Добірка наукової літератури з теми "Continuous random energy model"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Continuous random energy model".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Continuous random energy model"
Addario-Berry, Louigi, and Pascal Maillard. "The algorithmic hardness threshold for continuous random energy models." Mathematical Statistics and Learning 2, no. 1 (February 25, 2020): 77–101. http://dx.doi.org/10.4171/msl/12.
Повний текст джерелаBOVIER, A. "Derrida's Generalized Random Energy models 2: models with continuous hierarchies." Annales de l?Institut Henri Poincare (B) Probability and Statistics 40, no. 4 (August 2004): 481–95. http://dx.doi.org/10.1016/j.anihpb.2003.09.003.
Повний текст джерелаEkanga, Trésor. "Multiparticle Localization at Low Energy for Multidimensional Continuous Anderson Models." Advances in Mathematical Physics 2020 (May 5, 2020): 1–15. http://dx.doi.org/10.1155/2020/5270541.
Повний текст джерелаMalyarenko, Anatoliy, and Martin Ostoja-Starzewski. "Fractal planetary rings: Energy inequalities and random field model." International Journal of Modern Physics B 31, no. 30 (December 4, 2017): 1750236. http://dx.doi.org/10.1142/s0217979217502368.
Повний текст джерелаKÜLSKE, CHRISTOF. "THE CONTINUOUS SPIN RANDOM FIELD MODEL: FERROMAGNETIC ORDERING IN d≥3." Reviews in Mathematical Physics 11, no. 10 (November 1999): 1269–314. http://dx.doi.org/10.1142/s0129055x99000404.
Повний текст джерелаEkanga, Trésor. "Localization in the multi-particle tight-binding Anderson model at low energy." Reviews in Mathematical Physics 32, no. 03 (September 20, 2019): 2050009. http://dx.doi.org/10.1142/s0129055x20500099.
Повний текст джерелаALEINOV, I. D., A. A. MIGDAL, and V. V. ZMUSHKO. "THE ISING MODEL ON THE DYNAMICAL TRIANGULATED RANDOM SURFACE." Modern Physics Letters A 05, no. 10 (April 20, 1990): 787–98. http://dx.doi.org/10.1142/s0217732390000883.
Повний текст джерелаHuillet, Thierry. "Energy cascades as branching processes with emphasis on Neveu's approach to Derrida's random energy model." Advances in Applied Probability 35, no. 2 (June 2003): 477–503. http://dx.doi.org/10.1239/aap/1051201657.
Повний текст джерелаHuillet, Thierry. "Energy cascades as branching processes with emphasis on Neveu's approach to Derrida's random energy model." Advances in Applied Probability 35, no. 02 (June 2003): 477–503. http://dx.doi.org/10.1017/s0001867800012349.
Повний текст джерелаOtunuga, Olusegun M., and Gangaram Ladde. "Two-Scale Network Dynamic Model for Energy Commodity Processes." Journal of Energy 2020 (April 20, 2020): 1–59. http://dx.doi.org/10.1155/2020/2075258.
Повний текст джерелаДисертації з теми "Continuous random energy model"
Ho, Fu-Hsuan. "Aspects algorithmiques du modèle continu à énergie aléatoire." Electronic Thesis or Diss., Toulouse 3, 2023. http://www.theses.fr/2023TOU30184.
Повний текст джерелаThis thesis explores the algorithmic perspectives of the branching random walk and the continuous random energy model (CREM). Namely, we are interested in constructing polynomial-time algorithms that can sample the model's Gibbs measure with high probability, and to indentify the hardness regime, which consists of any inverse temperature bêta such that such polynomial-time algorithms do not exist. In Chapter 1, we provide a historical overview of the models and motivate the algorithmic problems under investigation. We also provide an overview on the mean-field spin glasses that motivates the line of our research. In Chapter 2, we address the sampling problem of the Gibbs measure in the context of branching random walk. We identify a critical inverse temperature bêta_c, identical to the static critical point, that the a hardness transition occurs. In the subcritical regime bêta < bêta_c, we establish a recursive sampling algorithm is able to sample the Gibbs measure efficiently. In the supercritical regime bêta > bêta_c,we show that we cannot find polynomial-time algorithm that belongs to a certain class of algorithms. In Chapter 3, we turn our attention to the same sampling problem for the con¬tinuous random energy model (CREM). For the case where the covariance function of this model is concave, we show that for any inverse temperature bêta < to infinity, the recursive sampling algorithm considered in Chapter 2 is able to sample the Gibbs measure efficiently. For the non-concave case, we identify a critical point bêta_G that similar hardness transition as the one in Chapter 2 occurs. We also provide a lower bound of the CREM free energy that might be of independent interest. In Chapter 4, we study the negative moment of the CREM partition function. While this is not connected directly to the main theme of the thesis, it spins off during the course of research. In Chapter 5, we provide an outlook of some further directions that might be interesting to investigate
Erturk, Huseyin. "Limit theorems for random exponential sums and their applications to insurance and the random energy model." Thesis, The University of North Carolina at Charlotte, 2016. http://pqdtopen.proquest.com/#viewpdf?dispub=10111893.
Повний текст джерелаIn this dissertation, we are mainly concerned with the sum of random exponentials. Here, the random variables are independent and identically distributed. Another distinctive assumption is the number of variables in this sum is a function of the constant on the exponent. Our first goal is to find the limiting distributions of the random exponential sums for new class of the random variables. For some classes, such results are known; normal distribution, Weibull distribution etc.
Secondly, we apply these limit theorems to some insurance models and the random energy model in statistical physics. Specifically for the first case, we give the estimate of the ruin probability in terms of the empirical data. For the random energy model, we present the analysis of the free energy for new class of distribution. In some particular cases, we prove the existence of several critical points for the free energy. In some other cases, we prove the absence of phase transitions.
Our results give a new approach to compute the ruin probabilities of insurance portfolios empirically when there is a sequence of insurance portfolios with a custom growth rate of the claim amounts. The second application introduces a simple method to drive the free energy in the case the random variables in the statistical sum can be represented as a function of standard exponential random variables. The technical tool of this study includes the classical limit theory for the sum of independent and identically distributed random variables and different asymptotic methods like the Euler-Maclaurin formula and Laplace method.
Wolff, Tilman [Verfasser], and Wolfgang [Akademischer Betreuer] König. "Random Walk Local Times, Dirichlet Energy and Effective Conductivity in the Random Conductance Model / Tilman Wolff. Betreuer: Wolfgang König." Berlin : Technische Universität Berlin, 2013. http://d-nb.info/1064810357/34.
Повний текст джерелаLi, Hailong. "Analytical Model for Energy Management in Wireless Sensor Networks." University of Cincinnati / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1367936881.
Повний текст джерелаNiblett, Samuel Peter. "Higher order structure in the energy landscapes of model glass formers." Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/277582.
Повний текст джерелаKameswar, Rao Vaddina. "Evaluation of A Low-power Random Access Memory Generator." Thesis, Linköping University, Department of Electrical Engineering, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-7823.
Повний текст джерелаIn this work, an existing RAM generator is analysed and evaluated. Some of the aspects that were considered in the evaluation are the optimization of the basic SRAM cell, how the RAM generator can be ported to newer technologys, automating the simulation process and the creation of the workflow for the energy model.
One of the main focus of this thesis work is to optimize the basic SRAM cell. The SRAM cell which is used in the RAM generator is not optimized for area nor power. A compact layout is suggested which saves a lot of area and power. The technology that is used to create the RAM generator is old and a suitable way to port it to newer technology has also been found.
To create an energy model one has to simulate a lot of memories with a lot of data. This cannot be done in the traditional way of simulating circuits using the GUI. Hence an automation procedure has been suggested which can be made to work to create energy models by simulating the memories comprehensively.
Finally, basic ground work has been initiated by creating a workflow for the creation of the energy model.
Alevanau, Aliaksandr. "Study of the Apparent Kinetics of Biomass Gasification Using High-Temperature Steam." Licentiate thesis, KTH, Energi- och ugnsteknik, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-26356.
Повний текст джерелаQC 20101124
Study of ignition and kinetics of biomass/solid waste thermal conversion with high-temperature air/steam
Luo, Simon Junming. "An Information Geometric Approach to Increase Representational Power in Unsupervised Learning." Thesis, The University of Sydney, 2021. https://hdl.handle.net/2123/25773.
Повний текст джерелаHua, Xiaoben, and Yuxia Yang. "A Fusion Model For Enhancement of Range Images." Thesis, Blekinge Tekniska Högskola, Sektionen för ingenjörsvetenskap, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-2203.
Повний текст джерелаRoom 401, No.56, Lane 21, Yin Gao Road, Shanghai, China
Kaděrová, Jana. "Pravděpodobnostní diskrétní model porušování betonu." Doctoral thesis, Vysoké učení technické v Brně. Fakulta stavební, 2018. http://www.nusl.cz/ntk/nusl-390288.
Повний текст джерелаКниги з теми "Continuous random energy model"
Horing, Norman J. Morgenstern. Random Phase Approximation Plasma Phenomenology, Semiclassical and Hydrodynamic Models; Electrodynamics. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198791942.003.0010.
Повний текст джерелаZeitlin, Vladimir. Wave Turbulence. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198804338.003.0013.
Повний текст джерелаOlshanski, Grigori. Enumeration of maps. Edited by Gernot Akemann, Jinho Baik, and Philippe Di Francesco. Oxford University Press, 2018. http://dx.doi.org/10.1093/oxfordhb/9780198744191.013.26.
Повний текст джерелаЧастини книг з теми "Continuous random energy model"
Huang, Haiping. "Random Energy Model." In Statistical Mechanics of Neural Networks, 59–62. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-7570-6_7.
Повний текст джерелаBolthausen, Erwin, and Alain-Sol Sznitman. "The Random Energy Model." In Ten Lectures on Random Media, 74–82. Basel: Birkhäuser Basel, 2002. http://dx.doi.org/10.1007/978-3-0348-8159-3_9.
Повний текст джерелаKoper, G. J. M. "Relaxation in the Random Energy Model." In Time-Dependent Effects in Disordered Materials, 229–32. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4684-7476-3_23.
Повний текст джерелаYamamoto, Yoshihiro. "The Model with Continuous Variables." In Feed-in Tariffs and the Economics of Renewable Energy, 83–92. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-76864-9_7.
Повний текст джерелаBaile, R., and J. F. Muzy. "Random Cascade Model for Surface Wind Speed." In Alternative Energy and Shale Gas Encyclopedia, 153–62. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781119066354.ch13.
Повний текст джерелаBolthausen, Erwin, and Alain-Sol Sznitman. "The Generalized Random Energy Model and Induced Clusterings." In Ten Lectures on Random Media, 83–95. Basel: Birkhäuser Basel, 2002. http://dx.doi.org/10.1007/978-3-0348-8159-3_10.
Повний текст джерелаSun, Quande, Junfeng Zhao, Xue Deng, and Yingxian Lin. "A Mean-Continuous Fuzzy Random Entropy Portfolio Model with Fuzzy Random Returns." In Application of Intelligent Systems in Multi-modal Information Analytics, 444–50. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-51431-0_64.
Повний текст джерелаGuo, Hongyu. "Modeling Short-Term Energy Load with Continuous Conditional Random Fields." In Advanced Information Systems Engineering, 433–48. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-40988-2_28.
Повний текст джерелаBovier, Anton, and Frank den Hollander. "The Curie-Weiss Model with Random Magnetic Field: Continuous Distributions." In Metastability, 345–80. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-24777-9_15.
Повний текст джерелаOref, Izhack, and R. C. Gilbert. "Random Walk Model for Energy Transfer at High Temperatures." In The Jerusalem Symposia on Quantum Chemistry and Biochemistry, 393–99. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-2642-7_27.
Повний текст джерелаТези доповідей конференцій з теми "Continuous random energy model"
Sylvestre, Julien, Maud Samson, Éric Duchesne, and Dominique Langlois-Demers. "Large-Scale Model of Flip-Chip Joining Defects." In ASME 2014 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/imece2014-36744.
Повний текст джерелаZhao, Sihong, and Alper Erturk. "Energy Harvesting From Broadband Random Vibrations: Comparison of Single-Mode and Multi-Mode Electroelastic Solutions." In ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/detc2012-71496.
Повний текст джерелаKlutke, Georgia-Ann. "Models for Inspected Systems Under General Degradation." In ASME 2001 Engineering Technology Conference on Energy. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/etce2001-17165.
Повний текст джерелаRybalko, Michael, Eric Loth, and Dennis Lankford. "LES Sub-Grid Diffusion for Lagrangian Particles." In ASME 2008 Fluids Engineering Division Summer Meeting collocated with the Heat Transfer, Energy Sustainability, and 3rd Energy Nanotechnology Conferences. ASMEDC, 2008. http://dx.doi.org/10.1115/fedsm2008-55207.
Повний текст джерелаZhou, Andrew, and Ivan Revilla. "A Cost-Effective Virtual Sensor for Continuous Freshwater Nutrient Monitoring using Machine Learning." In 10th International Conference on Artificial Intelligence & Applications. Academy & Industry Research Collaboration Center, 2023. http://dx.doi.org/10.5121/csit.2023.131912.
Повний текст джерелаJung, Jin-Young, and Michael M. Chen. "Numerical Simulation of Dendritic Solidification." In ASME 2000 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2000. http://dx.doi.org/10.1115/imece2000-1481.
Повний текст джерелаShintani, Masanori, Hiroyuki Ikuta, and Hajime Takada. "Evaluation of Energy Absorption in Nonlinear Vibration System With Gaps." In ASME 2005 Pressure Vessels and Piping Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/pvp2005-71428.
Повний текст джерелаDompierre, A., M. S. Traore, and L. G. Fréchette. "Measurements of Car Vibrations Under Real-Life Driving Conditions and Assessment of Energy Harvesting for Wireless Sensor Nodes." In ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-63312.
Повний текст джерелаShintani, Masanori, Hiroyuki Ikuta, and Tadashi Kotera. "Study on Nonlinear Vibration of Continuum System With Gaps Considering Energy Dissipated by Collision." In ASME/JSME 2004 Pressure Vessels and Piping Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/pvp2004-2948.
Повний текст джерелаShintani, Masanori, Hiroyuki Ikuta, and Hiroyuki Shume. "Vibration Characteristic Evaluation of Nonlinear Vibration Systems With Gaps Considering Energy Dissipation by Collision." In ASME 2005 Pressure Vessels and Piping Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/pvp2005-71429.
Повний текст джерелаЗвіти організацій з теми "Continuous random energy model"
Morrison, W. N., and R. Mendelsohn. A discrete-continuous choice model of climate change impacts on energy. Office of Scientific and Technical Information (OSTI), September 1998. http://dx.doi.org/10.2172/656514.
Повний текст джерелаDormann, Christian. Introduction to Continuous Time Structural Equation Modeling (CTSEM) + 1 Free Seminar. Instats Inc., 2022. http://dx.doi.org/10.61700/am2g78fjl1gx5469.
Повний текст джерелаMeidani, Hadi, and Amir Kazemi. Data-Driven Computational Fluid Dynamics Model for Predicting Drag Forces on Truck Platoons. Illinois Center for Transportation, November 2021. http://dx.doi.org/10.36501/0197-9191/21-036.
Повний текст джерелаPullammanappallil, Pratap, Haim Kalman, and Jennifer Curtis. Investigation of particulate flow behavior in a continuous, high solids, leach-bed biogasification system. United States Department of Agriculture, January 2015. http://dx.doi.org/10.32747/2015.7600038.bard.
Повний текст джерелаTanny, Josef, Gabriel Katul, Shabtai Cohen, and Meir Teitel. Micrometeorological methods for inferring whole canopy evapotranspiration in large agricultural structures: measurements and modeling. United States Department of Agriculture, October 2015. http://dx.doi.org/10.32747/2015.7594402.bard.
Повний текст джерелаTanny, Josef, Gabriel Katul, Shabtai Cohen, and Meir Teitel. Application of Turbulent Transport Techniques for Quantifying Whole Canopy Evapotranspiration in Large Agricultural Structures: Measurement and Theory. United States Department of Agriculture, January 2011. http://dx.doi.org/10.32747/2011.7592121.bard.
Повний текст джерелаWu, Yingjie, Selim Gunay, and Khalid Mosalam. Hybrid Simulations for the Seismic Evaluation of Resilient Highway Bridge Systems. Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, November 2020. http://dx.doi.org/10.55461/ytgv8834.
Повний текст джерелаENERGY DISSIPATING MODES AND DESIGN RECOMMENDATION OF H-SHAPED STEEL BAFFLES SUBJECTED TO BOULDER IMPACT. The Hong Kong Institute of Steel Construction, December 2021. http://dx.doi.org/10.18057/ijasc.2021.17.4.3.
Повний текст джерела