джерелаShodja, Hossein M., and Hamed Haftbaradaran. "An Embedded Elliptic Nano-Fiber in Anti-Plane Strain Couple Stress Elasticity." In ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-68537.
Повний текст джерелаCheng, Shao-Huan, and C. T. Sun. "Applicability of Continuum Fracture Mechanics in Atomistic Systems." In ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-63478.
Повний текст джерелаShojaei, Arman, Mirco Zaccariotto, and Ugo Galvanetto. "On the Coupling of Peridynamics With a Meshless Method Based on Classical Elasticity." In ASME 2016 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/imece2016-65340.
Повний текст джерелаЗвіти організацій з теми "Continuum Elasticity"
Fried, Eliot, and Morton E. Gurtin. Continuum mechanical and computational aspects of phase field elasticity as applied to phase transitions and fracture. Final report: DE-FG02-97ER25318, June 1, 1997 - May 31, 2000. Office of Scientific and Technical Information (OSTI), April 2001. http://dx.doi.org/10.2172/808066.
Повний текст джерела